
SSRG International Journal of Electronics and Communication Engineering                                     Volume 12 Issue 8, 188-198, August 2025 

ISSN: 2348-8549/ https://doi.org/10.14445/23488549/IJECE-V12I8P117                                                         © 2025 Seventh Sense Research Group® 
 

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Original Article  

Mobility -Aware Resource Allocation in Edge Networks 

for Smart Neighborhoods 

Sravya Pallantla1, D. Haritha2, Shanti Chilukuri3 

 
1Department of Computer Science and Engineering, JNTUK, Andhra Pradesh, India.  

2Department CSE, University College of Engineering, JNTUK, Andhra Pradesh, India.  

3Department of Computer Science and Engineering, School of Technology, GITAM (Deemed to be University),  

Andhra Pradesh, India.  

 
1Corresponding Author : sravyapallantla@gmail.com 

 

Received: 09 June 2025 Revised: 10 July 2025 Accepted: 11 August 2025 Published: 30 August 2025 

 

Abstract - Wireless Sensor Networks (WSNs) comprise sensor and actuator nodes that either generate or consume data. These 

end devices typically have limited memory, energy, and computational capacity, making them ill-suited for intensive processing 

tasks. Edge computing addresses this limitation by offloading data collection, processing, and forwarding to edge nodes with 

greater resources. This architecture aligns well with WSNs, but efficient allocation of edge resources remains a significant 

challenge, particularly under node mobility and fluctuating traffic. The resource allocation problem at the edge is NP-hard, and 

while static solutions exist, they often fail under dynamic network conditions. Memory management for packet queues is 

especially critical. The scheduling and dropping policies at edge nodes directly influence Quality of Service (QoS). Weighted 

Fair Queuing (WFQ), a popular scheduling method, assigns different weights to traffic classes, affecting uplink bandwidth 

distribution. However, bursty data, varying packet sizes, and node mobility complicate fair and efficient weight assignment. This 

study proposes a federated learning-based framework for dynamic queue and bandwidth allocation in mobile WSNs. The model 

adapts to real-time changes in traffic and topology while reducing communication overhead. Simulation outcomes demonstrate 

improved resource utilization and network performance, validating the effectiveness of the proposed approach in dynamic WSN 

environments. 

Keywords - Wireless Sensor Networks (WSN), Resource Allocation, Mobility, Federated Learning. 

 

1. Introduction 
Smart neighborhoods are neighborhoods that have data 

gathering and/or automation mechanisms for better and 

sustainable cities, leading to improved quality of living. 

Wireless Sensor Networks (WSNs) are the key enabling 

technology for such neighborhoods. These networks are 

formed by sensor nodes deployed in the neighborhood areas 

to collect and transfer information, and actuators that can be 

used for automation. Since the sensors and actuators (the end 

nodes) are characterized by limited energy, bandwidth, and 

processing power, there is a need to control the usage of the 

available resources to sustain good performance and longevity 

of the network. 

 

  The data generation patterns in such networks may be  

periodic with low or high periodicity or event-driven, 

depending on the application requirements. In Mobile 

Wireless Sensor Networks (MWSNs, typical in smart 

neighborhood applications), where either the sensor nodes or 

base stations are mobile, resource allocation becomes 

significantly more complex due to frequent changes in 

network topology. Due to these uncertainties, it is not possible 

to model such systems accurately. Owing to better 

computational power and data availability, Machine Learning 

(ML) has proven to be an attractive approach to study the 

input-output relations in problems that cannot be modeled 

well. 

 

While several ML strategies have been applied in the 

context of resource allocation for wireless and/or mobile 

networks, two main questions plague the practicability of such 

approaches:   

 

1. Where is the data for training the ML model gathered?  

2. Where is the ML model trained?  

 

 Gathering statistically relevant data requires considerable 

memory. Further, training ML models requires computational 

power, both of which may be scarce in a WMSN. One way of 

addressing this resource scarcity is to have edge nodes in the 

network. Edge nodes transmit data from/to a set of designated 

end nodes and the core network. Compared to the end nodes, 
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edge nodes typically have better computing power and 

memory resources. End nodes consume less energy by 

communicating with the edge nodes instead of the core 

network itself. In addition, the edge nodes may aggregate the 

data gathered, reducing the traffic in the core network. They 

may also act as packet filtering firewalls, ensuring network 

security. 

 

However, the inclusion of edge nodes in the network 

introduces the problem of resource allocation at the edge 

nodes. Especially, efficient utilization of memory at the edge 

nodes is crucial for reliable and timely transmission of data, as 

buffer overflows at the edge nodes may result in the loss of 

critical data. While there are several queuing models that help 

plan the queue capacity and aid in traffic shaping, they rely on 

the fact that the packet arrival rates and patterns are known a 

priori, which may not be the case with WMSNs. 

 

In recent times, Machine Learning has been used for 

various resource allocation problems at the edge nodes [1]. 

Edge nodes, while receiving and transmitting the data from the 

end nodes, gather information about the data arrival patterns 

and train an ML agent that allocates resources to maximize 

some network performance parameter.  

 

Performance parameters that are typically of interest and 

need to be optimized are the overall network efficiency 

(bandwidth utilization) or the Fairness of allocation in terms 

of the goodput of each flow of data. Once the ML model is 

trained, it can be used to infer optimal allocations for time-

varying data arrival patterns, which may be due to bursty data 

generation or the Mobility of the end nodes. 

 

For arriving at an ML model that can recommend optimal 

resource allocation schemes for unseen network scenarios, a 

lot of independent and identically distributed (iid) data is 

required. Edge nodes that are in the vicinity of a set of end 

nodes may only see certain data patterns and may not be able 

to arrive at good, generalizable models.  

 

One approach to solve the above problem is to transmit 

all the data gathered by the edge nodes to a central server, 

where the ML model is trained. However, this is bandwidth-

intensive and may compromise the security of the data [2].  

 

Federated Learning (FL) is an ML paradigm that helps 

create generalized models even when non-IID data is gathered 

at distributed locations in the system, while reducing the data 

transmissions required for creating such models and 

preserving data security [3]. In this paper, we present a 

resource allocation strategy for edge nodes in WMSNs with 

time-variant traffic patterns in Smart neighborhoods, to 

optimize the Efficiency of allocation or the Fairness of the 

allocation for different network flows. The strategy is based 

on Weighted Fair Queueing (WFQ), with the weights for each 

network flow being determined by an ML model trained using 

Federated Learning. Our contributions are:  

 Design of a WFQ-based algorithm that leverages FL for 

optimal (in terms of Efficiency or Fairness) resource 

allocation at the WMSN edge.  

 Evaluation of the proposed algorithm (using simulation 

with well-researched, real-world data generation patterns 

in smart neighborhood applications) for a wide range of 

parameters such as different network sizes, mobility 

patterns and queue lengths.  

 

        To the best of our knowledge, the problem of optimal 

resource allocation at the edge nodes in WMSNs has not been 

studied with real-world data generation patterns of Smart 

neighborhoods. 

 

2. Background 
2.1. Mobility Models for End Devices 

The mobility pattern of the end nodes greatly influences 

the traffic pattern at the edge nodes and hence plays a major 

role in optimal resource allocation. The most popular models 

for node motion are the Random Walk 2D, Random Direction 

2D, Random Waypoint, and Gauss-Markov models.  

 

For example, Random Walk and Random Direction are 

applied to create random motion of nodes, while Gauss-

Markov imitates realistic moving patterns of correlated mobile 

nodes.  

 

The data received at an edge node at any instant depends 

on the network scenario, which comprises the network 

topology (the links between the end and edge nodes and the 

quality of such links) and the amount of data generated by 

each end node at that instant. 

 

2.2. Weighted Fair Queuing 

In this section, we very briefly explain how the WFQ 

discipline works. Though this is an elementary discussion, we 

include it here for quick reference. 

 

Queue management at the edge nodes comprises two 

aspects – the scheduling policy and the allocation (including 

the drop) policy.  

 

While the scheduling policy determines which outgoing 

packet is sent out to the core network from the packet queue, 

the allocation policy determines how the incoming packets are 

stored in the packet queue, following a particular drop policy 

when the allocated space for a flow is exhausted. 

 

        The WFQ scheduling algorithm is extensively used in 

traffic management, where bandwidth is fairly rationed for 

different data flows. Two essential components (shown in 

Figure 1) are necessary for implementing the WFQ discipline 

[4]. 
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 The WFQ classifier that stores the packets from each flow 

in the appropriate queue and  

 The WFQ scheduler serves the packets according to the 

minimum virtual finish time.  

The weighted queuing approach discussed in this paper 

aims to ensure consistent throughput for end devices, 

regardless of the fluctuations in their data rates or the quality 

of the links connecting them to the edge node [5]. 

 

Schedule Packets from Queues Based on Weight 

 
Fig. 1 Weighted fair queue 

 
The WFQ classifier divides traffic flows into two or more 

classes and assigns a percentage of the available bandwidth to 

each. The incoming traffic is stored in separate queues, based 

on its class. A non-negative weight 𝑤𝑖
∗
 is assigned to the 𝑖𝑡ℎ 

Queue. As shown in Equation (1), the amount of bandwidth 

assigned to a queue at any given time is calculated by 

normalizing the weights corresponding to nonempty queues. 

𝑤𝑖
∗
 [6]. 

 

                 𝑤𝑖
∗ =

𝑤𝑖

∑ 𝑤𝑗
∗ (1) 

 

The value of 𝑤𝑖
∗, which varies from 0 to 1, denotes the 

fraction of the overall bandwidth assigned to queue i. In every 

𝑡 seconds, every nonempty queue sends ℬ ∗ 𝑡 ∗ 𝑤𝑖
∗ Bits on a 

link of bandwidth ℬ𝑏𝑝𝑠. 

 

The WFQ scheduler assigns a start time and an end time 

to every packet. The first and last bits of the packet are served 

by the scheduler at these virtual times, respectively. Assuming 

that the 𝑘𝑡ℎ packet of flow 𝑖, denoted by 𝑃𝑖
𝑘 arrives at the time 

𝐴𝑖
𝑘. Let its start and finish times be denoted by 𝑆𝑖

𝑘 and 𝐹𝑖
𝑘. 

Equations (2) and (3) define 𝑆𝑖
𝑘 and 𝐹𝑖

𝑘  [4]. 

 

            𝑆𝑖
𝑘 = 𝑚𝑎𝑥(𝐹𝑖

𝑘−1, 𝐴𝑖
𝑘) (2) 

 

                    𝐹𝑖
𝑘 = 𝑆𝑖

𝑘 +
ℒ𝑖

𝑘

𝑤𝑖
 (3) 

Where 𝐹𝑖
0 = 0, ℒ𝑖

𝑘 is the length of the packet 𝑃𝑖
𝑘, and 𝑤𝑖

∗ 

Is the weight of flow i? The virtual finish times of the packets 

determine the order in which they are transmitted, with the 

scheduler choosing a packet with the shortest virtual finish 

time to be scheduled next. 

 

A major issue with traffic flows where the traffic pattern 

is dynamic is the assignment of weights to the different flows. 

While static weight assignment is alright when dealing with 

flows that have constant traffic generation patterns, it does not 

work for end devices that generate data intermittently. Due to 

this, there has been a lot of research on dynamic weight 

assignment in WFQ to achieve a given application QoS 

parameter, such as delay. However, most past work assumes a 

proportional relative QoS model [7]. As per this, each queue 

is assigned a weight, and the ratios of the QoS parameters 

achieved for a set of flows are equal to the ratios of their 

weights. In general, such proposals have an observation period 
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during which the traffic pattern is observed to decide the 

weight and are generally applicable for flows delivered by 

fixed, wired networks, such as those for audio/video streams. 

Smart neighborhoods, on the other hand, may have some 

mobile devices with intermittent traffic generation patterns 

and wireless connections. Such networks may take a long time 

to be observed, and edge nodes in smart neighborhoods may 

not have enough memory to store traffic and observe a pattern. 

Our work differs from such work in two major aspects:   

 One of our goals is efficient resource (queue memory) 

utilization, which is different from achieving 

proportionally relative QoS.  

 We use a pre-trained model based on a common set of 

devices with wireless links and mobility patterns in smart 

neighborhoods. This reduces the memory and processing 

requirements at the edge nodes.  
 

2.3. Performance Metrics for Edge Resource Allocation 

Resource allocation may have different goals. In this 

paper, we focus on two different goals: the Fairness of the 

buffer allocation and the overall Efficiency of allocation. 

Efficiency in the context of resource allocation refers to how 

well the available resources (e.g., bandwidth, computational 

power, or memory) are utilized to maximize system 

performance. On the other hand, Fairness is concerned with 

ensuring that all devices receive a proportional share of the 

available resources, which is especially important in scenarios 

where devices have varying capabilities or access to resources 

[8, 9]. At an edge node, Fairness and overall Efficiency may 

be contradictory goals, and hence, we focus on each of these 

at a time. 

 

Fairness ensures that resources are distributed equitably 

among users, tasks, or nodes, especially in a multi-user or 

multi-node system. In edge computing, particularly with FL, 

Fairness ensures that no single node or user monopolizes the 

resources, leading to starvation or degradation of service for 

others. The fairness F(X) of an allocation is determined by 

Equation (4). Here, H and L represent the upper and lower 

limits of QoE, respectively, while σ denotes the standard 

deviation of the QoE values.  

 

Considering channel allocation among M individuals 

(different flows), let X = (𝑥1, 𝑥2…𝑥𝑚) be the allocation 

vector, where 𝑥𝑖 is the 𝑖𝑡ℎ flow allocation percentage. To 

quantify Fairness, we draw upon the fairness formula as 

Equation (4), which is presented in reference [10]. Let 𝜎𝑥 

Represent the standard deviation of throughput values arising 

from allocation X. The upper bound H and lower bound L 

correspond to the maximum and minimum throughput values 

attained within allocation X. 

 

                  𝐹(𝑋) = 1 −
2𝜎𝑥

𝐻−𝐿
 (4) 

Equation (5) determines the Efficiency, which is the ratio 

between the input data rate. 𝐼𝑖  and the throughput 𝑇𝑖  of all 

flows that arise from the given allocation X as below:  

                𝐸(𝑋) =
1

𝑚
∑𝑚

𝑖=1
𝑇𝑖

𝐼𝑖
∗ 100 (5) 

 

2.4. Federated Learning 

Due to the advances in data storage and computing 

technology in the past two or three decades, machine learning 

is being increasingly used for obtaining meaningful inferences 

from data. While supervised machine learning, where a dataset 

that includes both inputs and corresponding outputs is used for 

training models, is a popular choice for data-driven inferences, 

the main challenge in such approaches is the availability of 

statistically significant data. Typically, in environments such 

as smart neighborhoods that use the edge AI model, edge 

nodes (nodes at the core network edge) gather the data and 

train ML models for smart network management. However, 

each edge node sees only the data from the end devices in its 

network and learning from only this data may not result in 

inferences that can deal with new network scenarios. To 

overcome this, in a traditional centralized machine learning 

approach, the data from different edge nodes is sent to a central 

server, where the training takes place. The resultant model 

based on the diverse data sample sets is then broadcast to all 

edge nodes. While this results in a much more general model 

that can be used for meaningful inferences in new network 

scenarios, it involves high communication overhead. Such 

overhead is not suitable for low-power devices and for 

wireless networks that are characteristically bandwidth(and 

energy)-poor [11].  One approach that cuts down the cost of 

data communication for training is federated learning. The 

idea behind FL is to allow participants to train local models 

without sharing the local data with a central server [12]. The 

FL server collects locally trained models from different (edge) 

nodes and aggregates them to produce a global model. This 

approach is well-suited particularly for resource-constrained 

networks, as communicating the updates of the model instead 

of the whole dataset is considerably cheaper in terms of 

communication. 
 

Algorithm 1: (FL Model N) 

 

Inputs: Local dataset for each node: Di, Number of epochs: E, 

Set of computing nodes: N 

Output:  Federated Averaged Model: Mavg 

On Each Computing Node i: 

Input: Current global model Mavg 

Split the local dataset Di into mini-batches of size Bi, each 

mini-batch b∈Bi 

For each mini-batch b∈Bi do 

 Train the model using mini-batch data. 

  Update the local model. 𝑀𝑎𝑣𝑔
𝑏+1 from 𝑀𝑎𝑣𝑔

𝑏  using the 

mini-batch data 

End For 
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Send the updated local model 𝑀𝑎𝑣𝑔
𝑖  to the Federated 

Learning (FL) server 

On the FL Server: 

Initialize the global model 𝑀𝑎𝑣𝑔
0  

For each epoch j=1 to E do 

    For each node k∈N do 

   Call Local_Training (k, 𝑀𝑘
𝑗
) to obtain the updated 

local model 𝑀𝑘
𝑗+1

 

    End For 

   Compute the Federated Averaged Model 𝑀𝑎𝑣𝑔
𝑗

 By 

averaging the models from all nodes: 

                               𝑀𝑎𝑣𝑔
𝑗

←  
1

𝑁
∑ 𝑀𝑘

𝑗+1𝑁
𝑘=1  

End For 

 

Algorithm 1 shows the FL process. There are two types 

of participants in the federated learning model - 𝑁 computing 

nodes, each denoted by 𝑁𝑖, 𝑖 ∈ [1, 𝑁]and the FL server. In the 

beginning, the FL server initiates the model 𝑀avg
0 , the learning 

rate of hyperparameters, and shares this model with all the 

computing nodes. Each node gathers a local dataset 𝐷𝑖  . That 

is split up into several batches of a size. 𝐵𝑖 . For every batch b, 

the training algorithm will run locally to get the resulting 

model. 𝑀avg
𝑏+1. After all the batches of a local set 𝐷𝑖  are trained, 

the resultant model 𝑀avg
𝑖  Will be sent to the FL server by the 

computing node. The FL server creates an aggregated global 

model from the models received from computing nodes. 𝑁𝑖, 

𝑖 ∈ [1, 𝑁]. However, aggregation of local models just once is 

often not a good enough solution. The FL server repeats this 

procedure for some epochs to get the optimal model. 𝑀avg
𝑗

 𝑗 ∈

[1, 𝐸]. 
 

3. Literature Survey 
The domain of Wireless Sensor Networks (WSNs) and 

resource allocation has seen various approaches to improve 

energy efficiency and network lifetime [13]. Zaman et al. 

introduced an energy-aware protocol to extend WSNs’ 

lifetime, while Heinzelman et al. [14] proposed the LEACH 

protocol, which uses hierarchical clustering and cluster head 

rotation to enhance network longevity. However, traditional 

methods often fail to address adaptive network topologies and 

mobility issues effectively. 

 

In the context of Mobility in WSNs, Temene et al. 

highlighted the unique challenges posed by mobile sensor 

nodes, such as frequent topological changes and 

communication overhead [15]. Yan et al. developed energy-

efficient protocols that consider node mobility, but centralized 

algorithms in these solutions often lead to scalability 

challenges in large-scale mobile environments due to high 

overhead costs [16]. Machine Learning (ML) has also been 

explored for resource optimization in WSNs. Researchers [17] 

have utilized reinforcement learning to manage node 

operations and reduce energy consumption, as well as 

machine learning techniques to improve routing efficiency 

[18]. While ML-based approaches have proven effective in 

static WSNs, their application in mobile WSNs remains 

underexplored. Challenges such as the absence of a central 

database and the need for near-real-time management 

complicate ML’s implementation in mobile environments. 

 

Federated Learning (FL) has emerged as a promising 

approach for distributed networks. Beltrán et al. [19] proposed 

FL for decentralized environments where centralized data 

collection is not feasible, and Li et al. demonstrated its 

effectiveness in reducing latency and enhancing system 

efficiency in edge computing [20]. FL offers significant 

benefits for WSNs, such as decentralized decision-making, 

energy savings, and data protection. However, its application 

in mobile WSNs is still limited, with few studies addressing 

dynamic node mobility and other characteristics of such 

networks. 

 

In resource allocation for mobile WSNs, FL has shown 

potential. Studies like those by Yu et al. [6] Yang et al. 

highlighted FL’s utility in optimizing cache usage, managing 

mobile edge computing resources, and enhancing energy 

efficiency while minimizing delay in vehicular networks [21]. 

Despite these advancements, the integration of mobility 

patterns into FL-based models for resource allocation remains 

scarce, with most research focusing on static or semi-dynamic 

networks. 

 

Several challenges and gaps persist in current research. 

Centralized and distributed resource allocation approaches 

often face scalability and communication issues in mobile 

environments. Most ML methods require centralized data, 

which is increasingly impractical due to privacy concerns. 

Although FL offers a promising solution, its application in 

mobile WSNs and the use of mobility patterns for dynamic 

resource allocation are still underexplored. This paper aims to 

address these gaps by proposing a novel FL technique for 

optimal resource allocation in mobile WSNs. The approach 

leverages node mobility to dynamically allocate resources 

such as bandwidth and queue, while improving overall 

performance metrics like energy efficiency and throughput. 

Through simulation, the proposed method is demonstrated to 

outperform existing approaches in terms of convergence rate, 

Fairness, and adaptability to varying network conditions. 

 

4. Resource Allocation for Edge Nodes using FL 
For a given set of mobile devices and wireless channel 

properties (MAC protocol, noise, propagation model, etc.), the 

network graph varies with the mobility pattern of the devices 

and the area in which the devices move (the grid). The 

throughput at the next downstream node (from the edge node) 

also depends on the link capacity between it and the edge 

node. Let the total uplink bandwidth available at the edge node 

be L, with F data flows. The sum of the bandwidth allocated 
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to each data flow 𝐴𝑖  [1 to N] must be less than or equal to the 

total available uplink bandwidth, L. Here 𝐴𝑖  It is computed 

from Equation (3) based on the WFQ used at the edge node.  

 

 Grid Size (G): The spatial dimension of the simulated 

area.  

 Mobility Speed (M): The speed of node mobility in 

meters per second (m/s).  

 Link Capacity (L): The total transmission capacity in 

Kbps of the link between the edge nodes and the next 

downstream node.  

 

Figure 2 shows the learning in the edge network. The edge 

nodes participate in the federated learning to first construct a 

training model based on the collected (local) data for T 

seconds, to predict the weights of bandwidth allocation for a 

specific flow, leading to optimal Efficiency or Fairness.  

 

The FL server constructs a global model by collecting the 

training models from all such edge nodes. The global model 

takes into account the data in a network with a specific number 

and type of devices and parameters (G, M, L) to make 

dynamic inferences of the Efficiency or Fairness (based on the 

objective) for each bandwidth allocation case. Using 

Federated Learning takes into account the different traffic 

patterns at each edge node to arrive at a more general model 

that can make better allocation recommendations. 

 
 

 
Fig. 2 Federated learning model 

 
Algorithm 2: FL_allocation 

 

Inputs: Maximum number of nodes, maxnodes 

Outputs: Efficiency (Ei) and Fairness (Fi) for each 

configuration 

Initialize: nodes ← 1 

While nodes ≤ maxnodes do 

Set N←nodes 

Call Algorithm 1 with input N 

Obtain the global model Mavg from Algorithm 1 

Apply Mavg on inputs (G, M, L) 

Calculate Efficiency Ei 

Compute Fairness Fi 

Increment nodes ← nodes + 1 

end While 

 

The Algorithm 2 iteratively evaluates different node 

configurations for federated learning by varying the number 

of participating nodes. For each configuration, it computes the 

resulting global model’s Efficiency and Fairness to assess 

performance scalability. 

         

        During the network operations phase, each edge node 

observes the network parameters and uses the model to predict 

the Efficiency or Fairness that would result from each 

allocation case. It then chooses that allocation that maximizes 

the objective (Efficiency or Fairness). 

 

The proposed solution aims to optimize resource 

allocation and performance in Smart neighborhood 

environments by using Federated Learning (FL) with a focus 

on Fairness and Efficiency. 

 

 

5. Results and Discussion 
Since the FL model requires training data, we used 

realistic network simulations using ns-3, with varying 

mobility models and network parameters. The ns-3 simulator 

Edge Node2 Edge Node3 Edge Node n Edge Node1 …… 

FL Server 
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[22] also validates the proposed resource allocation strategy 

[23]. 

 
Table  1. Wireless network parameters 

    Parameter Name  Value 

Frequency Band 802.11 (5 GHz) 

Modulation Scheme 16-QAM 

Propagation 

Characteristics 

delay: Constant Speed 

Propagation Delay Model 

loss: Log Distance Propagation 

Loss Model 

Transmit Power 16 dBm 

Antenna 

Specifications 

• Type: Omnidirectional 

• Gain: 2 dBi 

Simulation Software NS-3 

Mobility Model • Random Walk 2D 

• Random Direction 2D 

• Random Waypoint 

• Gauss-Markov 

 

For simulation, we considered an edge network with each 

edge node serving up to eight end nodes (some of which are 

mobile). The edge nodes are connected to end nodes via IEEE 

802.11 links. Table 1 shows the parameters used in the 

simulation. The edge nodes send data to an upstream server 

via a dedicated, wired link with a data rate L of 1,3 or 5 Kbps. 

Each end device generates data traffic as shown in Table 2. 

The data coming from different end devices is classified into 

different classes based on the type of end device. The data 

from each end device is relayed to the server by the nearest 

edge node. In the edge node, the WFQ queuing technique is 

used to serve the packets based on the weights allocated for 

each flow. Each end device has 𝐷𝑖  its own queue of 𝑄𝑖  Bits at 

the edge node and the edge node apply the WFQ principle to 

forward data on the fixed downstream link. 

 

During the data-gathering phase, the deployment area of 

the network (specified by the grid size 𝐺) was varied from 

150m to 300m in a step size of 50m. The mobility speed 𝑀 of 

each end device was simulated to be from 2m/s to 5m/s in 

steps of 1m/s, with each of the five mobility models. Each 

"network scenario" consisted of a fixed grid size, mobility 

speed, model and set of end devices. For such a scenario, the 

edge node varied the weight (𝑊𝑖) of each flow from 0.1 to 0.2 

such that the sum of all flow weights is 1, and observed the 

resulting Efficiency or Fairness. The tuple 

(𝑊1, . . . , 𝑊𝑛, 𝑄1 , … 𝑄𝑛 , 𝐺, 𝑀, 𝐿), contains the network scenario 

parameters and the test bandwidth allocation for a given 

network scenario. This tuple forms the input to the FL agent, 

and the resulting Efficiency (or Fairness) observed during data 

gathering is the output. This input and output were recorded 

every 1000 simulation seconds and added to the training 

dataset. 

 

We consider two baseline schemes - one with a simple 

WFQ with equal weights for each of the flows (0.125 for each 

of the eight flows) and the scheme described in [3]. The 

percentage increase in Efficiency (or Fairness) that is 

predicted by the proposed scheme for each allocation case 

over each of these schemes is plotted for various network 

scenarios and mobility models. In each case, the edge node 

then chooses the allocation case that gives the best benefit in 

terms of the goal (Efficiency or Fairness) for optimal goal 

achievement. 
 

Table 2. End devices traffic parameters 

Type of Device Average Sleep Time (s) Mean Data Rate (bps) Packet Length (bits) Mobility 
Smoke Sensor 4 462 234 Yes 

Motion Sensor 4 11388 234 Yes 

Amazon Echo Hub 4 462 144 No 

Smart Phone 4 2461 327 Yes 

Smart Plug 241 462 144 No 

Smart Bulb 4 462 94 No 

Smart Camera 4 2461 234 Yes 

Wireless Speaker 4 462 144 Yes 

 
Once the training dataset is collected, the nodes run a 

federated learning algorithm using the Adam optimizer [24]. 

The ReLU activation function and mean squared error loss are 

used for training. We considered 19 features; the neural 

network consists of a 19 x 64 input layer, 64 x 128, 128 x 256, 

256 x 128, 128 x 64 hidden layers, and a 64 x 1 output layer. 

Early stopping with a patience of 25 epochs was used to 

prevent overfitting. The average loss was calculated by 

varying the number of computing nodes from 1 to 3. 

 

Figures 3 visually demonstrate the Efficiency and 

Fairness across all possible allocation vectors (a total of 206 

vectors for 8 flows and quantum values ranging from 0.1 to 

0.2, such that the sum of allocated bandwidths is 1.0), 

corresponding to a specific state denoted as S = (G, M, L). 

This state is characterized by the grid size, mobility speed, and 

link capacity of each edge node. The grid size is 200, the speed 

is 2 m/s, and the link capacity is 5 kbps. All mobile devices 

move according to the Random Walk 2D mobility model.
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Fig. 3 (a)Comparative analysis of Efficiency for 𝑺𝟏=(200,2,5) for 

Random walk (2D) Mobility, and (b)Comparative analysis of Fairness 

for 𝑺𝟏=(200,2,5) for Random walk (2D) mobility. 

 

As shown in Table 3, the maximum Efficiency occurs 

when the allocation is (0.1, 0.15, 0.1, 0.15, 0.1, 0.1, 0.2, 0.1) 

for these devices and the mobility model. Table 4 shows that 

the maximum Fairness occurs when the allocation is (0.1, 0.1, 

0.1, 0.2, 0.2, 0.1, 0.1, 0.1), and up to 16% more Fairness can 

be achieved with the proposed scheme. 

 

Figure 4 shows the Efficiency and Fairness for the 206 

different allocation vectors. The grid size considered is 200, 

speed 2 m/s and link capacity 5 kbps, and the mobile devices 

move as per the Random direction 2D mobility model. Table 

3 shows that the maximum Efficiency occurs when the 

allocation is (0.1, 0.15, 0.1, 0.1, 0.15, 0.2, 0.1, 0.1) for this 

network scenario. Up to 96.8% more Efficiency (compared to 

the simple WFQ scheme) can be achieved with the proposed 

scheme. The maximum Fairness occurs when the allocation is 

(0.1, 0.15, 0.2, 0.1, 0.1, 0.15, 0.1, 0.1). 

 
Fig. 4 (a)Comparative analysis of Efficiency for 𝑺𝟏=(200,2,5) with 

Random Direction (2D) Mobility, and (b)Comparative analysis of 

Fairness for 𝑺𝟏=(200,2,5) with Random Direction (2D) Mobility. 

 

Figure 5 illustrates the efficiency and fairness graph for 

the Gauss-Markov mobility model with the 206 allocation 

cases. The results highlight how mobility patterns influence 

Efficiency, requiring careful parameter tuning for optimal 

performance. The optimal Efficiency, Fairness and the 

allocation cases leading to these are given in Tables 3 and 4. 

 

 

 (a) 

 (b) 

 (b) 

 (a) 

 (a) 
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Fig. 5 (a)Comparative analysis of efficiency for 𝑺𝟏=(200,2,5) with Gauss-Markov mobility, and (b) Comparative analysis of fairness for 𝑺𝟏=(200,2,5) 

with Gauss-Markov mobility. 

 
Table  3. Maximum values of efficiency for different mobility models 

Mobility Model 
Max. 

Efficiency 
Allocation leading to Max. Efficiency 

Simple 

WFQ 
FIFO 

Random Walk 2D 28% (0.1, 0.15, 0.1, 0.15, 0.1, 0.1, 0.2, 0.1) 18% 18% 

Random Direction 2D 33% (0.1, 0.15, 0.1, 0.1, 0.15, 0.2, 0.1, 0.1) 16.9% 27.2% 

Gauss-Markov 41% (0.1, 0.1, 0.1, 0.1, 0.2, 0.2, 0.1, 0.1) 19.5% 28.6% 

Random Waypoint 38% (0.1, 0.1, 0.1, 0.1, 0.1, 0.15, 0.15, 0.2) 30.2% 28.6% 

 
Table  4. Maximum values of fairness for different mobility models 

Mobility Model 
Max. 

Efficiency 
Allocation leading to Max. Fairness 

Simple 

WFQ 
FIFO 

Random Walk 2D 0.5 (0.1, 0.1, 0.1, 0.2, 0.2, 0.1, 0.1, 0.1) 0.42 0.42 

Random Direction 2D 0.5 (0.1, 0.15, 0.2, 0.1, 0.1, 0.15, 0.1, 0.1) 0.33 0.37 

Gauss-Markov 0.5 (0.1, 0.1, 0.15, 0.1, 0.15, 0.1, 0.2, 0.1) 0.32 0.408 

Random Waypoint 0.49 (0.1, 0.1, 0.1, 0.2, 0.1, 0.1, 0.1, 0.2) 0.43 0.42 

 

 
Fig. 6(a)Comparative analysis of Efficiency for 𝑺𝟏=(200,2,5) with Random Waypoint Mobility, and (b)Comparative analysis of Fairness for 

𝑺𝟏=(200,2,5) with Random Waypoint Mobility. 

 (b)  (b) 

 (b) 

 (a) 
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Figure 6 compares the performance of the proposed 

model and that of the simple WFQ and FIFO allocations, using 

the Random Waypoint Mobility Model over 206 allocation 

cases. While the improvement in Fairness can be up to 16% 

(for an allocation case of (0.1, 0.1, 0.1, 0.2, 0.1, 0.1, 0.1, 0.2)), 

the Efficiency can be improved by 46% for a different 

allocation of (0.1, 0.1, 0.1, 0.1, 0.1, 0.15, 0.15, 0.2). 

 

6. Conclusion  
The proposed solution leverages Federated Learning (FL) 

to train models on a dataset generated from ns-3 simulations 

involving 8 wireless nodes using different mobility models. 

The FL model enables dynamic and decentralized resource 

allocation while preserving node privacy. Weighted Fair 

Queuing (WFQ) ensures Fairness in resource distribution, 

while Efficiency is maximized by predicting optimal 

throughput under varying mobility scenarios. Future work 

includes scaling the model to larger, more heterogeneous 

networks and incorporating real-world data and advanced 

mobility patterns. Optimizing energy efficiency, enhancing 

security against adversarial attacks, and enabling real-time 

adaptive learning will further refine the proposed solution. 
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