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Abstract - Efficient spectrum sensing is crucial in Cognitive Radio Networks (CRNs) to identify and utilize unoccupied frequency 

bands, unobtrusively for primary users. By providing spatial diversity, the use of multiple antennas can enhance spectrum 

sensing performance. The proposed work makes use of multiple antenna spectrum sensing with a Deep Q Network (DQN) model 

to ascertain the existence of an estimated signal. The presence of phase noise reduces the efficiency of spectrum sensing 

compared to other widely used methods. To overcome this, the proposed work adopts Jelly Fish Optimization (JFO), Single 

Candidate Optimization (SCO) and Sand cat swarm optimization algorithms with Multiple Antenna Spectrum Sensing DQN 

(MASSDQN) to decrease the phase noise and enhance the spectrum sensing.  The experimental outcome demonstrates the 

superior performance of the sand cat swarm optimization technique in multiple antenna spectrum sensing and optimize the phase 

noise for the secondary users to harness the spectrum effectively. 
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1. Introduction  
The underutilization of the Radio Frequency (RF) 

spectrum is largely a result of the traditional fixed spectrum 

allocation policies. As a result, many spectrum bands end up 

being vacant for extended periods of time. Cognitive Radio 

(CR) is a viable method for increasing spectrum utilization 

and addressing the issue of spectrum scarcity. CR's basic 

concept is to make underutilized or vacant spectrum bands, 

which are primarily reserved for Prime Users (PUs), available 

to Secondary Users (SUs). In order to do this, SUs must use 

spectrum sensing to determine whether PUs are presently 

using a specific spectrum band. The best bands for cognitive 

transmission can be selected by the SUs if they determine that 

the spectrum is empty. The usage of a multiple antenna 

approach may improve CR systems' spectrum sens ing 

performance, offering more precise detection capabilities and 

mitigating the limitations of conventional methods. 

 

Multiple antenna techniques  [1, 2] are commonly used in 

communication systems and have been shown to work well in 

a number of different situations. In dynamic spectrum sharing, 

Secondary Users (SUs) equipped with multiple antennas have 

achieved reliable signal transmission and efficient spectrum 

sensing. By leveraging the spatial domain observations 

provided by multiple antennas, Cognitive Radios (CRs) can 

greatly enhance the accuracy of spectrum sensing [3]. Phase 

noise is the short-term random changes in a signal's phase. 

These changes are usually caused by flaws in oscillators or 

other RF parts. Phase noise in spectrum sens ing can make 

spectrum sensing methods much less effective, especially in 

cognitive radio systems and systems with more than one 

Antenna. Phase noise breaks up the coherence between 

different antenna signals in systems with more than one 

Antenna, like Multiple Input Multiple Output (MIMO). This 

phase distortion between antennas affects spatial diversity and 

multiplexing gains, making spectrum sensing less effective in 

these systems. 

 

The proposed work explores the usage of multiple 

antennas for spectrum sens ing with various optimization 

algorithms like jellyfish, single candidate, and sand cat to 

reduce the presence of phase noise and detect the unusable 

spectrum. The optimal detector structure for this scenario has 

been simulated to reduce the phase noise and enhance the 

spectrum sensing using various algorithms , and effective 

accuracy has been obtained. 

 

2. Literature Review  
Adding more antennas to systems has improved their 

ability to sense the spectrum. By using spatial diversity, 

several antennas can improve signal detection, make fading 

less likely, and lessen the effects of noise and interference. 

Furthermore, integrated spatial and temporal sensing is made 

possible by multiple-antenna approaches, which may result in 
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more effective spectrum use. Zhang et al. [2] explored a 

spectrum sensing approach based on Matched Filter Detection 

(MFD) and addressed a scenario in which the transmit power 

of the Primary User (PU) varies over time. This fluctuating 

transmit power introduces challenges for reliable spectrum 

sensing, as many traditional techniques assume a constant 

signal strength from the PU. By accounting for variations in 

the PU's transmit power, their study aimed to enhance the 

detection accuracy and robustness of the sensing process in 

dynamic environments. Lucas dos Santos Costa et al [4] 

coupled impairments on the performance of two blind 

methods under frequency-selective fading channels in 

centralized Cooperative Spectrum Sensing CSS with data 

fusion and Decision Fusion (DF) for varying the CRs and 

antennas. An auto-encoder for spectrum sensing was created 

by Xie et al. [5]. It does not require a significant quantity of 

data labeled for training, but it exhibits detection performance 

that is comparable to supervised algorithms under Gaussian 

and Laplace noise, unlike the previously stated systems. DL-

based techniques have also become more prominent in the 

spectrum sensing field in multiantenna receiving scenarios. 

For the CR IoT with several sensing antennae, Wang et al. [6] 

suggested a sensing algorithm based on numerous high-order 

cumulants. It can successfully balance computation and 

detection performance while mitigating the negative effects of 

noise uncertainty. The spectrum sensing problem for 

noncircular signals in CR networks with multiple receive 

antennas is examined by An-Zhi Chen et al. [7], with 

particular attention paid to the situation in which the antennas 

encounter varying noise power levels. For these networks, 

Noncircular Covariance (NCC) is a potent spectrum sensing 

method that leverages the advantages of the NC signal. By 

comparing complementary covariance matrices and the 

standard covariance of the received signals among the null and 

alternative hypotheses, PUs can be found. Keunhong and 

Yusung [8] developed a Deep Spectrum Sensing Method for 

Multiple Antennas (DS2MA) reception by using the auto and 

cross-correlation functions of received signals.  DS2MA may 

be able to learn to identify the presence of a Principal User 

(PU) with the help of the rich information matrix and a simple 

Convolutional Neural Network (CNN) structure. DS2MA can 

greatly enhance detection performance by combining cross -

correlation functions. Research in [9-11] highlights the 

importance of using several antennas in SUs for SS in 

situations when data on noise power levels, sensing channels, 

and/or PU signal may not be available. It is important to keep 

in mind that correlation of signals frequently occurs in 

receivers with multiple antennas, for instance, because of the 

close proximity of the antennas. 

 

Furthermore, one may anticipate that performance will 

suffer in a particular communication setting when 

geographical diversity declines and correlation rises. 

Transmitted signals are destroyed by phase noise from both 

the transmitter and the receiver. In multiple-antenna systems, 

phase noise [12-17] can lead to random fluctuations in 

received signal amplitude. The receiver's non-coherent mixing 

of the received signals  is the main source of this. Phase noise 

is a big problem in cognitive radio spectrum sensing because 

more and more people are using multiantenna systems and 

advanced sensing methods . Cooperative sensing, hardware 

upgrades, and sophisticated signal processing methods like 

DQN-based optimization are all effective mitigation tactics. In 

order to guarantee dependable spectrum access without 

interfering with key users, phase noise must be understood and 

compensated for. 

 

3. Preliminary Basics 
3.1. Signal Model  

A cognitive Radio-5G network comprises one Primary 

User (PU) with a transmitting antenna and numerous 

Secondary Users (SU) with multiple receiving antennas. The 

Secondary User detects the existence of the Primary User with 

N (N≥1) received signals. For each Secondary User (SU), the 

challenge of spectrum sensing can be framed as a binary 

hypothesis test. 
 

          
𝐻0: 𝑟(𝑛) = 𝜑(𝑛)

                                    
(1)     

                 𝑯𝟏: 𝒓(𝒏) = 𝒉(𝒏)𝒕(𝒏) + 𝝋(𝒏) 
 

Where  H0 indicates PU is absent, 

             H1 indicates the PU is present, respectively.  

             r(n) indicates the SU received signal,   

             t(n) represents the PU transmitted signal,  

             h(n) represents the SU and PU channel,  

             ϕ (n) represents additive noise, n = 0, 1, . . , 

             N − 1,  

             N is the number of received samples  

 
𝑟(𝑛) = [𝑟1 (𝑛), 𝑟2(𝑛), . . . , 𝑟𝑀 (𝑛)]𝑇 ∈ 𝐶 𝑀𝑋1              (2) 

      h(n) = [h1(n), h2(n), . . . , hM(n)]T ∈ CMX1            (3)
          

           

             
𝜑(𝑛) = [𝜑1(𝑛), 𝜑2(𝑛), . . . , 𝜑𝑀(𝑛)]𝑇 ∈ 𝐶 𝑀𝑋1        (4)

     
 

Where ri(n) indicates the ith Antenna received signal, h i(n) 

is the channel response between the ith Antenna and the 

transmitter, and  𝜑i(n) represents the ϕth antenna noise.        

 
3.2. Noise Model 

3.2.1. Phase Noise    
Phase noise is the noise resulting from swift, transient, 

random variations in the phase of a signal. These 

unpredictable phase changes occur because of time-domain 

instabilities, known as phase jitter.   This noise can degrade 

the performance of the radio by impacting various aspects of 

signal processing. In situations when great precision and 

dependability are needed, phase noise is an important 

consideration in the design and implementation of cognitive 

radio systems. In frequency division multiplexing systems, 

spectral regrowth brought on by phase noise may exacerbate 
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adjacent channel interference. A stochastic process denoted by 

is added to the signal in the following manner to  introduce 

phase noise. 

𝑉(𝑡) = 𝐴 𝑐𝑜𝑠( 2𝜋𝑓0 𝑡 + 𝜑(𝑡))                      (5) 
 

3.3. Channel Model 

3.3.1. Ideal Channel  

  In an ideal channel, where there are no impairments like 

multipath fading, interference, or noise (except for phase 

noise), Phase noise is still a significant factor since it directly 

impacts the transmission and reception integrity of signals. 

Phase noise can impair communication systems' performance 

even in such a perfect situation. 
 

 

3.3.2. Rayleigh Channel 
In a Rayleigh fading channel, where the signal undergoes 

multiple reflections and scattering, leading to random 

amplitude variations, phase noise adds another layer of 

complexity to the communication system.  

 

Phase noise and Rayleigh fading together may seriously 

hinder the functionality of wireless  communication devices, 

such as cognitive radios. When both Rayleigh fading and 

phase noise are present, the received signal y(t) is given as  

 

                   𝑦(𝑡) = ℎ(𝑡). 𝑠(𝑡)𝑒𝑗𝜃𝑝𝑛 𝑡 + 𝑛(𝑡)                        (6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 Block diagram of MASSDQ N 

 

4. Proposed MASSDQN 
4.1. Multiple-Antenna Spectrum Sensing Methods based on 

Deep Q Networks  

A Deep Q Network (DQN) [18-20] is a new approach to 

spectrum sensing in cognitive Radio-5G networks utilizing 

deep reinforcement learning and multiantennas. The 

considered approach seeks to enhance available spectrum 

detection by increasing the capability of the cognitive radio to 

effectively identify underutilized frequency bands through 

MASSDQN. The use of multiple antennas provides spatial 

diversity, which can be used to improve the detection 

efficiency in the presence of fading and interference. The 

multiple antennas gather signal information from various 

locations in space, providing a better understanding of the 

spectrum environment. A DQN is a type of deep 

reinforcement learning algorithm combining deep neural 

networks and Q-learning. The DQN learns to make spectrum 

availability decisions based on Time to predict the expected 

reward of sensing various spectrum bands and improve its 

sensing approach accordingly. The combination of spatial 

diversity with sophisticated learning algorithms makes this 

approach a robust solution to spectrum management issues 

under dynamic and complex wireless scenarios. The block 

diagram of MASSDQN is represented in Figure 1.  

 

The proposed work focuses on detecting the existence of 

spectrum using MASSDQN and is optimized with Particle 

Swarm Optimization (PSO), Jelly Fish Optimization, Single 

Candidate optimization, and Sand Cat Swarm Optimization to 

validate its accuracy as it identifies poorly utilized Frequency 

bands by cancelling phase noise. 
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4.2. MASSDQN with Jelly Fish Optimization 

      The Multiple-Antenna Spectrum Sensing Deep Q 

Network (MASSDQN) using Jellyfish Optimization (JFO) is 

an advanced framework that leverages the unique power of 

both deep reinforcement learning and bio-inspired 

optimization for enhanced spectrum sensing in cognitive radio 

networks.  

 

 DQN is designed to identify the optimal action that 

enhances the anticipated collective reward over time. The Q-

value Function approximated by the DQN is given by 

 

 

𝑄(𝑠𝑡,𝑎𝑡;𝜃) = 𝑟𝑡 + 𝛾𝑚𝑎𝑥
𝑎′𝑙

𝑄(𝑠𝑡+1,𝑎𝑙′; 𝜃)

       

(7) 

 
 s(t)  is the present state. 

 A (t)  is the action for selecting a frequency  

         band. 

 r(t)  is the reward for action taken a(t) 

  γ     is the discount factor. 

  θ    is the parameter (weights) of the neural  

         network. 

 

 The JFO algorithm is employed to optimize the 

parameters of the DQN, such as the learning rate α, discount 

factor γ or other aspects like antenna selection strategies. JFO 

is used to optimize the DQN's hyperparameters θ by 

minimizing the loss function. 

 
Where θ is the target network parameters . 

 

 The JFO algorithm iteratively adjusts θ to find the optimal 

set of parameters that minimizes this loss, thus improving the 

decision-making process of the DQN. Besides tuning the 

DQN's hyperparameters, JFO can also optimize antenna 

selection strategies. The selection of antennas significantly 

impacts the quality of the received signal and, consequently, 

the performance of spectrum sensing.  

 

 JFO searches for the optimal combination of antennas that 

Maximizes the Accuracy of Spectrum Sensing. MASSDQN 

provides a powerful mechanism to optimize DQN parameters 

and antenna selection, leading to better performance in 

complex environments, Enhanced Spectrum Sensing and 

adaptive learning. 
 

4.2.1. Pseudo Code for MASSDQN with JFO 

// Initialize  CRN environment,  DQN  

   with weight θ, if the weight of the target network  θ⁻ =  θ,  

   Replay memory D and  Jellyfish Optimization parameters. 

// FOR each time step t do 

// Take action aₜ, observe reward rₜ and next state sₜ₊₁, store     

    transition in replay memory D 

// Compute target: 

// Perform gradient descent on loss: 

// Update θ⁻ = θ periodically 

//  IF (Jellyfish Optimization condition met) THEN 

// Apply JFO to optimize DQN hyperparameters  

//  Jellyfish Optimization update rule: 

// Update jellyfish positions Xₐₜ: 

//  Select new global best solution Xₐ_g 

//  END IF 

//  Update state sₜ = sₜ₊₁ 

//  END FOR 

 
4.3. MASSDQN with Single Candidate optimization 

 By integrating a Deep Q-Network (DQN) with Multiple-

Antenna Spectrum Sensing (MASSDQN) and employing 

Single Candidate Optimization (SCO), the system can learn to 

detect spectrum holes effectively while maintaining 

computational efficiency. 
  

 In a system with multiple antennas, the action space can 

become large, making it computationally expensive to 

evaluate all possible actions. Single Candidate optimization 

addresses this by selecting only one candidate action per 

Antenna based on the present state and policy, significantly 

reducing the complexity of the problem. 

The Q-value update with Single Candidate optimization is 

modified as, 

 

𝑄(𝑠𝑡 , 𝑎
_

𝑡 ; 𝜃) ← 𝑄(𝑠𝑡 ,𝑎
_

𝑡 ; 𝜃) + 𝛼[𝑟𝑡 +
 

𝛾𝑄(𝑠𝑡+1,𝑎
_

𝑡+1; 𝜃− ) 
−𝜏 𝑙𝑜𝑔 𝜋 (𝑎

_

𝑡+1|𝑠𝑡+1) − 𝑄(𝑠𝑡 ,𝑎
_

𝑡 ; 𝜃)
   (9) 

 
Where 𝑎𝑡

_
is the selected single candidate action at time t, 

τ is the temperature parameter controlling the exploration-

exploitation trade-off. 

4.3.1. Pseudocode for MASSDQN with SCO 

// Initialize DQN parameters Q, target network, π - 

initialize_policy()  

// Initialize policy, e.g., softmax over Q-values 

α = learning_rate 

γ = discount_factor 

τ = temperature_parameter 

//Main training loop 

For each episode in range(total_episodes): 

    s = reset_environment()  

// Reset environment and get initial state 

// Select a single candidate action using the current policy 

// Perform the action in the environment and obtain a reward 

//  Compute the target Q-value             

//  Apply a gradient descent on Q-network         

//  Update policy π based on the new Q-values 

//   Update target network if required with Q-network's  

     weights 

//  Move to the next state 

//  Exit loop on reaching terminal state 
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4.4. MASSDQN with Particle Swarm Optimization 

The Multiple-Antenna Spectrum Sensing Deep Q 

Network (MASSDQN) enhances detection precision through 

the utilization of spatial diversity. It has the ability to learn the 

best sensing policies by interacting with the environment. 

Together with Particle Swarm Optimization (PSO), the 

Multiple Antenna Spectrum Sensing DQN (MASSDQN) 

framework supports faster convergence speed and improved 

detection performance through neural network weight 

optimization and exploration techniques. PSO optimizes the 

DQN’s weights to improve the learning efficiency given by 
 

 
𝑣𝑖

𝑡+1 = 𝑤. 𝑣𝑖
𝑡 + 𝑐1. 𝑟1 (𝑝𝐵𝑒𝑠𝑡𝑖 − 𝑥𝑖

𝑡) + 𝑐2𝑟2(𝑔𝐵𝑒𝑠𝑡 −

𝑥𝑖
𝑡)

  
(10) 

   Where   w represents inertia weight, 

  c1, c2 indicate cognitive and social coefficients , 

                 r1, r2 indicate random numbers  
 

4.4.1. Pseudocode for MASSDQN with PSO 

#Initialize swarm of particles by randomly initialize position 

(DQN hyperparameters)  

   and velocity 

#Initialize personal_best_position, Evaluate fitness  

#Identify global_best_position = particle with highest fitness  

#For iteration = 1 to max_iterations: 

Update velocity, Update position, Evaluate fitness  

# Train final DQN model using global_best_position 

hyperparameters, Function  

   Run_DQN(hyperparams): 

#Initialize DQN with given hyperparameters  

# Reset environment, For every process : Observe state from  

    multiple Antennas 

# Select action using ε-greedy policy 

# Perform action & obtain reward 

# Store transition in replay buffer 

#Sample minibatch and train DQN 

#Track average sensing accuracy over episodes  

#Return sensing accuracy as fitness  

#End 
 

4.5. MASSDQN with Sandcat Swarm Optimization 

Combining Multiple-Antenna Spectrum Sensing with 

Deep Q Network (DQN) and Sand Cat Swarm Optimization 

(SCSO) involves using the SCSO algorithm to optimize the 

learning process of DQN, enhancing the decision-making for 

spectrum sensing. This approach can effectively address the 

challenges of exploration-exploitation trade-offs and enhance 

the sensing accuracy in cognitive radio networks. The DQN is 

used to model the decision-making process for spectrum 

sensing, and the SCSO optimizes the DQN's parameters, like 

weights, biases, and exploration rates. The main goal is to 

make the detection of available spectrum as accurate as 

possible by sensing it and using it efficiently without getting 

in the way of primary users. 

 

SCSO is used to optimize the DQN by adjusting its 

parameters, such as network weights and learning rates. The 

optimization improves the exploration-exploitation balance by 

dynamically tuning the DQN's behavior based on the swarm's 

position updates. The fitness of each agent (solution) in SCSO 

is defined based on the competence of the DQN, such as 

minimizing the loss function: 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑋𝑖 ) = − ∑[𝑟 + 𝛾𝑚𝑎𝑥
𝑎𝑙

𝑄(𝑠 𝑙 ,𝑎𝑙) − 𝑄(𝑠, 𝑎)]2 

 

This combined approach enhances the DQN's 

performance in spectrum sensing by leveraging the adaptive 

and intelligent behavior of SCSO, resulting in more accurate 

and efficient spectrum sensing. 
 

4.5.1. Pseudocode for MASSDQ with Sand Cat Swarm 

Optimization 

// Initialize parameters for DQN and SCSO with random 

weights and biases, SCSO population with random positions, 

fitness of each agent based on DQN performance 

// while not termination_condition: 

    for each agent i in SCSO population: 

// Exploration phase: agents explore new areas  else: 

// Exploitation phase: agents refine solutions around the best  

// Boundary handling to keep parameters within valid ranges      

// Update DQN with new parameters and evaluate fitness  

// Measure performance using the loss function 

// Update fitness if the new parameters perform better 

//Assuming higher fitness is better (maximize reward) 

// Update agent's fitness  

//  Update global best position based on current fitness 

evaluations 

// DQN learning process using the optimized parameters  

// Perform action & obtain reward 

// Use the optimized parameters from SCSO 

//  Update Q-value 

// Update state 

// Periodically update the target network 

// Decay epsilon for exploration-exploitation trade-off 

// End Program 
 

5. Results and Discussion  
5.1. Dataset 

A 5G and LTE synthetic dataset has been created that 

includes phase noise consistent with the respective 

Bandwidths of the signals. It contains high-level information 

for Case A, which corresponds to urban areas, and low-level 

data for Case B, which is rural area information. Subcarrier 

spacing ranges from 15 kHz to 30 kHz, and the 

synchronization is derived from a single block interval 

duration of 40 milliseconds. LTE signal generation is on the 

basis of reference channels R.2, R.6, R.8, and R.9, with 

emphasis on downlink transmission scenarios usually 

encountered in urban or indoor conditions with common 

levels of interference. They use a unique modulation strategy 

called Frequency Division Duplex (FDD). Tables 1 and 2 

indicate the 5G NR & LTE parameters and Phase Noise 

Parameters, respectively. 

(11) 
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Table 1. 5G NR & LTE parameters 

5G NR Parameter Value Units LTE Parameter Value Units 

Bandwidth [10, 15, 20, 25, 30, 

40, 50] 

MHz Reference 

Channel 

[“R.2”,”R.6”,”R.8”,”R.9”] - 

Subcarrier spacing [15, 30] kHz Bandwidth [10, 5, 15, 20] MHz 

SSB Block pattern 

SSB Period 

[“case A” “case B”] 

[20] 

 

ms 

Duplex Mode FDD - 

 
Table 2. Phase noise  parameters 

Channel Parameter Value 

Range 

Units 

SNR [0 40] dB 

Carrier Frequency 2.5 kHz 

 

 
Fig. 2 Estimated signals   

 

 
Fig. 3 Estimated NRSCO  

Figure 2 shows the received spectrogram signal to 

estimate the presence of spectrum sensing, such as NR, LTE 

and Noise. The received spectrogram shows the probable 

presence of NR (sensed spectrum) highlighted as Yellow in 

colour, ranging from 0.8 to 1, for the frequency range from 

3550 to 3570MHz, while the rest of the spectrum indicates 

phase noise.  It is seen from the figure that the presence of the 

estimated signal for NR occupies a greater frequency range 

when compared with LTE and noise. 

 

Figure 3 shows the probability of spectrum sensing for 

NR with respect to single cat optimization. The shades of 

yellow highlight the probability of sensed spectrum ranging 

from 0.9 to 1, for the frequency range from 3550 to 3570 

MHZ. 
 

 
Fig. 4 Labeled spectrogram of LTE 

 

Figure 4 shows the probability of spectrum sensing for 

LTE with respect to single cat optimization. The shades of 

yellow highlight the probability of sensed spectrum ranging 

from 0.8 to 0.9, for the frequency range 2350 to 2360 MHz. 

 

Figure 5 shows the Multiple Antenna labeled spectrum 

sensing of NR and LTE for SCO, with a wider range of sensed 

spectrum for NR and a smaller Antenna range for LTE. 
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      Fig. 5 Labeled spectrogram for SCO  

  

 
Fig. 6 Multiple  antenna labeled spectrogram for SCSO  

  
Fig. 7 MASSDQ N jelly fish optimization  

 Figure 6 shows the Multiple Antenna Labeled 

Spectrogram for SCSO spectrum sensing of NR and LTE for 

SCSO with a wider range of sensed spectrum for NR 

compared with LTE. 

 

 Figure 7 shows the Multiple Antenna Labeled 

Spectrogram for Jelly Fish Optimization spectrum sensing of 

NR and LTE, with a wider range of sensed spectrum towards 

noise. 
 

 
Fig. 8 MASSDQ N single  candidate optimization  

 

 Figure 8 shows the Multiple Antenna Labeled 

Spectrogram for single candidate optimatization, spectrum 

sensing of NR and LTE, out of which the estimated signal 

label of NR is higher compared with LTE and noise.  

 

 
Fig. 9 MASSDQ N sand cat swarm optimization  
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Fig. 10 Confusion matrix for MASSDQ N with JFO  

  

 Figure 9 shows the Multiple Antenna Labeled 

Spectrogram for sandcat swarm optimatization spectrum 

sensing of NR and LTE, while the estimated signal label of 

NR shows better spectrum sensing compared with JFO and 

SCO. 
 

      Figure 10 shows the Confusion Matrix for MASSDQN 

with JFO for multiple secondary users. It is clearly absorbed 

that the spectrum sensing for NR is 77.8, as the detection of 

phase noise is 87.6 for MASSDQN with JFO. The estimated 

signal for the spectrum sensing with multiple antennas 

justifies the NR presence with a reduction in phase noise. 

 

Figure 11 shows the Confusion Matrix for MASSDQN 

with SCO for multiple secondary users. It is clearly absorbed 

that the spectrum sensing for NR is 91.4, as the detection of 

phase noise is 88.6 for MASSDQN with SCO. Phase noise 

reduction and the anticipated signal for spectrum sensing with 

multiple antennas justify the inclusion of noise reduction . 
 

 
Fig. 11 Confusion matrix for MASSDQ N with SCO  

 

 
Fig. 12 Confusion matrix for MASSDQ N with PSO  

Figure 12 shows the Confusion Matrix for MASSDQN 

with PSO for multiple secondary users. It clearly shows that 

the spectrum sensing for NR is 92.8, as the detection of phase 

noise is 87.5 for MASSDQN with PSO.   

 

Phase noise reduction and exact estimation of the 

anticipated signal are important for efficient spectrum sensing 

with multiple antennas. Adding noise reduction makes the 

signal clearer and improves the detection reliability. 

 

Figure 13 shows the Confusion Matrix for MASSDQN 

with SCSO for multiple secondary users. It is clearly observed 

that the spectrum sensing for NR is 97.2, as the detection of 

phase noise is 88.9 for MASSDQN with SCSO.  

 

With a decrease in phase noise, the estimated signal for 

spectrum sensing with multiple antennas validates the 

presence of NR. 

 

 
Fig. 13 Confusion matrix for MASSDQ N with SCSO  
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(a) 

 

 
(b) 

Fig. 14 O ptimization methods  performance comparison , (a) Accuracy, and (b) False  alarm rate . 
 

Figure 14(a) shows the performance comparison with 

respect to accuracy and False alarm rate. The graph shows that 

sand cat swarm optimization achieves the highest accuracy of 

87.6 % compared with particle swarm optimization 85%, 

single candidate optimization 84% and Jelly fish optimization 

82%. Figure 14 (b) shows the false alarm rate performance 

comparison of four optimization methods, with sand cat 

swarm optimization having a lesser and effective false alarm 

rate than particle swarm, single candidate and jellyfish 

optimization methods. 

 

Figure 15 ROC curve comparison of optimization 

methods. Illustrates the performance of four different 

optimization techniques. Among the four, Sand Cat Swarm 

Optimization demonstrates the highest performance with an 

Area Under the Curve (AUC) value of 0.91, while particle 

swarm optimization achieved an AUC Value of 0.89,  Single 

Candidate Optimization follows closely with an AUC of 0.87, 

and Jelly Fish Optimization records a slightly lower AUC of 

0.86. 

 
Figure 16 illustrates the runtime performance of the 

MASSDQN framework when integrated with different 

optimization algorithms. Among the methods evaluated, Jelly 

Fish Optimization recorded an execution time of 12.5 seconds, 

indicating a relatively slower convergence rate. Single 

Candidate Optimization performed slightly better, completing 

its execution in 11.8 seconds.  

 

Particle Swarm Optimization took only 10.3 seconds, 

while Sand Cat Swarm Optimization outperformed all others 

by delivering the fastest runtime of 9.6 seconds. These results 

highlight the impact of optimization strategy selection on the 

overall processing efficiency of the MASSDQN model, with 

Sand Cat Swarm Optimization emerging as the most time-

efficient approach among the four. 
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Fig. 15 RO C curve comparison of optimization methods  

 

 
Fig. 16 Runtime comparison  

  

 
 Fig. 17 Accuracy comparison of spectrum sensing methods 
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Figure 17 presents a comparative analysis of various 

spectrum sensing methods in terms of their accuracy. The 

Correlation-based method achieved the lowest accuracy at 

80%, indicating limited effectiveness in identifying spectrum 

occupancy. A slight improvement is observed with 

Covariance-based Detection, which reached an accuracy of 

82%. The performance further increases with CM-CNN, 

which attained 84%, followed by DS2MA with 86%, 

reflecting better feature extraction and learning capabilities. 

The proposed MASSNET-DQN method stands out by 

achieving the highest accuracy of 91%, demonstrating its 

superior ability to detect spectrum usage accurately. 

 

6. Conclusion  
The proposed work uses multiple antenna spectrum 

sensing with a DQN network to detect the presence of an 

estimated signal in LTE and 5G Networks. In cognitive radio, 

phase noise decreases the effectiveness of spectrum sensing. 

The proposed work utilizes four optimization algorithms, 

Jellyfish Optimization (JFO), Single Candidate Optimization 

(SCO), Particle Swarm Optimization (PSO) and Sand cat 

swarm optimization algorithms with multiple antenna 

spectrum sensing DQN to reduce the phase noise and enhance 

the spectrum sensing.  

 

The simulated results show that sand cat optimization has  

better performance in phase noise reduction compared with 

jellyfish optimization, single candidate optimization and 

Particle swarm optimization. The future work may focus on 

reducing the effect of Additive white Gaussian noise and 

colored noise using multiple antenna spectrum sensing with 

DQN. 
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