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Abstract - In India, Hindi stands as the most prevalent language. An ideal communication system in a local language would 

enable regular individuals to engage with machines via speech interfaces for information retrieval and daily tasks. Despite 

notable advancements in recent decades, achieving natural and robust human -machine speech interaction in regional 

languages remains challenging, especially in environments characterized by significant noise and reverberation..In such 

challenging, noisy environments, traditional automatic speech recognition systems employing Mel Frequency Cepstral 

Coefficients (MFCC) or Perceptual Linear Prediction (PLP) features have shown subpar performance. Research indicates 

that Gammatone Frequency Cepstral Coefficients (GFCC) perform well in noisy environments. To address this challenge, a 

novel approach combined features (MFGF) extracted from MFCC and GFCC to harness the strengths of both while mitigating 

their respective weaknesses. To bolster the robustness of speech recognition, contemporary speech recognition systems 

commonly leverage acoustic models based on Recurrent Neural Networks (RNNs), which inherently capture extensive 

temporal contexts and long-term speech modulations. The study introduces a Deep Convolutional- Light Gated Neural 

Network (CNN-LiGRU) model. This paper presents a refined iteration of Gated Recurrent Units (GRUs) termed Light Gated 

Neural Network (LiGRU), coupled with Convolution Neural Network  (CNN).CNN extracts spatial features, capturing relevant 

patterns from the input spectrogram, while LiGRU handles the sequential nature of speech, capturing long -term dependencies 

and enhancing the model’s proficiency in understanding and recognizing spoken language. CNN-LiGRU demonstrates a 30% 

improvement in recognition rates over CNN-Recurrent Neural Network (RNN). Additionally, LiGRU eliminates the reset gate, 

resulting in reduced per-epoch training time compared to conventional RNNs. A comparative analysis with state-of-the-art 

methods is conducted, and experimental results indicate that the fusion approach outperforms, achieving speech recognition 

accuracy with minimal loss. 

Keywords -  CNN, GFCC,  LiGRU, MFCC, RNN. 

1. Introduction 
Speech recognition processes an audio signal to generate 

a word sequence representing spoken language. The 

identified words have applications in various voice-

controlled systems. In India, Hindi serves as the official 

language and is the most widely spoken, with over 425 

million people using it as their primary language and another 

120 million as a secondary language. Having a 

communication system in the local language facilitates 

interaction between ordinary individuals and machines for 

information retrieval. Over the last few years, the ASR field 

has seen remarkable advancement using deep learning 

techniques. However, Indian languages still face challenges 

due to linguistic complexity, dialectal variations and limited 

availability of annotated corpora. Traditionally, two 

important stages of the ASR system are feature extraction 

from a speech signal and acoustic modeling of the extracted 

features. A primary focus of ASR study over the past decades 

has been the building of an efficient feature extraction 

solution and an accurate acoustic modeling strategy. Many 

techniques like Mel Frequency Cepstral Coefficient (MFCC) 

[1], Perceptual Linear Prediction (PLP) [2], RASTA PLP [3-

4], Linear Prediction Cepstral Coefficient (LPCC) [5] have 

been proposed to generate features from speech utterance. 

However, in the presence of noise such as babble noise, 

additive white Gaussian noise, and others, these approaches 

encounter performance bottlenecks [6-8]. Despite significant 

research advances in the field of Automatic Speech 

Recognition (ASR) over the past decades, a notable gap in 
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performance between humans and machines persis ts. This 

performance gap is primarily attributed to the machines ’ lack 

of robustness in noisy environments, as pointed out in 

references [9, 10]. Recently, the Gammatone Frequency 

Cepstral Coefficient (GFCC) feature extraction approach 

[11] has exhibited promising performance in managing noisy 

voice data. The GFCC method relies on an array of 

Gammatone filters and an equivalent rectangular bandwidth 

(ERB) scale. The nonlinear design of the gammatone filter 

bank emulates the human auditory system’s processing. It is 

important to note that the filter bank is the primary 

differentiating factor between Mel-Frequency Cepstral 

Coefficients (MFCC) and GFCC. 

 Acoustic modeling using the Hidden Markov Model 

(HMM) was first introduced in the mid-1980s [12]. Gaussian 

Mixture Models (GMM) were subsequently adopted in 

conjunction with HMM to model speech feature distribution. 

These kinds of classical models have performed acceptably, 

but they often fail to get the details of Hindi phonetics and 

contextual dependencies in continuous speech. Deep neural 

network-based systems have become very popular in the last 

few years, and they have mostly taken the place of GMM-

based acoustic models. The deep learning paradigm is still 

changing, and new methods and strong architectures are 

coming out. More sophisticated architectures have been 

proposed by researchers, including, Convolution Neural 

Networks (CNN) [13-15], Recurrent Neural Networks 

(RNN) [16-19], RNN transducers [20], transformer networks 

[21], and Time Delay Neural Network (TDNN) [21, 22]. 

Each one has its own pros and cons. CNNs are effective at 

handling local spatial correlations and slight frequency shifts 

in audio signals, but they perform poorly in noisy 

environments and with variable-length inputs [23]. Since 

RNNs can capture extended context through long-term 

feedback links across speech frames, they are less sensitive 

to temporal distortions and deliver high recognition 

accuracy. This makes them especially useful in noise-

resistant applications. However, RNNs suffer from the 

vanishing and exploding gradient problem, which 

necessitates the use of special structures to solve it. Despite 

being parameter-intensive and prone to overfitting, 

especially in low-resource languages, the Long Short-Term 

Memory (LSTM) model has been widely used in speech 

recognition tasks because it incorporates a gating mechanism 

for better information flow over successive time-steps [24, 

25]. To solve the problems, the Gated Recurrent Unit (GRU) 

architecture was developed in 2014, which simplifies the 

LSTM cell architecture with two gating units [26]. Recently, 

a variation of GRU named LiGRU emerged by Bengio [27], 

which enhanced the GRU design by dropping the reset 

gate. The use of the ReLU activation function in conjunction 

with this has become more popular as it produces very high 

accuracy with low computational overhead among various 

RNN models [27]. The primary reasons for the performance 

decline are shallow models, suboptimal kernel and pooling 

strategies, and insufficient generalization due to minimal 

dataset-specific adjustment. Therefore, there is a need for a 

robust, optimized deep CNN model that can successfully 

extract features from Hindi speech and increase 

identification accuracy under different acoustic settings. In 

this study, the deep architecture proposed by Kumar [28] is 

utilized, which integrates CNN and LiGRU layers, to create 

a deep hybrid architecture that leverages the strengths of both 

models. CNN models with modified kernel sizes, strides and 

pooling methods are suitable for extracting position-

invariant features. RNN is best suited for sequence 

modelling. CNN-LiGRU hybrid model architectures 

perform better in terms of lower WER and less training time.  

 

 The main contributions of this work are: 1) a 

combination of MFCC and GFCC features for robustness , 

and 2) a novel lightweight CNN-LiGRU model. The 

proposed model, as compared to other CNN-LSTM or CNN-

RNN-based models, outperforms in terms of WER with 

significantly less training time on two different Hindi 

datasets. The proposed model is systematically examined by 

considering various acoustic characteristics, configurations 

of hidden layers and neurons, and computational efficiency. 

The architecture combines gammaton and mel filter bank 

features to handle noisy environments, utilizes CNN for 

position-invariant feature extraction, and employs the light-

gated recurrent unit model to model long-term dependencies. 

The performance of the proposed architecture is evaluated 

using a Hindi dataset. The remainder of this paper is 

structured as follows: Section 2 provides a brief overview of 

related work. Section 3 explains various feature extraction 

techniques. Section 4 discusses the CNN and RNN acoustic 

models. Section 5 details the proposed architecture, and 

experimental details are discussed in Section 6. 

 

2. Related Work 
Any successful speech recognition system relies on a 

vast amount of available training and testing data. However, 

state-of-the-art datasets for Indian languages such as Hindi, 

Bengali, Punjabi, and others are still insufficient, and only a 

few studies have been conducted in the field of Hindi 

language ASR [29]. An ASR system’s feature extraction 

component is crucial to the system’s overall accuracy. Most 

research studies for automatic speech recognition used the 

MFCC, LPC, and Dynamic Time Warping and Relative 

Spectra Processing features. In comparison to PLP, MFCC 

confirms improved feature extraction performance (Dua et 

al. 2018) [30]. Except for the aspirated voiced phoneme 

class, Farooq et al. (2010) [31] found that Wavelet packets 

performed better than the features obtained with MFCC and 

GFCC. To improve the recognition rate of Hindi ASR, 

Aggarwal and Dave (2013) combined traditional feature 

extraction approaches such as PLP, MFCC and gravity 

centroids, which raised the ASR recognition rate. Biswas et 
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al. (2014) proposed wavelet packet-based ERB-like features 

to recognize Hindi Phonemes. Dua et al. (2018) proposed 

Differential Evolution (DE) based optimized GFCC features 

with the GMM-HMM acoustic model, and they observed 

that GFCC performs well in clean and noisy environments. 

HMM-GMM-based acoustic model was used in the mid-

1980s for speech recognition. But in recent studies, deep 

learning based models , especially CNNs and RNNs, due to 

their ability to automatically learn hierarchical features, 

replaced the traditional model in recognition tasks. To 

increase the detection rate of a Hindi speech recognition 

system, Passricha (2019) [32] used CNN-Bi-Directional 

Long Short-Term Memory (BLSTM) layers. Later on, they 

have also investigated the effect of different pooling 

techniques in Hindi ASR. The impact of deep-learning 

systems on the Hindi dataset has not been thoroughly 

examined. The study also investigates a deep hybrid 

architecture by integrating CNN and LiGRU layers, where 

CNN capabilities are used to extract position-invariant 

features, and the LiGRU model is used to describe long-term 

dependencies. 

 

3. Feature Extraction 

3.1. Mel Frequency Cepstral Coefficients (MFCC) 

Human spoken sounds are filtered by the vocal tract in 

the human body. Which sound is produced is determined by 

the shape of the vocal tract. Speech sounds are produced by 

unique forms. The envelope of the short-term power 

spectrum represents the curvature of the vocal tract. This 

envelope is accurately represented by MFCC. The MFCC 

feature extraction process, as illustrated in Figure 1, involves 

several steps. 

1. The first-order high-pass filter, as shown below, is used 

to pre-emphasize the signal. 

 

   y(t)=x(t)-αx(t−1)   where 0.95< α <0.99      (1) 

 

2. The speech signal is divided into short-time frames after 

pre-emphasis. While speech signals are time-varying, 

their frequency components remain stationary for brief 

periods, hence the need for frame segmentation. 

3. A Hamming window is applied to each frame to remove 

edge discontinuities. 

4. Performing Fast Fourier Transform (FFT) on individual 

frames to capture frequency components of the divided 

speech stream. 

5. The next step involves calculating the Mel spectrum 

from the magnitude spectrum by utilizing a Mel filter 

bank, which consists of a set of bandpass filters as 

follows. 

    𝑀𝑒𝑙(𝑓) = 2595 log10
(1 +

𝑓

100
)

           (2) 

 

6. Subsequent application of the Discrete Cosine 

Transform (DCT) to extract cepstral coefficients. The 

amplitudes of the resulting spectrum are the MFCCs. 

Typically, twelve coefficients are preserved, and an 

extra feature, the frame’s log energy, is incorporated, 

resulting in a feature vector that encompasses thirteen 

MFCC attributes. 

3.2. Gammatone Frequency Cepstral Coefficients (GFCC)  

GFCC is gaining popularity due to its robustness in 

terms of noise compared to MFCC. It uses Gammatone 

filters and an ERB scale to mimic human hearing. The main 

difference between MFCC and MFCC is the filter bank. The 

process involves segmenting the signal, applying a Hamming 

window, a Fourier transformation, a 64-channel Gammatone 

Filter Bank, cubic root extraction, and DCT for cepstral 

coefficients. The formula for the Gammatone filter is as 

follows. 

𝑔(𝑓 ,𝑡) = 𝑡𝑛−1𝑒−2𝜋𝑏𝑡 cos(2𝜋𝑓𝑡)                   (3) 

Here, f represents frequency, t denotes time, b is the 

rectangle bandwidth, and n=4 signifies the filter’s order. This 

results in 13 GFCC coefficients, and delta and double delta 

are applied to the temporal information. 

4. Acoustic Modal 
4.1. Convolution Layer 

CNNs are a prominent deep learning variant that is  

commonly used in vision tasks. It has also performed 

admirably in ASR. The primary goal of CNN is to find the 

local structure present in speech signals. CNN effectively 

minimizes spectral fluctuations and models spectral 

correlations. Local connectivity allows it to efficiently 

capture nearby spatial correlations, a task that is challenging 

to accomplish using a Deep Neural Network. CNNs can also 

handle minor changes in frequency caused by speaker 

variance or speaking style. Convolution Neural Networks 

(CNNs) are made up of three primary sub-layers: 

convolution, pooling, and non-linearity. The convolution 

layer is made up of a number of separate filters. To generate 

a feature map, each filter individually convolves across the 

input. Convolution filters are applied from the upper-left to 

the lower-right corner of the input feature map to capture 

structural locality, which is a type of local pattern. These 

filters are also good at filtering out background noise. After 

convolution, pooling decreases the feature-dimensionality 

and provides a compact feature representation. Pooling 

effectively handles small frequency shifts that are common 

in voice signals. For the speech-recognition problem, 

Passricha and Aggarwal [33] study the performance of 

several pooling strategies in detail. In a CNN, a nonlinear 

layer is made up of an activation function that accepts the 

feature map created by the pooling layer outputs the 

activation map. 
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Fig. 1 Feature extraction methods  

 

4.2. Recurrent Layer 

4.2.1. Recurrent Neural Networks 

An RNN is a frequently employed model for solving 

ordinal or temporal problems. RNNs are known for their 

internal memory, enabling them to retain crucial information 

from the input they receive. This capability makes them 

exceptionally precise in predicting subsequent elements, 

which is why they are the preferred choice for tasks 

involving sequential data, such as speech. Recurrent neural 

networks have the capacity to develop a more profound 

comprehension of a sequence and its contextual relevance 

when compared to other algorithms. Given an input sequence 

I = (I1, . . . , IN ), RNN, as shown in Figure 2, computes output 

vector sequence O =(O1, . . . , ON) and the hidden vector 

sequence h = (h1, . . . , hN) through  following equation from 

t = 1 to N : 

ℎ𝑛 = 𝐻(𝑤𝑖ℎ𝐼𝑛 + 𝑤ℎℎℎ𝑛−1 +𝑏ℎ)
            (4) 

𝑂𝑛 = 𝑤ℎ𝑜ℎ𝑡 + 𝑏𝑜
                                    (5) 

 

Where W denotes weight matrices, b denotes the bias 

vector, and H is the hidden layer activation function. RNNs 

are trained using the back-propagation through time training 

algorithm. The usual RNN, on the other hand, is better at 

regulating the temporal coefficient of spectral vectors. 

However, they suffer from vanishing gradient issues. To 

address this difficulty, the LSTM model was proposed. 

4.2.2. Long Short-Term Memory  

LSTM networks are a type of RNN that can learn long-

term dependencies and were proposed by Hochreiter & 

Schmidhuber (1997) [32] to overcome the vanishing gradient 

problem that regular Recurrent Neural Networks suffer 

(RNN) [32]. LSTM, as shown in Figure 3, consist of memory 

cells and gating units. The memory cell aids in the long-term 

recall of information, while the gating units help with 

network information flow regulation [31]. The LSTM 

model’s basic structure consists of three gates: input gates, 

output gates, and forget gates. LSTM is implemented by the 

following composite function [34]: 

 

 

 

 

Fig. 2 RNN basic building block  

𝑓𝑛 = 𝜎(𝑤𝑓
[ℎ𝑛−1, 𝐼𝑛

] + 𝑏𝑓)
                     (6) 

𝑖𝑛 = 𝜎(𝑤𝑖
[ℎ𝑛−1, 𝐼𝑛

] + 𝑏𝑖)
                      (7) 
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𝑐̂𝑛 = 𝑡𝑎𝑛ℎ(𝑤𝑐
[ℎ𝑛−1 , 𝐼𝑛

] + 𝑏𝑐)
               (8) 

 

 

 

 

 

 

 

Fig. 3 LSTM basic building block  

𝑐̂𝑛 = 𝑡𝑎𝑛ℎ(𝑤𝑐
[ℎ𝑛−1 , 𝐼𝑛

] + 𝑏𝑐)
            (8) 

𝑐𝑛 = (𝑐𝑡−1 ౦ in
) + (𝑐̂𝑡౦ in)

                   (9) 

𝑜𝑛 = 𝜎(𝑊𝑜  
[𝑖𝑛 ,ℎ𝑛−1

] + 𝑏𝑜)
                  (10) 

ℎ𝑛 = tanh (𝑐𝑛) ౦ 𝑜𝑛
                              (11) 

Where i, f, o and c are respectively the input gate, forget 

gate, output gate and cell activation vector, σ is the activation 

function. 

4.2.3. Gated Recurrent Unit  

Cho and colleagues introduced the Gated Recurrent Unit 

(GRU) in 2014 [35]. GRU simplifies the LSTM architecture. 

It uses only two gates,  the update gate and the reset gate, to 

control the memorization process.  

 

GRU, unlike LSTM, has no output gate and consolidates 

the input and forget gates into a single update gate. The GRU 

output computations are based on the following equations: 

 

𝑟𝑛 = 𝜎(𝑊𝑟
[𝐼𝑛 ,ℎ𝑛−1

] + 𝑏𝑟)
                                   (12) 

 

𝑧𝑛 = 𝜎(𝑊𝑧  
[𝐼𝑛   ,ℎ𝑛−1

] + 𝑏𝑧)
                                 (13)  

 

ℎ𝑛
̃  = 𝑡𝑎𝑛ℎ(𝑊ℎ

[𝑟𝑛  ౦ hn−1, In  
] + bh)

                  (14) 

 

hn = (1 − zn  
)౦ hn  

̃ + zn  ౦hn−1 
                       (15) 

 
Where z and r are respectively the update gate, reset gate, 

and σ is the activation function. 

 

 

 

 

Fig. 4 GRU basic building block 

4.2.4. Light Gated Recurrent Unit 

Ravanelli proposed Li-GRU as a modification of the 

GRU architecture in 2018. Due to the removal of the reset 

gate r  from the GRU architecture, LiGRU functions with the 

update gate z. The reset gate, according to [27], is critical 

when dealing with sequence discontinuities. In the context of 

speech, this is a rare occurrence because history is usually 

beneficial. Equation (13) is changed as a result of the removal 

of the reset gate rt: 

ℎ𝑛
̃  = 𝑡𝑎𝑛ℎ(𝑊ℎ

[ℎ𝑛−1 , In  
] + bh)

                     (16) 

The traditional tanh activation function has been 

replaced with the ELU activation function to achieve 

improved results. This modification is proposed based on 

experiments in section 6.2.3 

ℎ𝑛
̃  = 𝐸𝐿𝑈(𝑊ℎ

[ℎ𝑛−1 , In  
] +  bh

                    (17) 

5. Proposed ASR using deep CNN‑LiGRU 
The automatic speech recognition system comprises two 

integral components: the front end and the back end. The 

front end extracts relevant features from the input audio 

signal, undertaking tasks such as signal pre-processing, 

spectral analysis, and feature extraction. Meanwhile, the back 

end decodes these features into meaningful speech or text 

through processes like acoustic modeling, language 

modeling, and decoding algorithms. Notably, MFCC and 

GFCC [36] have demonstrated superior performance over 

PLP, LPCC, and other techniques in general speech 

recognition tasks, with MFCCs excelling in diverse 

environments and GFCCs proving effective in noisy 

conditions by mirroring the human auditory system. The 

fusion of MFCCs and GFCCs enhances discriminative 

power, improves modeling of speaker and speech variability, 

and aligns with human auditory perception, thereby 

enhancing overall system performance. Consequently, a 

proposed combined approach leveraging both MFCC and 
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GFCC is proposed to harness the strengths of these methods 

and mitigate their individual limitations. 

The proposed acoustic model comprises a Convolutional 

Neural Network followed by a Light Gated Recurrent Unit 

(LiGRU), as illustrated in Figure 5. CNNs excel in capturing 

spatial hierarchies within data. By applying CNN layers to 

MFCCs) and Gammatone-Frequency Cepstral Coefficients 

(GFCCs), the model adeptly learns spatial features and 

patterns, enhancing the extraction of relevant information 

from the input audio. The CNN extracts spatial features, 

capturing pertinent patterns from the input spectrogram, 

while the LiGRU handles the sequential nature of speech, 

capturing long-term dependencies and improving the model’s 

proficiency in understanding and recognizing spoken 

language. This integrated architecture is well-suited for the 

intricate demands of speech recognition tasks. Combined 

features are applied to the convolution layer to generate an 

output feature map. To trim dimensionality while retaining 

essential information and discarding irrelevant details, a max 

pooling layer is employed. The pooled output is then fed into 

the convolution layer as input. A linear layer is added after 

the final CNN layer to further minimize dimensionality 

without sacrificing vital information. The output from this 

linear layer is directed into stacked LiGRU layers, each 

consisting of 550 units. The LiGRU’s ability to retain 

sequence history in its internal state enables it to predict  the 

next phoneme based on previously observed properties. To 

derive posterior probabilities for distinct classes, Fully 

Connected layers (FC) with sizes of 3 and 550 nodes in each 

layer are utilized, respectively. FC layers are particularly apt 

for class-based discrimination. During training, a batch size 

of eight is employed, and the learning rate is initially set to 

0.0001. On the development set, the learning rate is fine-

tuned over 23 epochs. If the frame accuracy on the 

development set falls below a specified threshold, the 

learning rate is halved after each session. In the decoding 

process, the Kaldi decoder is utilized, configuring the beam 

to 13 and the lattice beam to 8. This intricate architecture 

comprises a total of 12 layers, including 3 CNN layers,2 

Linear Layers, 4 LiGRU layers, and 3 Multilayer Perceptron 

(MLP) layers. This design optimizes the computational 

efficiency of the proposed model compared to existing 

Recurrent Neural Network (RNN) models. 

6. Experimental Details 
6.1. About Dataset 

Two distinct and well-annotated datasets with rich 

phonetic information are utilized for this research, as 

illustrated in Table 1. The first dataset employed is called the 

Indic dataset [37]. This corpus comprises data from 13 

significant Indian languages. Specifically for the Hindi 

language, it contains a collection of more than 2,318 

sentences and utterances recorded by native speakers, both 

male and female. The second dataset utilized for the 

experiment is the Multilingual and Code-switching ASR 

Challenge Dataset - sub-task 1 [38]. This Hindi speech 

dataset is divided into two parts: a training set consisting of 

95.05 hours of audio and a test set consisting of 5.55 hours of 

audio. In the training and test sets, there are 4,506 and 386 

unique sentences derived from Hindi stories, respectively, 

with no overlap between the sentences. The training set 

includes utterances from 59 speakers, while the test set 

includes utterances from a separate group of 19 speakers. The 

audio files are sampled at 8 kHz and encoded in 16 bits. The 

combined training and test sets have a total vocabulary of 

6,542 words.

 

 

Fig. 5 Deep CNN-LiGRU architecture
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Table 1. Hindi speech corpus details  

 

 

 

 

 

 

6.2. Simulation Details and Experiment Result  

The subsequent section of this paper provides a 

comprehensive explanation of the simulation and 

experimental outcomes of the proposed work. Initially, a 

Hidden Markov Model (HMM) system is trained based on 

the Gaussian Mixture Model (GMM) to estimate the context-

dependent Phone Model, generating an alignment crucial for 

the subsequent training of the proposed system. The GMM-

HMM system is trained using base features extracted with a 

Hamming window of 25 milliseconds and a 10-millisecond 

frame shift. The baseline GMM-HMM system is 

implemented using the Kaldi toolkit, and all deep neural 

networks are trained using PyTorch-Kaldi. To test the 

proposed system, separate experimental analyses were 

performed utilizing different combinations of feature 

extraction methods and proposed acoustic modeling 

methodologies. The accuracy study of several feature 

extraction techniques using different deep learning based 

acoustic models is discussed in experiment 6.2.1. 

 

6.2.1. Accuracy Analysis of Feature Extraction Techniques  

The proposed system, illustrated in Figure 5, undergoes 

evaluation using six distinct feature extraction techniques: 

MFCC, GFCC, PLP, MF-PLP, MF-GFCC and PLP-GFCC. 

Feature vectors are subjected to testing in both clean and 

noisy environments. For MFCC, GFCC, and PLP, the initial 

thirteen coefficients are extracted and expanded t by adding 

first and second-order derivatives to increase the number of 

coefficients to 39. In the case of MF-PLP, the initial features 

are derived by combining 13 MFCC coefficients with 13 

PLP coefficients, expanded to a 78-dimensional feature 

vector through derivative processes. Similarly, PL-GFCC 

and MF-GFCC combine PLP and GFCC features, resulting 

in a 78-dimensional feature vector. The performance of 

several neural network-based acoustic modeling approaches 

using various combinations of acoustic feature sets is shown 

in Table 2. The acoustic models are trained using PyTorch-

Kaldi. The Table below reports the achieved Word Error 

Rate (WER). Features were extracted using Kaldi and 

concatenated using PyTorch-Kaldi. These experiments 

incorporated a trigram language model. For consistency, all 

the Neural Network Architectures (RNN, LSTM, LiGRU 

and GRU) examined in this study, with the exception of 

CNN, comprise three hidden layers, each containing 512 

hidden neurons, as well as the relu activation function. Every 

model was trained for 23  iterations. The truncation process 

for sentences longer than 1,000 characters  was implemented 

during the training of recurrent models to address the is sue 

of running out of memory. It was observed that MFCC 
outperformed GFCC in the experiments that were 
conducted. However, the combination of GFCC and MFCC 

features surpassed the performance of MFCC alone. It is 

important to note that these observations are based solely on 

clean speech signals. Additionally, it is observed that PL-

GFCC yielded results nearly equivalent to MF-GFCC in this 

context. The GRU model shows an insignificant 

improvement compared to the LSTM model. Furthermore, 

the LiGRU model displays an additional performance 

enhancement over the GRU model. Notably, experiment 

results also reveal that PL-GFCC and MF-GFCC yield nearly 

equivalent results when applied to clean data in the LiGRU 

model. Among all the investigated neural network 

architectures, the MF-GFCC feature sets yield the lowest 

WER. This observation implies that the integration of 

multiple feature sets has the potential to enhance speech 

recognition performance within the evaluated neural network 

architectures. 

Table 2. WER(%) of feature extraction methods with  different 
acoustic models 

Feature 

extraction 

method 

Dataset-1 

RNN LSTM GRU LiGRU CNN 

MFCC 9.66 9.84 9.70 9.43 12.73 

PLP 9.60 9.67 9.58 9.51 11.99 

GFCC 10.08 10.53 9.94 9.79 15.74 

MF-PLP 9.59 10.77 9.78 9.57 11.62 

PL-GFCC 9.43 9.79 9.60 9.41 11.40 

MF-GFCC 9.43 10.27 9.52 9.40 11.41 

 

6.2.2. MFGF Deep CNN-LiGRU 

The combined delta features MF-GFCC are applied to 

the initial layer of a Convolution Neural Network (CNN). 

The input data encompasses a dimension of 260, taking into 

account both two futures and two past frames relative to the 

current time step. In the analysis, the delta feature of both 

MFCC and GFCC was taken into account. After reviewing 

the delta feature of both MFCC and GFCC, minor variations 

are observed when comparing delta and delta-delta features, 

as outlined in Table 3. Therefore, the delta feature is opted 

for, which reduces feature dimensionality and also decreases 

time complexity. Following the first convolutional layer, as 

shown in Table 4, the CNN employs max pooling with a 

filter size of 5 and a stride of 3, resulting in a feature vector 

reduction to 86. Subsequently, the second convolutional 

layer further processes the feature vector, reducing it to 42 

SN Dataset #Sentences Duration(Hours) #Speakers 

1 Indic Database 2318 10.5 2 

2 

Multilingual and code-

switching ASR Challenge 

Dataset - sub-task 1 

4892 101 78 
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using a filter size of 3 and a stride of 2. The third 

convolutional layer further processes the feature vector, 

reducing it to 19 using a filter size of 3 and a stride of 2. The 

final layer operates on a feature vector of 19 dimensions with 

a filter size of 3, and the max pooling size is one. The final 

layer incorporates 60 filters, producing output vectors with a 

size of 1020. These vectors serve as input to a Multilayer 

Perceptron (MLP) layer consisting of two layers, each 

comprising 550 hidden nodes. The output from the MLP 

layer is then fed into a Light Gated Recurrent Unit (LiGRU) 

with three layers, each containing 550 hidden nodes. To 

conclude the architecture, three additional MLP layers and 

Fully Connected (FC) layers are incorporated. The first MLP 

layer receives a feature vector of size 1100 as input. The Elu 

activation function is used for this experiment. This 

comprehensive neural network design aims to optimize 

feature extraction and learning capabilities for enhanced 

performance in the specified task. 

 
Table 3. WER(%) with delta features  

Delta Features WER% 

D-0 5.06 

D-1 4.76 

D-2 4.75 

 
Table 4. Parameters of MFGF Deep CNN-LiGRU 

Parameter Value 
CNN Filter size in each layer 5,3,3,3 

CNN strides in each layer 3,2,2,1 
The number of filters in every CNN layer 80,60,60,60 
The number of LiGRU’s hidden layers 3 
The number of hidden nodes in every 

layer 550 
Each MLP layer’s number of hidden units 550 

Activation function used in CNN, MLP 

and LiGRU ELU 
 

6.2.3. The Impact of Activation Functions   

Neural networks’ performance and behavior are greatly 

influenced by activation functions. This study probably 

investigates how various activation functions, such as 

Sigmoid, Tanh, Exponential Linear Unit (ELU), Leaky 

ReLU, Rectified Linear Unit (ReLU), and others, affect 

neural network accuracy. Except for the activation function, 

the other configurations remained constant across all 

experiments conducted as mentioned previously. The results 

of the experiment showed that the ELU activation function 

yielded the best WER performance. ELU, characterized by 

its smooth and continuously differentiable nature, presents 

advantages in mitigating convergence issues and promoting 

stable training. Its efficacy surpasses that of ReLU, 

particularly in addressing the vanishing gradient problem. 

Comparing the ELU activation function with the sigmoid, it 

was observed that using ELU  resulted in a relative reduction 

in the WER, as shown in Table 5. 

Table 5. WER(%) different activation function 

Activation 

Function Sigmoid Tanh ReLU Leaky 

ReLU ELU 
Dataset 1 

WER [% ] 9.71 9.35 9.34 9.52 9.28 
Dataset 2 

WER [% ] 7.24 5.55 5.48 4.78 4.76 
 

6.2.4. The Impact of Batch normalization  

Batch normalization enhances training efficiency and 

performance of neural networks through the alleviation of 

internal covariate shift. Table 6 presents a comparison of the 

WER achieved with and without batch normalization, 

highlighting its importance. The results indicate that batch 

normalization is beneficial for improving ASR performance. 

This enhancement demonstrates  that the LiGRU model 

works especially well with batch normalization, primarily as 

a result of the ELU activations that were used.    

Table 6. WER (%) with and without batch normalization  

Parameter WER%  

without batch norm 7.10 

with batch norm 4.76 

 

The proposed architecture has been subjected to training 

using various configurations of convolution layers and 

LiGRU layers, as detailed in the Table. We conducted 

training for 21 different architectural configurations based on 

Convolution Layers 3–5. The initial architecture consisted of 

three convolution layers, two LiGRU layers, and three FC 

layers, which can be found in Table 7. In the subsequent 

architectures, only the number of convolution layers and 

MLP layers was modified, while all other aspects of the 

configurations remained constant. The feature dimensions 

for all the architectures were maintained consistently as 

outlined in the previous  Table. Through rigorous 

examination, we systematically increased the number of 

fully connected layers. This examination revealed significant 

observations. Initially, accuracy increases proportionately 

with the number of LiGRU layers; four LiGRU layers 

resulted in the most ideal model. Secondly, the addition of 

hidden layers to CNN and Fully Connected (FC) layers does 

not significantly improve the Deep Neural Network’s ability 

to discriminate (DNN). In our analysis, we found that 

employing 3 CNN layers,4 LiGRU Layers and 3 MLP layers 

yielded the most favorable outcomes. 

 
6.2.5. Performance Analysis using Different Acoustic 

Models 

This section summarizes research on several acoustic 

models. Here, the combined features of the mel filter bank 

and gammatone filter bank are applied to the first layer of  

CNN. The output feature map from the CNN is given to a 

different recurrent neural network, followed by a fully 

connected layer.  
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Table 7. Impact of CNN and LiGRU Layer Variations on Word Error Rate (WER%)  

 

The outcomes of all conducted experiments are shown 

in Table 8. The Word Error Rate (WER) and training 

computation time were measured for each experiment. We 

have measured the WER and training computation time for 

each experiment. In comparison to other RNN models, this 

one-gated model with the ELU activation function 

demonstrated remarkable accuracy while requiring minimal 

computing load. 

Table 8. Acoustic model variants: a comparative performance analysis 

Modal WER (% ) 

CNN-RNN 6.65 

CNN-LSTM 6.02 

CNN-GRU 4.70 

CNN-LiGRU 4.61 

 

6.2.6. Comparative Analysis of Per-Epoch Training Time 

To better illustrate the computational efficiency of the 

proposed deep CNN-LiGRU model compared to existing 

RNN-based models. Table 1 presents the per-epoch training 

time (in minutes) for the CNN-RNN, CNN-LSTM, CNN-

GRU, and CNN-LiGRU models: 

Table 9. A Comparative analysis of per-epoch training time  

Model 
Per-epoch Training Time  

(in minutes) 

CNN-RNN 105 

CNN-LSTM 186 

CNN-GRU 170 

CNN-LiGRU 101 

 

As shown in Table 9, the CNN-LiGRU model achieves 

a reduced per-epoch training time compared to both the 

CNN-LSTM (186 minutes) and CNN-GRU (170 minutes), 

with a training time of 101 minutes. This reflects improved 

computational efficiency. Although the CNN-LiGRU 

model’s training time is slightly higher than that of the CNN-

RNN (105 minutes), it offers a well-rounded balance 

between computational efficiency and model performance, 

leveraging the strengths of both CNN and GRU 

architectures. 

7. Conclusion  
Experiment results suggest that incorporating various 

feature sets, notably MFCC and GFCC, presents an 

opportunity to boost the effectiveness of speech recognition 

within neural network structures. Moreover, the utilization 

of sophisticated architectures such as the Convolutional 

Neural Network (CNN) in conjunction with the Light Gated 

Recurrent Unit (LiGRU) exhibited considerable 

enhancements in accuracy without sacrificing computational 

efficiency.  

Furthermore, our investigation into activation functions 

and batch normalization underscored their substantial 

influence on the performance of the system. Particularly, the 

Exponential Linear Unit (ELU) activation function and the 

implementation of batch normalization demonstrated 

notably positive outcomes in our experiments. 
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