
SSRG International Journal of Electronics and Communication Engineering                                    Volume 12 Issue 8, 199-209, August 2025 

ISSN: 2348-8549/ https://doi.org/10.14445/23488549/IJECE-V12I8P118                                                        © 2025 Seventh Sense Research Group® 

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Original Article 

 

Intelligent Resource Scheduling in Mobile Edge Clouds 

Using Adaptive Queueing and Meta-heuristics  
 

B.Teja Sree1, G.P.S.Varma2, Indukuri Hemalatha3  

 
1,2Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, A.P., India.  

3Department of Information Technology, S.R.K.R. Engineering College, A.P., India.  

1Corresponding Author : tejasree9479@gmail.com 

Received: 10 June 2025 Revised: 11 July 2025 Accepted: 12 August 2025 Published: 30 August 2025 

 

Abstract - The key aspect of Mobile Edge Computing (MEC) that has aroused considerable concern is how to efficiently 

schedule tasks and allocate resources to meet real-time applications' low latency and energy requirements. Classical 

scheduling algorithms such as First-Come-First-Served (FCFS), Shortest Job First (SJF), and Round Robin (RR) are largely 

ineffective for managing dynamic workloads and heterogeneous resource environments. This paper proposes A delay energy-

efficient queuing-based Particle Swarm Optimization (DAEE-QPSO) algorithm that combines queuing theory and swarm 

intelligence to optimize task offloading decisions. Individual nodes of edges are represented by M/M/1 queues that allow the 

queuing delay and system congestion to be estimated perfectly. A hybrid fitness function is constructed that attempts to 

concurrently reduce the runtime and energy usage of tasks and constraints (meeting task deadlines and energy budgets). The 

proposed DAEE-QPSO algorithm shows the lowest average run time and energy consumption compared to FCFS and EADF-

PSO. It also has high task throughput and maintains the greatest average energy saving of up to 29.8%, outperforming Energy 

Aware Double Fitness Function PSO (EADF-PSO) by only 23.3%. This result demonstrates its effectiveness in improving task 

efficiency in a mobile edge cloud. The suggested architecture is very applicable to energy-conscious and real-time usage in the 

cloud-to-edge environment. 

Keywords - Edge computing, Mobile Edge computing, Task scheduling, Delay Awareness, Queuing theory, Cloud computing, 
Resource Allocation. 

 

1. Introduction  
Cloud computing revolutionizes the digital world by 

enabling the availability of computer resources like memory, 

processor speed, and network capacity on demand through 

collaborative use of configurable resources. This model 

supports real-time applications, workflows, and elastic 

services due to its scalability and efficient resource 

management offered through flexible and cost-effective 

schemes [1]. Task scheduling and resource allocation are 

crucial for system performance because they directly impact 

efficiency, energy consumption, service latency, and 

customer satisfaction. Well-designed scheduling strategies 

ensure that computational tasks are allocated optimally 

across Virtual Machines (VMs), achieving the highest 

throughput and the lowest makespan [2].  Standard rule-

based and fixed algorithms are not adaptable to the dynamic 

workloads and changing resource levels typical in real-time 

cloud environments [3]. Such strategies tend to fail under 

high loads or heterogeneous task environments, resulting in 

longer execution times and inefficient resource utilisation. To 

address these issues, researchers have recently turned to 

metaheuristic algorithms inspired by natural processes to 

improve task scheduling and resource allocation solutions 

[4]. They include such local search techniques as Genetic 

Algorithms (GA), Ant Colony Optimization (ACO), and 

Particle Swarm Optimization (PSO) that have been 

successful because they can escape local optima to offer 

near-optimal solutions to NP-hard scheduling problems [5]. 

The PSO has become a common method among them 

because it is simple, converges quickly and is efficient at 

searching a large solution space. Nonetheless, standard PSO 

has high chances of premature convergence and poor search-

space exploitation, especially on complex, multi-objective 

problems such as cloud task scheduling [6]. To address these 

drawbacks, hybrid metaheuristic algorithms have been 

suggested, whereby the strengths of multiple optimisation 

strategies can be used in order to maximize exploration and 

exploitation abilities. As an example, by hybridizing PSO 

with local search strategies, mutation, or some other 

evolutionary algorithm can assist in striking the balance 

between convergence rate and quality of solutions [7]. In the 

proposed research, by using a hybrid PSO-based task 

scheduling framework, a solution is sought to achieve, which 

would optimise the use of resources and minimise energy 

http://creativecommons.org/licenses/by-nc-nd/4.0/


B. Teja Sree et al. / IJECE, 12(8), 199-209, 2025 
 

 

200 

usage, but would do so with a low makespan and execution 

time. The approach will seek to improve upon traditional 

scheduling methodologies and earlier metaheuristic 

approaches by incorporating problem-specific heuristics, 

extending the ability of PSO to adapt to the problem.  

 

The evaluation indices, such as metrics energy 

consumed and CPU used, show a considerable improvement 

in experimental results with benchmark cloud datasets. With 

the ongoing development of cloud computing, an increasing 

demand arises for intelligent scheduling algorithms that can 

respond to or adapt to different workloads and infrastructure 

limitations. Using hybrid metaheuristics in task scheduling is 

a promising approach to improve the efficiency, scalability, 

and sustainability of managing cloud resources.  

 

Addressing the energy characteristics of edge networks 

is crucial. Previous research has developed methods to 

enhance energy utilization at edge nodes [8-10] or create 

energy-efficient hardware support equipment. Edge node 

synchronisation via workload scheduling and assigning 

resources algorithms, which may improve their energy 

efficiency, has not gotten nearly enough attention. The 

traditional algorithms, like FCFS, RR and SJF, do not adjust 

to the changing workloads and resource limitations, which 

leads to ineffective throughput, increased execution time and 

increased energy.  

 

Although having promising results in handling NP-hard 

scheduling problems, metaheuristic methods such as PSO, 

GA, and ACO have their serious shortcomings. Standard 

PSO includes the problem of early convergence and does not 

include the opportunities to consider queuing delays, which 

are imminent when real-time MEC environments are 

considered. In addition, the existing hybrid techniques tend 

to optimise either with the execution time or energy 

consumption separately, ignoring the paradigm of 

concomitant delay and energy-aware task scheduling. This 

leaves a research gap: the task scheduling solutions do not 

offer scalability and energy efficiency at the same time 

without failing to meet SLAs. Entering into this, one needs a 

queuing-theory-based, energy-delay-optimised scheduling 

framework. 

 

To this point, this paper introduces a new algorithm of 

task scheduling, which is referred to as DAEE-QPSO or the 

effective capability of combining the ideas of the queuing 

theory with the PSO optimization framework to enhance task 

scheduling within a Mobile Edge Computing (MEC) system. 

Unlike traditional PSO-based algorithms that only look at 

energy use or execution time, the DAEE-QPSO algorithm 

uses a dual-objective fitness approach, meaning it assesses 

both energy consumption and delays caused by queuing. The 

algorithm does a good job of predicting because it treats the 

edge servers like M/M/1 queues, which helps it manage the 

workload across different resources effectively. This 

hybridisation helps DAEE-QPSO better optimise energy 

savings, response times, and throughput in resource-

constrained, real-time MEC environments with considerably 

better results than before. In summary, the proposed DAEE-

QPSO makes three main contributions: 

 Introduced M/M/1 queuing theory into the PSO 

framework to accurately model resource congestion and 

waiting times, enabling delay-sensitive task allocation in 

MEC.  

 Developed a hybrid fitness function that simultaneously 

reduces energy consumption and delay, resulting in 

improved efficiency for resource-constrained mobile 

devices. 

 Designed a flexible scheduling model that dynamically 

adapts to workload changes and resource availability, 

ensuring high performance across varying task volumes 

and heterogeneous edge-cloud systems. 

 

2. Related works  
Over the years, the research has primarily focused on the 

offloading of applications from user devices to edge devices. 

In [11], the authors have suggested a bioinspired adaptive 

resource scheduling algorithm that can guarantee Quality of 

Service (QoS) in an MEC environment. The mechanism 

deploys an approach based on swarm intelligence in an 

optimized Ant Colony Optimization (ACO) algorithm to 

assign resources among edge nodes dynamically. Various 

QoS parameters considered in this model include latency, 

bandwidth utilization and energy consumption, and with that, 

the system will be able to respond in real time based on the 

changing network requirements and workloads. Its adaptive 

quality in the algorithm aids in alleviating congestion and 

enhances load balancing between heterogeneous edge 

devices. Benchmark simulations based on performance 

evaluation show that the offered solution is much superior to 

the conventional scheduling approaches in its response time 

reduction and guarantees of quality of service. This 

bioinspired scheduler promises to be used in real-world 

smart cities and IoT applications, where responsiveness to 

errors and edge-wallet resources streamlines efficient 

resource utilization. 

 

In [12], the authors were directed toward the new 

Genetic Algorithm with Skew Mutation (GA-SM), proposing 

to use it to optimize the unrelated resource-aware task 

offloading. The suggested solution solves the problems 

related to a wide range of computing capacities, networking 

bandwidths, and latencies of edge and cloud nodes. In 

contrast to the classic genetic algorithm, GA-SM 

incorporates another mutation operator (a skew mutation 

operator) that keeps the population diversity and prevents 

premature convergence to improve the quality of solutions. 

Its algorithm causes the execution of tasks and resource 

utilization to be optimized simultaneously, task by task, with 

smart edge/cloud-based offloading according to real-time 



B. Teja Sree et al. / IJECE, 12(8), 199-209, 2025 
 

 

201 

limitations and differences among devices. The results from 

the GA-SM simulations show that it performs much better 

than the basic GA, PSO, and ACO in reducing makespan, 

improving energy efficiency, and increasing the success rate 

of offloading. It is very suitable for smart cities and industrial 

IoT real-time applications, regardless of how high the task 

arrival rate or how unstable the network conditions are. 

 

In [13], the authors explained a scheduling system for 

Mobile Crowd Computing (MCC) that takes into account 

multiple factors and available resources to handle tasks in 

situations where resources change a lot and are limited, using 

a method based on rules of thumb. The model combines 

important parameters of decision-making, namely device 

mobility, the level of energy, processing power, and urgency 

of the task, to ensure adequate and effective scheduling. The 

ranking of offered mobile devices to carry out the tasks is 

achieved through the customized heuristic function ranking 

by using a weighted multicriteria decision analysis. The 

algorithm focuses on maximizing the minimization of task 

failures and total makespan and optimally balances the use of 

such devices and the long-term lifetime of the system as a 

whole. The test results from a simulation of MCC show that 

the suggested scheduling method is much better in several 

ways, such as success rate, execution time, and energy use, 

compared to older scheduling methods. 

 

In [14], the authors present a variety of strategies for 

task offloading demand for service delivery with low latency 

and power consumption in a distributed computing world. 

The model presented suggests a two-tier optimization 

scheme that synchronizes the choice between the edge nodes 

and the cloud servers, depending on the nature of the given 

tasks, their data size, the computing power required, and the 

time limit. Using a priority-driven scheduling 

implementation, the system identifies the best site to execute 

(edge or cloud) and dynamically allocates any computational 

and bandwidth resources available. Latency-sensitive utility 

has also been used as part of the approach to accommodate 

the tradeoffs of response time and resource expenses. The 

simulation results show that using this method leads to much 

less delay in completing the task and greatly increases the 

amount of work done compared to standard single-layer or 

non-adaptive offloading methods. 

 

In [15], the authors conducted a review of resource 

scheduling algorithms into three types: classical, 

metaheuristic, and artificial intelligence (AI), and looked at 

the pros and cons of each when managing large and changing 

cloud environments. Metaheuristics methods are applied to 

and provide flexible solutions to NP-hard scheduling 

problems, as demonstrated by the authors. Moreover, 

applications based on AI, particularly reinforcement learning 

and deep learning models, can enable both predicted and 

independent management of resources in response to 

unpredictable workloads. The document discusses hybrid 

approaches that integrate AI and metaheuristics to balance 

exploration and exploitation, aiming to enhance scalability, 

energy efficiency, and Quality of Service (QoS).  

 

In [16], the authors provided a modified Ant Colony 

Optimization (ACO) method for scheduling resources 

effectively by making use of a Space Information Network 

(SIN). This paper responds to the distinctive issues of SINs, 

such as high-latency links and dynamic topology, as well as 

the lack of edge resources, with the formulation of a 

resource-aware ACO model that takes the communication 

delay, the computational capacity, and the task priority into 

account for the heuristics used by the model. The suggested 

modification to the algorithm includes adding dynamic 

pheromone updates and balancing loads, which helps the 

algorithm make better task offloading decisions. It 

dynamically chooses promising paths and edge nodes to 

execute tasks such that the network is less latent and 

congested and consumes low energy. Simulation studies 

were conducted in real-world write-read conditions. 

 

3. Materials and Methods  
Figure 1 represents a new Delay Aware Energy-Efficient 

Queuing-based Particle Swarm Optimization (DAEE-QPSO) 

system proposed for resource scheduling in MEC settings. 

This is a dynamic framework that performs resource-aware 

job assignment, optimizing the performance of targeted key 

performance indicators, e.g., energy consumption, task delay, 

queuing time, and resource utilization across heterogeneous 

edge or cloud nodes.  

The architecture combines queuing theory with the 

flexibility of PSO search capability to build better schedules 

and give high responsiveness to real-time situations. Every 

edge node will be accounted for as a single server queuing 

system (M/M/1), with the rate of task arrival (𝜆) and the rate 

of service tasks (𝜇) being observed. Based on these 

parameters, a computation of expected waiting time is done, 

which is a substitute vital element of the particle fitness 

function. 

3.1. Task Analyzer Module 

This module is the first unit of processing in an edge 

computing system, taking the role of interpreting and 

profiling incoming computational jobs. It derives important 

features, including the number of CPU cycles it needs, the 

necessary memory space, task volume, the level of priorities, 

energy limitations, and the deadline of execution. Using such 

parameters, the module will classify tasks into categories 

(e.g., delay-sensitive, energy-intensive) to support better 

scheduling decisions. This profiling helps the downstream 

components, e.g., schedulers and optimizers, assign suitable 

resources to tasks. The module will enhance decision-making 

quality by clarifying each task before allocating or 

offloading. 



B. Teja Sree et al. / IJECE, 12(8), 199-209, 2025 
 

 

202 

Fig. 1 Proposed framework for resource scheduling in MEC 

environment 

3.2. Virtual Machine (VM) Monitor Module 

The module is essential for real-time resource 

management as it constantly monitors the status and the 

performance of all the active virtual machines in the cloud or 

the edge environment. It tracks variables like CPU usage, 

memory availability, bandwidth usage, response times, and 

system loads. A resource pool at the system's center refreshes 

this information based on each virtual machine's current 

capabilities. The module also ensures that the scheduling 

algorithm considers real-time variability, leading to the 

intelligent and balanced assignment of more work. It also 

identifies VMs that are either over-provisioned or under-

provisioned and helps prevent bottlenecks caused by 

performance constraints, ensuring effective resource use 

across the infrastructure. 

 

3.3. Resource Constraint Manager 

This module is responsible for enforcing system 

limitations and operational policies during task scheduling 

and allocation. It ensures that tasks are assigned to edge 

nodes only when the required computational and energy 

resources are available. This module evaluates constraints 

such as maximum CPU load, memory thresholds, energy 

budgets, network latency, and task deadlines. Filtering out 

unsuitable candidate nodes based on these criteria narrows 

the decision space for the scheduler and improves efficiency. 

The module also aids in maintaining SLAs by preventing 

overcommitment of resources and ensuring that critical tasks 

meet their performance requirements within defined system 

constraints. 

 

3.4. Queuing-based Particle Swarm Optimization (QPSO) 

with Delay Awareness Module 

This is a learning intelligent optimization algorithm 

whose underlying model is a combination of mathematical 

queuing theory models with the adaptive search ability of 

PSO to provide a solution to task scheduling problems 

generated in cloud and MEC, as shown in Figure 2. The 

concept of traditional PSO is based on imitating the social 

behavior of flocks and swarms, where each solution 

(particle) explores the search space by estimating its velocity 

and position based on its personal best and the best solution 

found by the entire swarm. Although PSO successfully 

searches vast solution spaces, it usually lacks awareness 

about the domain, e.g., patterns of task arrival and resource 

service behaviour. To solve this problem, QPSO uses 

queuing models, like M/M/1 or M/G/1 queues, in the fitness 

estimation process to consider things like resource 

congestion, task waiting time, and system throughput. 

         

Each resource (e.g., a VM or an edge node) in QPSO is 

modelled as a queue having an arrival rate 𝜆 and a service 

rate 𝜇. The arrival of tasks is allocated to the resources, and 

the waiting time, as well as the time of completion of the 

service of the tasks, are calculated with the help of the 

queuing formulas. These values compute more feasible 

scheduling intensities like makespan, turnaround time, and 

energy consumption.  

 

So, the Fitness in QPSO is a compound value that 

combines these queuing-based parameters into a single 

measure of how good a particular scheduling solution is. As 

an example, the overall estimated delay of a given task 

involves the queue wait time as well as the execution time, 

and the cost of the usage of energy is estimated according to 

the processing time and the rate of resource consumption. 

 

This queuing integration permits QPSO to dynamically 

avoid resource congestion, share the load, and minimise SLA 

violations. In addition, swarm-based exploration in each 

iteration ensures that a variety of solutions are explored; 

hence, the probability that the resource-task assignment 

would converge towards an optimal or near-optimal solution 

is high. A deadline-aware task sorting step based on the 

Earliest Deadline First (EDF) strategy is added to improve 

task allocation further before the QPSO evaluation starts. 

This step orders tasks by their deadlines to prioritise time-

sensitive jobs in resource mapping, boosting SLA 

compliance and system responsiveness. The most important 

application of QPSO would be in such real-time, 

heterogeneous platforms as MEC, where both the arrival rate 

of tasks and their resource status vary significantly, and the 

response time and energy efficiency are paramount aspects of 

performance. 

Task analyzer  

Task scheduler 

and dispatcher 

Resource constraint 

manager 

Virtual machine 

monitor  

Edge nodes  

DAEE-QPSO 

Cloud 



B. Teja Sree et al. / IJECE, 12(8), 199-209, 2025 
 

 

203 

 
Fig. 2 Flowchart of delayed awarness queuing-based PSO for energy-

efficient task scheduling 

 

Let there be a set of tasks and a set of computing 

resources (e.g., VMs or edge nodes): 
 

𝑇 = {𝑡1, 𝑡2, … . . , 𝑡𝑛}                                              (1) 

 

𝑅 = {𝑟1, 𝑟2, … . . , 𝑟𝑛}                                              (2) 
 

Each task  requires a certain amount of computational 

resources and arrives at a certain time. Each resource rj is 

modeled as an M/M/1 queue, where λj is the arrival rate to 

resource rj, and μj is the service rate at resource rj. The 

expected waiting time Wqj  for each task in queue at rj is 

given by: 

𝑊𝑞𝑗 =
𝜆𝑗

𝜇𝑗(𝜇𝑗 − 𝜆𝑗)
                                               (3) 

 

(assuming λj < μj for stability) 

The completion time (turnaround) for a task to be 

offloaded to resource rj is: 

 

𝐶𝑖𝑗 = 𝑊𝑞𝑗 +
𝐶𝑖

𝜇𝑗

                                                        (4) 

 

Where Ci is the computation size of task ti. The energy 

consumed by executing ti on rj is: 

 

𝐸𝑖𝑗 = 𝑃𝑗 × (
𝐶𝑖

𝜇𝑗

)                                                         (5) 

 

Where Pj is the power consumption of resource rj. 

 

Each particle in QPSO represents a mapping X 

{x1,x2,…,xn}, where xi∈R indicates the assigned resource for 

task ti. The fitness function for a particle (solution) is defined 

as: 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑋) = 𝛼. ∑ 𝐶𝑖𝑥𝑖
+ 𝛽.

𝑛

𝑖=1

∑ 𝐸𝑖𝑥𝑖

𝑛

𝑖=1

                    (6) 

 

Where α, β are weights to balance time and energy, and 

xi is the resource assigned to task ti. QPSO optimizes this 

function by iteratively updating positions and velocities of 

particles using PSO rules, while considering queuing delays 

and energy constraints.  

 

To further improve SLA adherence, a deadline violation 

penalty can also be incorporated ny updating Equation(6) as: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑋) = 𝛼. ∑ 𝐶𝑖𝑥𝑖
+ 𝛽.

𝑛

𝑖=1

∑ 𝐸𝑖𝑥𝑖

𝑛

𝑖=1

  𝜂

+ ∑ 𝑛𝑚𝑎𝑥

𝑛

𝑖=1

(0, 𝐶𝑖𝑥𝑖 − 𝐷𝑖)                     (7) 

Where α, β are weights to balance time and energy, and 

xi  is the resource assigned to task ti. QPSO optimizes this 

function by iteratively updating positions and velocities of 

particles using PSO rules, while considering queuing delays 

and energy constraints. 

 

Algorithm 1: Delay Awareness Energy Efficient Queuing-

based PSO (DAEE-QPSO) 

Input: T = {t₁, t₂, ..., tn}       # Task list 

  R = {r₁, r₂, ..., rm}       # VM or edge node list 

  PSO parameters: w, c1, c2, maxiter, numparticles 

Initialize: 

  Initialize particles with random task-to-VM assignments 

  Initialize pBest[i] for each particle 

  Initialize gBest = best(pBest) 

Repeat until maxiter: 

Sort tasks T by ascending order of Di 

        TotalWq = 0 

        TotalEnergy = 0 

Number of Particles, 

Iterations, Initialization 

parameters  

For each Particle 

Queuing constraints  

EDF task sorting  

Evaluating fitness  

Energy efficient task 

scheduling among devices 

Update velocity and 

fitness  

Repeat 

until 

Update pBest and gBest  

Yes 

No 



B. Teja Sree et al. / IJECE, 12(8), 199-209, 2025 
 

 

204 

        Makespan = 0 

        For each task tᵢ in sorted T: 

            assigned resource rj = xᵢ  (current particle 

assignment) 

            Estimate queue length Lr at rj 

            λj = task arrival rate to rj 

            μj = service rate of rj 

            Compute expected queuing delay using M/M/1: 

                Wqᵢ = λj / [μj (μj - λj)] 

            ExecutionTimeᵢ = Cᵢ / μj 

            CompletionTimeᵢ = Wqᵢ + ExecutionTimeᵢ 

            Energyᵢ = Pj * ExecutionTimeᵢ 

           Add deadline penalty if completiontimeᵢ > Dᵢ 

            if CompletionTimeᵢ > Dᵢ: 

                Penaltyᵢ = δ * (CompletionTimeᵢ - Dᵢ) 

            Else: 

                Penaltyᵢ = 0 

            TotalWq += Wqᵢ 

            TotalEnergy += Energyᵢ 

            Makespan = max(Makespan, CompletionTimeᵢ) 

        end for 

        Evaluate Fitness: 

            Fitness[i] = α * TotalWq + β * Makespan + γ * 

TotalEnergy + η * TotalPenalty 

        if Fitness[i] better than pBest[i], update pBest[i] 

        if Fitness[i] better than gBest, update gBest 

    end for 

    for each particle i: 

        Update velocity and position using PSO: 

            v[i] = w*v[i] + c1*rand()*(pBest[i] - position[i]) + 

c2*rand()*(gBest - position[i]) position[i] = position[i] + v[i] 

    end for 

Return gBest mapping as optimal task-resource assignment 

3.5. Task Scheduler and Dispatcher Module 

This module is responsible for executing the scheduling 

plan generated by the hybrid PSO optimiser optimization 

engine. It maps the best tasks to virtual machines (VMs) or 

edge nodes and initiates the actual process of placing tasks 

within the selected resources. With this module, job 

dispatches will be carried out based on existing policies, 

which could be the level of priority, a deadline, and the 

availability of resources. It enables preemptive and non-

preemptive scheduling, providing real-time and batch job 

processing flexibility. It is also the responsibility of the 

dispatcher to supervise the progress of the task being carried 

out and even reallocate tasks when they fail to fulfil or are 

running late. This module minimises latency, provides high 

throughput, and provides consistent delivery of services 

across the cloud and edge infrastructures by efficiently 

coordinating and executing scheduling decisions. 

3.6. Working Procedure of Algorithms 

Here is a structured explanation of the three components  

as part of an integrated framework for mobile edge 

computing (MEC): 

3.6.1. Task Offloading Optimization for Mobile Devices 

This Algorithm 2 finds out the number of tasks that 

different mobile devices should offload to an edge server to 

balance their time and energy consumption. Each device 

always computes the time it takes to perform a task locally 

compared to when the task is offloaded and the energy 

consumed in both scenarios. It then synthesises these into a 

cost function whereby they are weighed depending on 

predetermined preferences. The algorithm determines the 

optimal offloading proportion for a specific device by 

analysing the costs associated with different offloading 

ratios. When the value computed is not within the valid 

range, it is modified to be within the possible limit. 

Following this, the algorithm checks whether the chosen 

solution satisfies the device's time and energy constraints. In 

case the solution cannot be found, the algorithm will choose 

an alternative one, whatever best suits the requirements: the 

full local execution, full offloading, or a hybrid one. Finally, 

it displays the chosen offloading ratio for each device. 

Algorithm 2: Task offloading optimization for mobile 

devices 

Input: Set of mobile devices ℳ, For each device 𝜇 ∈ ℳ: 

CPU cycles required 𝜅𝜇, Data size to transmit 𝛿𝜇, Device 

CPU frequency 𝜑𝜇,  Edge server CPU frequency 𝜓, Uplink 

rate 𝜒𝜇 , Local per-cycle energy 𝜂𝜇, Per-bit transmission 

energy 𝜃𝜇, Maximum energy 𝜆𝜇, Task deadline Δ𝜇, Weights 

𝛼, 𝛽, 𝛾. 

Output: Optimal offloading ratio 𝜋𝜇
∗  for each device 

Procedure: 

1:      for each device 𝜇 ∈ ℳ do 

2:   Compute local execution time 

3:                            𝑇𝜇
local ←

(1−𝜋𝜇)𝜅𝜇

𝜑𝜇
 

4:   Compute offloaded execution time 

5:                            𝑇𝜇
edge

←
𝜋𝜇𝜅𝜇

𝜓
+

𝜋𝜇𝛿𝜇

𝜒𝜇
 

6:   Compute total energy consumption 

7:                       𝐸𝜇 ← 𝜂𝜇(1 − 𝜋𝜇)𝜅𝜇 + 𝜃𝜇𝜋𝜇𝛿𝜇 

8:   Define the total cost function 

9:                       𝑓(𝜋𝜇) ← 𝛼𝑇𝜇
local + 𝛽𝑇𝜇

edge
+ 𝛾𝐸𝜇 

10:  Take the derivative and find the stationary point 

11:  Compute 
𝑑𝑓

𝑑𝜋𝜇
, set to zero and solve for 𝜋𝜇: 

12:    
𝑑𝑓

𝑑𝜋𝜇
= −𝛼

𝜅𝜇

𝜑𝜇
+ 𝛽 (

𝜅𝜇

𝜓
+

𝛿𝜇

𝜒𝜇
) − 𝛾𝜂𝜇𝜅𝜇 + 𝛾𝜃𝜇𝛿𝜇 = 0 

13:  Let the solution be 𝜋𝜇
∗  

14:  Clip to feasible bounds 

15:                           if 𝜋𝜇
∗ < 0, set 𝜋𝜇

∗ ← 0 

16:                       else if 𝜋𝜇
∗ > 1, set 𝜋𝜇

∗ ← 1 

17:  Verify constraints 

18:          if 𝜂𝜇(1 − 𝜋𝜇
∗)𝜅𝜇 + 𝜃𝜇𝜋𝜇

∗𝛿𝜇 > 𝜆𝜇 or 

      
(1−𝜋𝜇

∗ )𝜅𝜇

𝜑𝜇
+

𝜋𝜇
∗ 𝜅𝜇

𝜓
+

𝜋𝜇
∗ 𝛿𝜇

𝜒𝜇
> Δ𝜇 



B. Teja Sree et al. / IJECE, 12(8), 199-209, 2025 
 

 

205 

19: Not feasible: fallback to local/hybrid/edge as required 

20: Choose the best feasible 𝜋𝜇 ∈ {0,1} or minimize within 

[0,1] 
21:  end if 

22:       end for 

23:      return all 𝜋𝜇
∗  

3.6.2. Local Computing Feasibility Check 

This Algorithm 3 attempts to determine whether or not a 

mobile device can process its respective given task uniquely 

on its own. It computes the local execution time and the 

amount of energy required by each device. It then compares 

these values with the device deadline and available energy. 

In case either the time or energy requirement is excessive, 

the task will be flagged as not suitable to execute locally. 

Given that the two requirements are met, the Job can be 

performed without the device offloading any element to an 

edge server. 

-------------------------------------------------------------------------- 

Algorithm 3: Local computing feasibility check 

Input: ℳ, 𝜅𝜇 , 𝛿𝜇, 𝜓, 𝜒𝜇 , 𝜃𝜇 

Output: Partition of local/edge execution per device 

1 for each device 𝜇 ∈ ℳ do 

2  Select 𝜋𝜇 ∈ [0,1] 

3  Compute: 

     Local: (1 − 𝜋𝜇)𝜅𝜇 cycles 

     Edge: 𝜋𝜇𝜅𝜇 cycles, 𝜋𝜇𝛿𝜇 bits 

4  Compute delays and energies as in Algorithm 1 

5  Check constraints 

6 end for 

7 return optimal split 

3.6.3. Edge Offloading Model 

This algorithm (Algorithm 4 divides tasks between an 

edge server and a mobile device. It evaluates a set of possible 

splits (ranging from no offloading to full offloading) per 

device and determines the number of CPU cycles and 

amount of data that is processed locally or at the edge. Next, 

it calculates the delay and energy costs of each split using the 

calculations that were used in Algorithm 1. The process 

eliminates those divisions that could not satisfy the 

constraints of the device. The algorithm then finds the best 

method of distributing tasks among the devices, keeping the 

right ratio between local and edge processing with the aim of 

getting the optimal result. 

 

This algorithm determines how each mobile device 

divides its computing tasks between local processing and 

offloading to an edge server, aiming to minimise both time 

and energy consumption. Each device starts by collecting 

key variables such as CPU requirements, data volume, CPU 

clock speeds, transmission rates, and energy properties. The 

algorithm will first calculate the time and energy the device 

will use to finish the task locally. It then calculates time and 

energy when the entire task is forwarded to the edge server, 

both in data transmission and edge computation. Then, 

regardless of the selected offloading fraction, the algorithm 

evaluates the total time and energy in case of any 

combination of local and edge processing.  

 

A cost function is set up to integrate the time and the 

energy, whereby weight factors of the goals of the systems 

are matched. The algorithm then checks that the total time 

does not exceed the task deadline and that energy use stays 

within budget.  

 

Solving for the point where the cost is lowest, it 

identifies the best offloading fraction for each device. If the 

solution falls outside valid limits, it defaults to either full 

local or full offload. In the end, this approach helps each 

device finish its task efficiently by balancing execution time 

and energy use within system limits. 

 

Algorithm 4: Edge offloading model  

Inputs: Set of mobile devices: 𝚽 = {𝛳₁, 𝛳₂, ..., 𝛳ₘ}, For each 

device 𝛳ᵢ, Required CPU cycles ψᵢ, Data size to transfer 𝜒ᵢ 

(bits), Local CPU frequency ωᵢ (Hz), Edge server CPU 

frequency Ωᵢ (Hz), Transmission rate τᵢ (bits/s), Offloading 

fraction: λᵢ ∈ [0,1] (λᵢ = 0: local, λᵢ = 1: full offload, 0 < λᵢ < 1 

hybrid), Energy/cycle (local) εᵢ, Energy/bit (transmit) ζᵢ, Task 

deadline Δᵢ (s), Energy budget: Ξᵢ (J). 

Outputs: Optimal offloading fraction λᵢ*, Minimum total cost 

(execution time & energy) 

Step 1: Initialize for each device 𝛳 and assign all parameters 

ψᵢ, 𝜒ᵢ, ωᵢ, Ωᵢ, τᵢ, εᵢ, ζᵢ, Δᵢ, Ξᵢ 

Step 2: Compute local execution time 

    θLᵢ ← ψᵢ / ωᵢ (Local only) 

Step 3: Compute offloaded execution time 

    - θOᵢ ← (𝜒ᵢ / τᵢ) + (ψᵢ / Ωᵢ) (Transmission + Edge 

computation) 

Step 4: Compute local execution energy 

    - ηLᵢ ← εᵢ * ψᵢ 

Step 5: Compute offloaded execution energy 

    - ηOᵢ ← ζᵢ * 𝜒ᵢ 

Step 6: Total execution time (Hybrid offload) 

    - θTᵢ ← (1 - λᵢ) * (ψᵢ / ωᵢ) + λᵢ * [(𝜒ᵢ / τᵢ) + (ψᵢ / Ωᵢ)] 

Step 7: Total energy consumption (Hybrid offload): 

    - ηTᵢ ← (1 - λᵢ) * (εᵢ * ψᵢ) + λᵢ * (ζᵢ * 𝜒ᵢ) 

Step 8: Formulate cost function 

     Cᵢ(λᵢ) ← α * θ_Tᵢ + β * η_Tᵢ (where α, β are weighting 

factors for time/energy tradeoff) 

Step 9: Set constraints 

     θTᵢ ≤ Δᵢ (Task deadline constraint) 

     ηTᵢ ≤ Ξᵢ (Energy budget constraint) 

     0 ≤ λᵢ ≤ 1 (Fraction bound) 

Step 10: Find Optimal λᵢ* 

    Take ∂Cᵢ(λᵢ)/∂λᵢ = 0, solve for stationary point λᵢ* 

     if λᵢ* < 0, set λᵢ* = 0 (full local) 

     if λᵢ* > 1, set λᵢ* = 1 (full offload) 

     else, use λᵢ* as optimal 



B. Teja Sree et al. / IJECE, 12(8), 199-209, 2025 
 

 

206 

3.7. Baseline Algorithms 

Baseline algorithms like SJF, Round Robin, FCFS, and 

EADF-PSO provide foundational comparisons to evaluate 

performance improvements in advanced scheduling models, 

highlighting efficiency, energy savings, and responsiveness 

gains. 

 

3.7.1. Shortest Job First (SJF) [17] 

This is the algorithm in scheduling that chooses the Job 

that has the shortest run time to execute first. This scheme is 

good when the lengths of jobs are known beforehand to 

reduce the average waiting time. Nevertheless, SJF cannot be 

used in a real-time system or with dynamic workloads 

because it might starve the longer tasks. It is not responsive 

to a heterogeneous or unpredictable task arrival in a cloud 

environment due to its static nature, which is therefore less 

efficient in such an environment. 

 

3.7.2. Round Robin (RR) [18] 

This is a scheduler for time sharing, i.e., it gives each 

task a rigid time quantum and rotates through tasks in a 

circular queue. It is equal and straightforward, such that no 

task will be left unattended. RR does add context switching 

overhead; more work is more expensive. It can operate 

efficiently in interactive systems, but it is not versatile 

enough to handle the complexity of the task or time pressure. 

RR may cause inefficient energy consumption in cloud or 

edge computation and increase the makespan in high-load 

cases. 

 

3.7.3. First-come, first-served (FCFS) [19] 

This is a non-preemptive approach that follows the 

sequence of execution as they are received. It is simple to 

administer and fair since it does not favour any activity.  

 

However, it is affected by the converse effect, as short 

tasks wait behind long tasks, resulting in poor average 

turnaround time and energy inefficiency. The absence of 

latency-sensitive or energy-limited applications hinders the 

advancement of FCFS in various cloud or mobile edge 

systems. 

 

3.7.4. Energy Aware Double Fitness Function PSO (EADF-

PSO) [20] 

This will be a metaheuristic approach based on the PSO 

process, but its features will include a dual fitness criterion 

that will take into account the execution time as well as the 

energy consumed. It distributes tasks among computing 

nodes with optimised tradeoffs to achieve better performance 

than the static heuristics.  

 

EADF-PSO lowers energy consumption and makespan, 

whereas it is unaware of queuing delay and dynamic 

workload balancing. Although it performs well in the case of 

the static cloud, its scaling might fail at high levels of 

concurrency or when using limited edge resources. 

4. Results and Discussion 
The simulation was implemented on EdgeCloudSim to 

estimate the work of the proposed DAEE-QPSO algorithm, 

which emulates a hierarchical edge cloud design that entails 

mobile gadgets, edge servers, and clouds based on data 

centres. The virtual machines (VMs) are held constant in this 

experimental setup to represent a problem with limited 

resources that is often observed in real-time mobile edge 

computing. At the same time, the amount of work given 

slowly increases from 50 to 250 in steps of 25 to see how the 

scheduling algorithm responds to different amounts of 

requests. This setup simulates real-life situations where there 

is pressure from waiting in line and competition for 

resources, making it possible to effectively test how well the 

proposed algorithm handles delays and meets Service Level 

Agreements (SLAs). Important performance indicators 

(average execution time, energy consumption, task 

throughput, and SLA violation rate) are used to indicate the 

system's efficiency. 
 

4.1. Analysis of Performance Metrics 

Performance evaluations are essential in Mobile Edge 

Computing (MEC), and they include average running time, 

average energy consumption, task throughput rate, and 

energy saving. Mean run-time shows the speed at which a 

task will run, which directly affects application 

responsiveness, particularly in real-time or latency-sensitive 

applications. Average energy use is essential in extending the 

battery life of mobile devices and lowering the energy costs 

of operations in edge servers. Task throughput rate describes 

the number of tasks that can be effectively processed 

depending on the unit of time between them; the larger the 

rate, the higher the resource utilisation rate and system 

scalability. Finally, average energy saving measures the 

effectiveness of an algorithm in energy saving in the system. 

The success in improving these metrics means that the MEC 

infrastructure will be able to serve all the users, operate 

effectively, and be sustainable. Therefore, optimising such 

meeting points is crucial to developing adaptive, energy-

efficient, high-performance edge-cloud systems to support 

contemporary applications. 
 

Figure 3 compares the average runtime of five 

scheduling techniques for the number of tasks between 50 

and 250. FCFS exhibits the greatest run time, rising from 

148.9 milliseconds (50 tasks) to 676.3 milliseconds (250 

tasks) because of its strict, first-in-the-queue scheduling, 

which amounts to long queues. Round Robin (RR) is a little 

bit faster, though, and it improves (135.3 ms to 641.8 ms), 

but its time-slicing overhead is inefficient when the task 

volume increases. Shortest Job: shorten the runtime (e.g., 

122.5 ms at 50 tasks, 602.3 ms at 250 tasks) by preferring the 

shorter jobs, but it declines under the unbalanced workload. 

EADF-PSO, based on the use of smart metaheuristic 

mapping, significantly minimises runtime as compared to 

98.7 ms in terms of runtime reduction to 432.5 ms, which is 

an improved adaptation to task heterogeneity.  



B. Teja Sree et al. / IJECE, 12(8), 199-209, 2025 
 

 

207 

 
Fig. 3 Performance comparison of the average run time of different 

scheduling algorithms 

The proposed DAEE-QPSO brings the best results with 

execution times of 87.6 ms (50 tasks) and 388.1 ms (250 

tasks). Its strength is that it is a hybrid of queue awareness 

and energy delay optimisation, providing efficient adaptive 

load sharing with varying task loads. 

 

 

Fig. 4 Performance comparison of the average energy consumption of 

different scheduling algorithms 

Figure 4 presents a comparison of the average energy 

consumption of five scheduling methods during different 

stages of increasing task load. First-Come-First-Served 

(FCFS) records the highest energy consumption with an 

increase of 21.7 J (50 tasks) compared to 107.8 J (250 tasks) 

because of the longer execution time, regardless of the 

urgency of tasks and the system workload. Round Robin 

(RR) also shows a similar pattern, with energy use ranging 

from 20.3 J to 104.9 J, because it follows a sequence of 

rotating tasks, which leads to more context switching and 

wasted resources. Shortest Job First (SJF) also performs 

slightly better, with energy consumption ranging from 18.5 J 

to 91.2 J, but it still lacks dynamic energy control because it 

focuses on executing shorter jobs. The EADF-PSO method, 

which relies on metaheuristics, reduces energy consumption 

(from 14.2 J to 69.8 J) by efficiently utilising task 

peculiarities and information about system processes for 

effective mapping. Nevertheless, the proposed DAEE-QPSO 

achieves the lowest energy consumption, which is 12.6 J and 

does not exceed 60.3 J even when processing 250 tasks. This 

is better because of its energy and delay dual fitness 

optimization and queue awareness scheduling. 

Figure 5 shows the average task throughput rate 

(tasks/sec) of five scheduling algorithms. FCFS produces the 

lowest throughput, fluctuating between 0.36 and 0.37 

tasks/sec due to its complete ignorance of queue loads. 

Round Robin (RR) takes a slight step forward (0.380.39 

tasks/sec), yet context-switching overhead is large. SJF is 

slightly improved (0.41 0.42 tasks/sec) as shorter jobs are 

favoured, but there is no energy or load balance focus. With 

the help of metaheuristic optimisation, EADF-PSO records a 

dramatic improvement (0.520.53 tasks/sec) based on 

intelligent allocation of tasks.  

The proposed DAEE-QPSO is the best approach because 

it retains 0.58-0.59 tasks/sec compared to all other 

approaches since it considers both queuing delay modelling 

and energy delay fitness optimization training, which entails 

the optimised, balanced task assignment and least idle time 

in edge-cloud nodes. 

 
Fig. 5 Performance comparison of the average task throughput rate of 

different scheduling algorithms 

Figure 6 provides a comparison of the average energy 

saving of the five different scheduling algorithms according 

to the task count between 50 and 250 tasks. The lowest 

savings in FCFS are between 9.5 and 10.1% since they are 

inefficient in handling tasks and have a long downtime in 

making use of resources. Round Robin (RR) is slightly better 

(10.8 to 11.3%), but its efficiency comes with the cost of 

energy overhead due to numerous context switches.  

50 100 150 200 250
0

100

200

300

400

500

600

700

Number of Tasks

A
v
e
ra

g
e
 R

u
n
ti
m

e
 (

m
s
)

 

 

SJF

RR

FCFS

EADF-PSO

Proposed DAEE-QPSO

50 100 150 200 250
10

20

30

40

50

60

70

80

90

100

110

Number of Tasks

A
v
e
ra

g
e
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

J
o
u
le

s
)

 

 

SJF

RR

FCFS

EADF-PSO

Proposed DAEE-QPSO

50 100 150 200 250

0.35

0.4

0.45

0.5

0.55

0.6

Number of Tasks

A
v
e
ra

g
e
 T

a
s
k
 T

h
ro

u
g
h
p
u
t 

R
a
te

 (
ta

s
k
s
/s

e
c
)

 

 

SJF

RR

FCFS

EADF-PSO

Proposed DAEE-QPSO



B. Teja Sree et al. / IJECE, 12(8), 199-209, 2025 
 

 

208 

 
Fig. 6 Performance comparison of the average energy saving of 

different scheduling algorithms 

 

SJF can marginally (12.5% to 13.1%) exceed the others 

in finishing shorter tasks in less time, but it is not energy-

aware. EADF-PSO records significant energy savings (22.6 

to 23.3%) as a result of optimization in task-to-resource 

mapping accomplished through a dual fitness function. The 

proposed DAEE-QPSO achieves, with a queuing delay 

model and a dynamic energy-delay tradeoff, the best 

marinating savings (28.7–29.8%), considering offloading 

rates that are intelligent and a secure balance on resources in 

a very busy mobile edge environment. 

5. Conclusion 
In conclusion, an efficient and scalable task scheduler, 

DAEE-QPSO, will be used to handle resource distribution 

challenges within a mobile edge cloud scenario. The 

algorithm with the queuing delay modeling shows better 

performance, less runtime, energy consumption, fewer tasks 

in the backlog and more energy savings and throughput by 

integrating in the PSO. Baseline algorithms like SJF, RR, 

FCFS, and EADF-PSO comparative experiments indicate 

DAEE-QPSO is improving on a majority of the performance 

measurements provided in every single instance.  

 

The average run time of DAEE-QPSO is always the 

lowest, decreasing constantly with task load, from 87.6 ms to 

388.1 ms, compared to FCFS (676.3 ms) and EADF-PSO 

(432.5 ms). DAEE-QPSO again outperforms RR (20.3 J) and 

FCFS (21.7 J) in average energy usage, needing 12.6 J in 50 

jobs. E-E-QPSO consistently achieves 0.58-0.59 tasks/sec, 

compared to SJF (0.41) and FCFS (0.36). Finally, DAEE-

QPSO saves the most energy at 29.8%, compared to 23.3% 

for EADF-PSO. Optimized energy-delay trade and queue-

aware decision-making allow real-time IoT and smart city 

applications to handle more variable workloads and 

resources dynamically. Future work can provide an 

expansion of the model by incorporating reinforcement 

learning to allow adaptation to the parameters it uses or 

multi-objective optimization to enable even more flexibility 

and efficiency in scheduling. 

 

References   
[1] Peter Mell, and Tim Grance, “The NIST Definition of Cloud Computing,” National Institute of Standards and Technology, pp. 1-7, 

2011. [CrossRef] [Google Scholar] [Publisher Link] 

[2] Dzmitry Kliazovich, Pascal Bouvry, and Samee Ullah Khan, “GreenCloud: A Packet-Level Simulator of Energy-Aware Cloud 

Computing Data Centers,” The Journal of Supercomputing, vol. 62, pp. 1263-1283, 2012. [CrossRef] [Google Scholar] [Publisher Link] 

[3] Mohamed Abd Elaziz et al., “Task Scheduling in Cloud Computing Based on Hybrid Moth Search Algorithm and Differential 

Evolution,” Knowledge-Based Systems, vol. 169, pp. 39-52, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

[4] Sukhpal Singh, and Inderveer Chana, “A Survey on Resource Scheduling in Cloud Computing: Issues and Challenges,” Journal of Grid 

Computing, vol. 14, pp. 217-264, 2016. [CrossRef] [Google Scholar] [Publisher Link] 

[5] AR. Arunarani, D. Manjula, and Vijayan Sugumaran, “Task Scheduling Techniques in Cloud Computing: A Literature Survey,” Future 

Generation Computer Systems, vol. 91, pp. 407-415, 2019. [CrossRef] [Google Scholar] [Publisher Link]  

[6] Mahendra Bhatu Gawali, and Subhash K. Shinde, “Task Scheduling and Resource Allocation in Cloud Computing Using a Heuristic 

Approach,” Journal of Cloud Computing, vol. 7, pp. 1-16, 2018. [CrossRef] [Google Scholar] [Publisher Link]  

[7] Mohit Agarwal, and Gur Mauj Saran Srivastava, “A PSO Algorithm Based Task Scheduling in Cloud Computing,” International 

Journal of Applied Metaheuristic Computing, vol. 10, no. 4, pp. 1-17, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

[8] Pengfei Wang et al., “Joint Task Assignment, Transmission, and Computing Resource Allocation in Multilayer Mobile Edge Computing 

Systems,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 2872-2884, 2019. [CrossRef]  [Google Scholar] [Publisher Link] 

[9] Binh Minh Nguyen et al., “Evolutionary Algorithms to Optimize Task Scheduling Problem for the IoT Based Bag-of-Tasks Application 

in Cloud–Fog Computing Environment,” Applied Sciences, vol. 9, no. 9, pp. 1-20, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

[10] Xudong Niu et al., “Workload Allocation Mechanism for Minimum Service Delay in Edge Computing-Based Power Internet of 

Things,” IEEE Access, vol. 7, pp. 83771-83784, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

[11] Gagandeep Kaur, Balraj Singh, and Muhammad Faheem, “Bioinspired Adaptive Resource Scheduling for QoS in Mobile Edge 

Deployments,” IET Communications, vol. 19, no. 1, pp. 1-14, 2025. [CrossRef] [Google Scholar] [Publisher Link] 

[12] Ming Chen et al., “Genetic Algorithm with Skew Mutation for Heterogeneous Resource-Aware Task Offloading in Edge-Cloud 

Computing,” Heliyon, vol. 10, no. 12, pp. 1-17, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

50 100 150 200 250
0

5

10

15

20

25

30

Number of Tasks

A
v
e
ra

g
e
 E

n
e
rg

y
 S

a
v
in

g
 (

%
)

 

 
FCFS

RR

SJF

EADF-PSO

Proposed DAEE-QPSO

https://doi.org/10.6028/NIST.SP.800-145
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+NIST+definition+of+cloud+computing&btnG=
https://csrc.nist.gov/pubs/sp/800/145/final
https://doi.org/10.1007/s11227-010-0504-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=GreenCloud%3A+a+packet-level+simulator+of+energy-aware+cloud+computing+data+centers&btnG=
https://link.springer.com/article/10.1007/s11227-010-0504-1
https://doi.org/10.1016/j.knosys.2019.01.023
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Task+scheduling+in+cloud+computing+based+on+hybrid+moth+search+algorithm+and+differential+evolution&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0950705119300322
https://doi.org/10.1007/s10723-015-9359-2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Survey+on+Resource+Scheduling+in+Cloud+Computing%3A+Issues+and+Challenges&btnG=
https://link.springer.com/article/10.1007/s10723-015-9359-2
https://doi.org/10.1016/j.future.2018.09.014
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Task+scheduling+techniques+in+cloud+computing%3A+A+literature+survey&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167739X17321519
https://doi.org/10.1186/s13677-018-0105-8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Task+scheduling+and+resource+allocation+in+cloud+computing+using+a+heuristic+approach&btnG=
https://link.springer.com/article/10.1186/s13677-018-0105-8
https://doi.org/10.4018/IJAMC.2019100101
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+PSO+Algorithm+Based+Task+Scheduling+in+Cloud+Computing&btnG=
https://www.igi-global.com/article/a-pso-algorithm-based-task-scheduling-in-cloud-computing/234684
https://doi.org/10.1109/JIOT.2018.2876198
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Joint+Task+Assignment%2C+Transmission%2C+and+Computing+Resource+Allocation+in+Multilayer+Mobile+Edge+Computing+Systems&btnG=
https://ieeexplore.ieee.org/abstract/document/8493145
https://doi.org/10.3390/app9091730
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Evolutionary+Algorithms+to+Optimize+Task+Scheduling+Problem+for+the+IoT+Based+Bag-of-Tasks+Application+in+Cloud%E2%80%93Fog+Computing+Environment&btnG=
https://www.mdpi.com/2076-3417/9/9/1730
https://doi.org/10.1109/ACCESS.2019.2920325
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Workload+Allocation+Mechanism+for+Minimum+Service+Delay+in+Edge+Computing-Based+Power+Internet+of+Things&btnG=
https://ieeexplore.ieee.org/abstract/document/8727524
https://doi.org/10.1049/cmu2.70017
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Bioinspired+Adaptive+Resource+Scheduling+for+QoS+in+Mobile+Edge+Deployments&btnG=
https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/cmu2.70017
https://doi.org/10.1016/j.heliyon.2024.e32399.
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Genetic+algorithm+with+skew+mutation+for+heterogeneous+resource-aware+task+offloading+in+edge-cloud+computing&btnG=
https://www.cell.com/heliyon/fulltext/S2405-8440(24)08430-5


B. Teja Sree et al. / IJECE, 12(8), 199-209, 2025 
 

 

209 

[13] Pijush Kanti Dutta Pramanik, Tarun Biswas, and Prasenjit Choudhury, “Multicriteria-Based Resource-Aware Scheduling in Mobile 

Crowd Computing: A Heuristic Approach,” Journal of Grid Computing, vol. 21, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[14] Qi Zhang et al., “Task Offloading and Resource Scheduling in Hybrid Edge-Cloud Networks,” IEEE Access, vol. 9, pp. 85350-85366, 

2021. [CrossRef] [Google Scholar] [Publisher Link] 

[15] Rajni Aron, and Ajith Abraham, “Resource Scheduling Methods for Cloud Computing Environment: The Role of Meta-Heuristics and 

Artificial Intelligence,” Engineering Applications of Artificial Intelligence, vol. 116, 2022. [CrossRef] [Google Scholar] [Publisher 

Link] 

[16] Yufei Wang et al., “Resource Scheduling in Mobile Edge Computing Using Improved Ant Colony Algorithm for Space Information 

Network,” International Journal of Satellite Communications and Networking, vol. 41, no. 4, pp. 331-356, 2023. [CrossRef] [Google 

Scholar] [Publisher Link] 

[17] Jia Ru, and Jacky Keung, “An Empirical Investigation on the Simulation of Priority and Shortest-Job-First Scheduling for Cloud-Based 

Software Systems,” 2013 22nd Australian Software Engineering Conference, Hawthorne, VIC, Australia, pp. 78-87, 2013. [CrossRef] 

[Google Scholar] [Publisher Link] 

[18] Ashkan Emami Ale Agha, and Somayyeh Jafarali Jassbi, “A New Method to Improve Round Robin Scheduling Algorithm with 

Quantum Time Based on Harmonic-Arithmetic Mean (HARM),” International Journal of Information Technology and Computer 

Science, vol. 5, no. 7, pp. 56-62, 2013. [CrossRef] [Google Scholar] [Publisher Link] 

[19] A.V. Karthick, E. Ramaraj, and R. Ganapathy Subramanian, “An Efficient Multi Queue Job Scheduling for Cloud Computing,” 2014 

World Congress on Computing and Communication Technologies, Trichirappalli, India, pp. 164-166, 2014. [CrossRef] [Google 

Scholar] [Publisher Link] 

[20] Yao Lu et al., “EA-DFPSO: An Intelligent Energy-Efficient Scheduling Algorithm for Mobile Edge Networks,” Digital 

Communications and Networks, vol. 8, no. 3, pp. 237-246, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

 

 

https://doi.org/10.1007/s10723-022-09633-y
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multicriteria-based+Resource-Aware+Scheduling+in+Mobile+Crowd+Computing%3A+A+Heuristic+Approach&btnG=
https://link.springer.com/article/10.1007/s10723-022-09633-y
https://doi.org/10.1109/ACCESS.2021.3088124
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Task+Offloading+and+Resource+Scheduling+in+Hybrid+Edge-Cloud+Networks&btnG=
https://ieeexplore.ieee.org/abstract/document/9452102
https://doi.org/10.1016/j.engappai.2022.105345
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Resource+scheduling+methods+for+cloud+computing+environment%3A+The+role+of+meta-heuristics+and+artificial+intelligence&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0952197622003700
https://www.sciencedirect.com/science/article/abs/pii/S0952197622003700
https://doi.org/10.1002/sat.1467
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Resource+scheduling+in+mobile+edge+computing+using+improved+ant+colony+algorithm+for+space+information+network&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Resource+scheduling+in+mobile+edge+computing+using+improved+ant+colony+algorithm+for+space+information+network&btnG=
https://onlinelibrary.wiley.com/doi/abs/10.1002/sat.1467
https://doi.org/10.1109/ASWEC.2013.19
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Empirical+Investigation+on+the+Simulation+of+Priority+and+Shortest-Job-First+Scheduling+for+Cloud-Based+Software+Systems&btnG=
https://ieeexplore.ieee.org/abstract/document/6601295
https://doi.org/10.5815/ijitcs.2013.07.07
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+New+Method+to+Improve+Round+Robin+Scheduling+Algorithm+with+Quantum+Time+Based+on+Harmonic-Arithmetic+Mean+%28HARM%29&btnG=
https://www.mecs-press.org/ijitcs/ijitcs-v5-n7/v5n7-7.html
https://doi.org/10.1109/WCCCT.2014.8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Efficient+Multi+Queue+Job+Scheduling+for+Cloud+Computing&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Efficient+Multi+Queue+Job+Scheduling+for+Cloud+Computing&btnG=
https://ieeexplore.ieee.org/abstract/document/6755128
https://doi.org/10.1016/j.dcan.2021.09.011
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=EA-DFPSO%3A+An+intelligent+energy-efficient+scheduling+algorithm+for+mobile+edge+networks&btnG=
https://www.sciencedirect.com/science/article/pii/S2352864821000717

