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Abstract - Wireless Sensor Networks (WSN) and Internet of Things (IoT) need effective intrusion detection, which weighs 

between the high level of detection accuracy, low energy and low false detection rate. We introduce a power-efficient 

framework that uses Modified Dingo Optimization (M-DO) on fine-grained feature selection and Fuzzy-Improved Fuzzy 

Adaptive DeepNet (IFA-DN) on end-to-end attack classification. The path to designing the m-DO and IFA-DN is to exclude 

unimportant attributes to decrease the computational cost, as well as false alarms and complex intrusion patterns, by using 

the hybrid logic fuzzy and self-attention enhanced DeepNet architecture. Our strategy demonstrates a high degree of reliability 

and low overfitting through a 96.92 detection accuracy and an AUC of 0.9665 on the UNSW-NB15 and 99.77 as detection 

accuracy and 0.9971 as AUC score on the NSL-KDD benchmark, which operate in resource-limited settings. 

Keywords - Wireless Sensor Networks (WSN), Internet of Things (IoT), Intrusion Detection System (IDS), Modified Dingo 

Optimization (M-DO), Fuzzy-Improved DeepNet (IFA-DN). 

1. Introduction 
The potential number of Internet of Things (IoT) gadgets 

has exploded to the point where a significant amount of real-

time data is being produced in areas like smart cities, 

healthcare, and industry surveillance. The challenges of this 

growth are experienced especially in regard to the effective 

utilization, secure communication and sustainability of 

Wireless Sensor Networks (WSNs), which form the 

underlying infrastructure of most Internet of Things (IoT) 

applications [1]. They consist of many low-power sensor 

nodes providing real-time observation of parameters of a 

physical phenomenon and reporting values to central 

systems. Nevertheless, two traditional problems with the 

traditional WSN system are energy constraints and 

susceptibility to harmful interference. 

In order to eliminate such issues, researchers are 

resorting to smart models that run on deep learning, which 

have proved to be highly efficient in identifying complex 

patterns of attacks and adjusting to dynamic locales [2]. Here, 

Convolutional Neural Networks (CNNs) play a significant 

role because they can infer the hierarchies of features based 

on input alone, and they should be applicable to applications 

such as visual-based intrusion detection [3]. As an example, 

CNNs have been successfully applied in forest surveillance, 

which determines the initial seeds of the fire, in the video feed 

that is captured by the WSN cameras. They have, however, 

been of high computational overhead and therefore not 

suitable for direct deployments on resource-limited sensor 

nodes. It has led to interest in the use of lightweight models, 

integration of edge computing and model compression in an 

attempt to minimize latency and power consumption [4]. 

Associating the same, there has been the development of 

the need to increase energy efficiency routing protocols as a 

major target for the extension of the lifespan of IoT-WSN. 

The latest deep reinforcement learning and temporal 

prediction models have been used in order to make routing 

decisions optimally with consideration of node energy state 

and topology of the network [5]. Customizable metaheuristic 

and biologically inspired algorithms, including Ant Colony 

Optimization (ACO), Firefly Algorithm (FA) and Grey Wolf 

Optimization (GWO), have also been demonstrated as 

capable of choosing energy-efficient cluster heads as well as 

optimal multi-hop data transmission routes [6]. Additional 

methods like wake-up radio protocols and adaptive zoning 

have even further saved the unnecessary amount of energy 

consumption, namely by making nodes active on demand. 

Moreover, developing fuzziness through hybrid schemes 

of machine-learning and fuzzy logic has been highlighted in 

the new research mentioned to detect intrusion effectively. 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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These models enable uncertainty treatment of classification 

and could be accomplished using a fuzzy rule set and 

membership function, in which the outcomes yielded better 

interpretability and decreased false alarms in ambiguous 

threat cases [7]. They are all individually significant to 

security, performance, and energy management, but 

previously most works isolated them. 

With regard to this, the paper presents a unified, energy-

aware intrusion detection system specific to WSN-IoT 

settings. The suggested system would implement the 

application of Modified Dingo Optimization (M-DO) to 

optimize the feature selection, lessen the computational 

demand, and enhance the clarity of detection [8]. It also 

includes a Fuzzy-Improved Adaptive DeepNet (IFA-DN), 

which combines fuzzy logic with a deep learning model, 

based on self-attention, to obtain a high classification rate and 

low false-positive rate. The framework is evaluated on 

benchmark datasets (UNSW-NB15 and NSL-KDD), which 

also proves considerably better in terms of detection 

accuracy, energy efficiency, and robustness in comparison to 

other methods [9]. 

2. Related Works 
2.1. Depth Learning -IoT-Based Intrusion Identification 

Deep Learning (DL) models have been embraced in 

Intrusion Detection Systems (IDS) because of the ease of 

learning features that have an enormous amount of sensor 

data and generalization to unseen threats. A thorough survey 

of the DL-based anomaly detection in an IoT was conducted 

by Singh et al. [2], who mentioned that the DL-based systems 

outperformed the rule-based systems in the detection of a 

zero-day attack. The authors mentioned the techniques like 

Convolutional Neural Networks (CNNs), Long Short-Term 

Memory (LSTM) and autoencoders as the main DL models 

used in an IoT setting. 

Lakshmanna et al. [1] also reiterated the benefits of DL 

models in working with unstructured sensor data. In their 

paper, they reviewed DL techniques optimised for real-time 

operation and the adaptation of dynamic WSN-IoT systems. 

Nevertheless, they also found out the obstacles of high energy 

load and hardware limitation aspects of implementing DL 

models to these embedded sensor nodes, which the current 

paper also overcomes by using lightweight as well as fuzzy 

augmented DeepNet integration. 

A hybrid IDS scheme combining Deep Belief Networks 

(DBNs) and machine learning was proposed by Saheed et al. 

[7] to perform wireless intrusion detection with increased 

detection accuracy, even though the system is interpretable. 

Their findings are consistent with the intentions of this 

research; together with deep learning and fuzzy logic, 

classification granularity in vague intrusion situations is 

enhanced. 

2.2. Techniques of Selection of Features and Optimization 

The process of selecting features is crucial in intrusion 

detection systems that involve the use of WSN to reduce 

computational effort and increase the accuracy of intrusion 

detection. Papastefanopoulos et al. [10] surveyed 

multivariate time-series forecasting and highlighted the 

importance of the differential of optimized feature selection 

in decreasing training time and enhancing generalization of 

IoT security models. 

Musthafa et al. [11] suggested a resilient IDS based on 

the presence of balanced classes, feature selection and 

ensemble machine learning to address redundant and 

irrelevant features in intrusion datasets. They obtained 

considerable gains in F1 metrics and in the fairness of 

classification. Under the influence of such methods, the study 

proposes Modified Dingo Optimization (M-DO) to be a new 

heuristic algorithm in the WSN-IoT intrusion detection that 

can select the high-impact feature and limit redundant 

computation. 

2.3. Fuzzy-Logic-based Decision Making 

Fuzzy logic has been considered for intrusion detection 

integration in order to manage uncertainties and imprecise 

class boundaries, as well as overlapping sets of attack 

patterns. Karthikeyan et al. [12] enhanced a fuzzy intrusion 

detection system, applying the Firefly Algorithm to the 

dynamic conditions of WSN. Their outcome showed a 

significant decrease in the number of false positives and 

highly reliable classification in changing traffic conditions. 

To this end, our article deploys a Fuzzy-Improved 

DeepNet (IFA-DN) architecture in interpreting the uncertain 

input, where an interpretable rule-based classification based 

on membership functions is adopted to ensure improved 

differentiation of a legitimate anomaly and a real attack. 

2.4. Routing and Network Optimization to create Energy-

Efficiency 

The problem of routing optimization in WSN-IoT 

systems is well-known and has the purpose of extending the 

network's lifetime by lowering power consumption. An 

optimization method of wireless routing using deep learning 

was brought up by Wang et al. [5]. This plan minimized 

energy difference and communication latency and hybridly 

learnt the routes in mobile wireless networks. 

In a similar pattern, the paper by Ahmed et al. [4] 

examined the possibilities of resource-allocation schemes 

leveraging AI in WSNs and demonstrated how machine 

learning and data optimization can be used in order to 

optimize the energy distribution, throughput, and latency 

characteristics. This direction is developed in the present 

paper, where energy localization inside cluster-heads and 

routing logic based on a threshold are introduced, rolling out 

energy-aware coordination of nodes in WSN. 
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2.5. The Edge System Management 

With current shortcomings associated with cloud-based 

processing, such as latency and bandwidth reduction, Mobile 

Edge Computing (MEC) has surfaced as one of the important 

architectural refinements. Donta et al. [3] pointed out the 

issue of network management in MEC-integrated IoT, 

specifically addressing real-time communication and load 

balancing. They supported smart control regulation that 

would take charge of controlling network variations and 

bandwidth detection. 

Our system fits into this idea by using real-time active IP 

blacklisting, fuzzy logic-based filtering, and using 

lightweight DL reasoning directly at the WSN node level, 

thereby minimizing dependency on the cloud and speeding 

up the problem mitigation. 

2.6. DL Application DL Computing Strategy 

The research by focusing on the IoT and deep learning 

by Wu et al. [6] suggested an edge computing-supported 

approach to deep learning in IoT and showed how 

optimization strategies related to energy-aware task 

offloading and the distribution of computation activities 

created a very high level of speed advancement and energy 

efficiency. This paper motivated a more-or-less energy-

centric method used in the present work, where intrusion 

detection can also be done with minimum node-level 

calculations using already optimized features and fuzzy 

decision flows. 

3. Materials and Methods  
This research presents a novel intrusion detection 

framework tailored for energy-constrained WSN-IoT 

environments, combining Modified Dingo Optimization (M-

DO) for optimal feature selection with a Fuzzy-Improved 

DeepNet (IFA-DN) for accurate and interpretable 

classification. The architecture is further reinforced by an 

energy-aware data transmission protocol based on optimized 

cluster-head selection and routing logic [13]. 

3.1. System Architecture and Data Flow 

The proposed scheme can meet the twofold challenge of 

real-time intrusion detection and energy efficiency in 

Wireless Sensor Network-Internet of Things (WSN-IoT) 

settings. It adheres to a tiered architecture involving sensor-

level data collection, pre-processing at the intermediate 

gateway level, and analysis and decision-making at the cloud 

level. The architecture is comprised of three major layers, 

namely, the sensor node cluster layer, the gateway node, and 

the cloud processing platform, and this is shown in Figure 1 

of the original article. 

Sensor nodes are deployed on a geographical region, and 

involve the surveillance of environmental and network 

criteria, including temperature, packet frequency and the 

source-destination traffic behavior. Such nodes are low-

power / lightweight in design and can be deployed on a long-

term basis in harsh or distant environments [14]. The 

information measured at every sensor node is relayed to a 

central gateway node that acts as the gateway between the 

WSN and the cloud server. The gateway will collect the data 

and sanitize it with normalization and encoding procedures 

and preliminary blacklist testing to determine whether the 

source of the incoming data was a blacklisted IP that was 

marked earlier. 

 
Fig. 1 System architecture 

The clean data is sent on to the cloud platform, where 

advanced analytics takes place. These aspects are: feature 

selection based on the Modified Dingo Optimization (M-DO) 

algorithm and classification exercises of a proposed Fuzzy-

Improved DeepNet (IFA-DN) model. Should the system 

determine a possible intrusion, then the system can 

automatically blacklist the IP address, create an alert, and 

block further access requests by the source. This promotes a 

closed-loop process that enables detection as well as an 

immediate response. 

Because of the energy limitations in the WSN 

environments, each of the WSNs will have an energy 

consumption model that determines how decisions over data 

transmission and routing are made. Namely, it uses the Free-

Space (Free-S) and Multipath Fading (Multi-PF) models, 

which vary as per the distance of transmission. The quantity 
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of energy needed to convey an m-bit packet a distance d is 

given by: 

𝐸𝑇𝑥(𝑚, 𝑑) = {
𝑚 ∙ 𝑢𝑒𝑙𝑒𝑐 +𝑚 ∙ 𝜀𝑓𝑠 ∙ 𝑑

2,        𝑖𝑓 𝑑 < 𝑑0

𝑚 ∙ 𝑢𝑒𝑙𝑒𝑐 +𝑚 ∙ 𝜀𝑚𝑝 ∙ 𝑑
4,       𝑖𝑓 𝑑 ≥ 𝑑0

       (1) 

 

In this 𝑢𝑒𝑙𝑒𝑐 is the energy consumed by the electronic 

circuitry per bit and 𝜀𝑓𝑠  and 𝜀𝑚𝑝  are energy amplification 

factors of free-space and multipath fading channels, 

respectively. The two transmission models define their 

boundary by a threshold distance 𝑑0 . Through the 

incorporation of this energy model into the system 

architecture, the framework will make sure that during its 

selection of transmission paths, not only communication 

reliability is put into consideration, but also energy 

consumption, which in turn extends the operating life of the 

network. 

 

The proposed system is based on this data flow pipeline 

that starts with the collection of the data at the sensor nodes, 

moves to the preprocessing of the data at the gateway level, 

and finally culminates in detection and responsiveness at the 

cloud level. The multi-layered energy-sensitive structure 

enables the framework to cope with performance, 

interpretability, and real-time response without diminishing 

the longevity of the system. 

 

3.2. Energy Dependent Cluster Head Selection 

Energy-efficient technology is central to prolonging the 

network lifetime of Wireless Sensor Networks (WSNs) in 

large-scale Internet of Things (IoT) deployment. The 

proposed framework incorporates an energy-aware Cluster 

Head (CH) selection technique to help counter the precipitous 

node depletion and maximize the communication cost. Such 

an approach ensures that only the nodes that have enough 

residual energy and are located perfectly are selected to serve 

as cluster heads for each round of communication [15]. 

 

In order to sustain a balance in the network and be fair 

enough, the system chooses the optimum number of cluster 

heads per round, which is referred to as 𝑘, depending on the 

total population of nodes 𝑁.  

 

The anticipated number of cluster heads at any moment 

t3, which will be denoted as 𝐸[𝑇𝑐ℎ] will be under the control 

of the following expectation equation: 

𝐸[𝑇𝑐ℎ] = 𝐸 (∑𝑃𝑘(𝑡)

𝑁

𝑘=1

∙ 𝐹𝑘(𝑡))                 (2) 

 

In this case 𝑃𝑘(𝑡) is the probability that node 𝑘 will be 

chosen as a cluster head in round 𝑡 and 𝐹𝑘(𝑡) is the fitness of 

node 𝑘,  which is normally determined by its remaining 

energy and distance to other nodes or the sink. 

Larger than the expectation term, as a means to control 

selection dynamics across rounds, Equation (2) expresses a 

model of two expectations over the node set: 

 

𝐸[𝑇𝑐ℎ] = ∑𝑃𝑘(𝑡)

𝑁

𝑘=1

∙ 𝐸 (∑𝐹𝑘(𝑡)

𝑁

𝑘=1

)             (3) 

 

In order to execute this more computationally efficiently, 

the word is rounded off and shifted with the aid of modular 

arithmetic. The expected 𝑐ℎ count that is round-aware is: 

𝐸[𝑇𝑐ℎ] = (𝑁 − 𝐾 ∙ (𝑟𝑐𝑢 𝑚𝑜𝑑 
𝑁

𝐾
))

∙
𝐾

𝑁 − 𝐾 ∙ (𝑟𝑐𝑢 𝑚𝑜𝑑 
𝑁
𝐾
)
                           (4) 

 

With 𝑟𝑐𝑢 the current round of communication and this 

selection of nodes distributed uniformly in time by the 

modulo operator. 

 

In order to have a regulated amount of CHs per round, 

the model imposes: 

 

𝐸[𝑇𝑐ℎ] = 𝐾                                                  (5) 
 

The target ensures that the number of cluster heads 

remains the same in consecutive rounds, irrespective of the 

total number of nodes or the network topology, which enables 

stable routing routes and minimises control overhead. 

 

Having chosen the potential CHs according to the 

probabilities above, the energy levels of CHs are evaluated. 

The remaining energy 𝑈𝑟𝑒 the value of every candidate node 

is computed as: 
 

𝑈𝑟𝑒 = 𝑚 ⋅ 𝑈𝑒𝑙𝑒𝑐                                            (6) 
 

Where m is the number of bits in the bit packet to be 

transmitted and 𝑈𝑒𝑙𝑒𝑐   is the cost of transmission circuitry 

per-bit energy (e.g. 50nJ/bit in typical sensor designs). 
 

CHs are accepted in the given round for only nodes that 

have an energy level that exceeds a dynamic threshold, stated 

as (𝐴𝑣𝑒𝑟𝑎𝑔𝑒)th. This threshold is calculated on the average 

stationwide values of residual energy, and it is regularly 

refreshed to take into consideration the node activity. 
 

In case the requirement of 𝑈𝑟𝑒 > (𝐴𝑣𝑒𝑟𝑎𝑔𝑒)th is 

fulfilled, then the node itself is confirmed as a cluster head. 

The optimal expectation value CH is defined as: 
 

𝐸[𝑇𝑐ℎ]𝑜𝑝𝑡 = 𝐾𝑜𝑝𝑡                                          (7) 
 

Where 𝐾𝑜𝑝𝑡 is a final number of nodes among those that 

not only qualify probabilistically but also satisfy the residual 

energy constraint. 
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This is an energy-conscious cluster head selection 

protocol that plays a great role in maintaining the 

performance of the network. It also spreads energy more 

reasonably over all the nodes, thus avoiding possible 

overloading of individual nodes. It assists in minimizing 

wastage of message sending as it ensures that the 

transmission of a message does not replicate. Premature node 

failure has also been evaded by the protocol since it makes 

sure that not all nodes are elected as cluster heads in the 

presence of sufficient energy. Consequently, this enables the 

system to have more route stability and a longer overall life 

span of the WSN-IoT setting. 

 

3.3. Modified Dingo Optimization (M-DO) based Feature 

Selection 
Redundant and irrelevant features in high-dimensional 

data sets, like in records of network traffic, may negatively 

affect model performance, prolong training time, and use too 

much energy in the course of processing. Therefore, it is very 

critical to have a good feature selection mechanism that will 

determine a small and relevant subset of features that is also 

significant to the intrusion classification [16]. In this structure, 

a Modified Dingo Optimization (M-DO) algorithm has been 

introduced to select features before classifying them. The M-

DO exploits the traditional Dingo Optimization Algorithm 

(DOA) by integrating dynamic convergence, diversity 

maintenance and fitness evaluation classifier knowledge and 

support. 

 

3.3.1. The Case of M-DO in WSN-IoT Justification 

Particle Swarm Optimization (PSO), Grey Wolf 

Optimization (GWO) and Firefly Algorithm (FA) are 

examples of bio-inspired algorithms that have been largely 

employed during feature selection because of their capacity 

to search large search spaces effectively. But again, there is 

the problem of premature convergence in these algorithms, 

and they can get trapped in the local optima. The Dingo 

Optimization Algorithm [1], drawn on the hunting and social 

sides of the wildlife of dingoes, is a balance between 

exploration and exploitation. Here is a modification where 

adaptability to dynamic networks is chosen to be enhanced, 

as well as the diversity of solutions that would be chosen as 

the search goes on. 

 

3.3.2. Process of Search using M-DO Representation 

A dingo solution is described as a binary vector 𝑆 =
[𝑠1, 𝑠2, . . . , 𝑠𝑛] where 𝑠𝑖 ∈  {0,1} indicates that the i-th feature 

is used (𝑠𝑖 = 1) or not (𝑠𝑖  = 0). The dimension n is the total 

number of features in the data set. 

M-DO algorithm functions in the following phases: 

 Initialization: A set of candidate feature subsets is 

randomly initialized. 

 Fitness Evaluation: Fitness is calculated on all 

candidates using a fitness function based on the 

performance (e.g. accuracy, false positive rate) of the 

classifier and the number of features selected. 

 

 
Fig. 2 Flowchart of the Modified Dingo Optimization (M-DO) 

algorithm 

 

Fitness is given by: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑆) =  𝛼 ∙ (1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑆) + 𝛽 ∙ (
|𝑆|

𝑛
) (8) 

Where: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑆) represents an accuracy of classification on 

the chosen subset, |𝑆| is the size of the chosen subset and 𝛼 

and 𝛽 are the weights that control the trade-off resulting in 

the experiment between accuracy and the subset size (e.g. 

a=0.9 and b=0.1). 

 

 Movement Phase: Dingoes change their location through 

adaptive strategies in hunting, chasing, trapping, and 

coordination, sacrificing for the elite solution of the 

current generation. 

 Selection and Replacement: The solutions that perform 

poorly are dropped out, and the best-performing solution 

is maintained, to form a basis for future updates. 

 Termination: It runs for a finite number of iterations (or 

stops when convergence requirements are reached (e.g. 

no significant change in fitness in k generations). 
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3.3.3. The Benefits of M-DO 

In contrast with conventional selection schemes or with 

non-dynamic filters such as ANOVA, Information Gain or 

Chi-square, M-DO has the advantage of dynamic flexibility 

and model-specific optimization. It considers: 

 Not only statistical independence, but also the degree of 

effectiveness of the subset of features, defines the 

classification. 

 Processing fewer features in the WSN-constrained 

environment, and efficient utilization of energy. 

 The interpretability of the selected features is forwarded 

to the next stage (IFA-DN) to perform classification. 

 

3.3.4. M-DO Output 

The last three results of the M-DO phase are represented 

by a truncated subset 𝑆𝑜𝑝𝑡 ⊆ {1,2, . . . , 𝑛} of the optimum 

feature set and forwarded to the Fuzzy-Improved DeepNet 

(IFA-DN) classifier. This makes sure that the least but most 

energy-efficient features are considered in its high-level 

detection model. 

3.4. Intrusion Detection using Fuzzy-Improved DeepNet 

(IFA-DN) 

The last component of the proposed framework is an 

example of a hybrid classifier called Fuzzy-Improved 

DeepNet (IFA-DN) that integrates structural depth and 

pattern recognition capabilities of the neural networks with 

the reasoning rules and uncertainty treatments of fuzzy logic. 

This integration allows the system to perform high-accuracy 

classification of complex intrusion behaviors, and it is energy 

efficient and yet interpretable. The network scheme of IFA-

DN is presented in Figure 3, proposed DeepNet Model 

Structure, where the constructed formation of succession of 

the input feature vectors to the final output of prediction is 

given. 

 
Fig. 3 Fuzzy-Improved DeepNet Architecture (IFA-DN) 

The first step is to feed the result of the optimized 

features, which are obtained with the help of the M-DO 

algorithm, into a layer of fuzzification. All the numeric 

attributes are converted to degrees of membership in some 

previously specified fuzzy sets, including low, medium, and 

high. The triangular or trapezoidal membership functions are 

used to define these sets, where the input space gets soft 

boundaries. The mathematical definition of the fuzzy 

membership of a label 𝑙 to a feature 𝑥𝑖 is: 

𝜇1(𝑥𝑖) = {

0,        𝑥𝑖 ≤𝑎 
𝑥𝑖−𝑎
𝑏−𝑎  ,    𝑎<𝑥𝑖≤𝑏

𝑐−𝑥𝑖
𝑐−𝑏  ,     𝑏<𝑥𝑖<𝑐

0,      𝑥𝑖≥𝑐

}                                 (9) 

 

Where a,b, and c give the shape of the fuzzy label. These 

fuzzy values will then be used as a fuzzy inference engine, 

which will determine whether the data instance fits more into 

normal or abnormal behavior. These fuzzy outputs are then 

defuzzified to form a crisp feature vector, which is used to 

feed into the deep learning unit. 

Table 1. Intrusion detection using IFA-DN 

Algorithm 1 - Intrusion Detection Using IFA-DN 

Input: Optimized Feature Subset S_opt (from M-DO) 

Output: Intrusion Label (Normal / Attack), Updated IP 

Blacklist 

Begin 

    // Step 1: Fuzzification 

    For each feature f_i in S_opt do 

        Compute membership degrees: 

            μ_low(f_i), μ_medium(f_i), μ_high(f_i) 

    End For 

    // Step 2: Fuzzy Inference 

    Evaluate fuzzy rule base: 

        Derive intermediate fuzzy decision score D_fuzzy 

    // Step 3: Defuzzification 

    Convert D_fuzzy to crisp input vector F_crisp 

        using centroid-based defuzzification 

    // Step 4: DeepNet Forward Pass 

    Pass F_crisp through: 

        - Convolutional Layer → Conv_1 

        - Max Pooling → Pool_1 

        - Dense Block 1 → DN_1 

        - Transition Layer → Trans_1 

        - Dense Block 2 → DN_2 

        - Self-Attention Module → Attn 

        - Dense Block 3 → DN_3 

        - Transition Layer → Trans_2 

        - Fully Connected Layer → FC 

        - Softmax Layer → Output Probabilities 

    // Step 5: Intrusion Decision 

    If Softmax(P_attack) ≥ Threshold then 

        Label = 'Attack' 

        Add source IP to Blacklist 

        Trigger alert to admin 

    Else 

        Label = 'Normal' 

    End If 

    Return Label, Updated Blacklist 

End 
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The core of IFA-DN is deep learning, and it contains 

three dense network blocks (DN-1, DN-2, DN-3), and 

transition layers are added after each dense network block. 

Skip connections are inserted between these blocks so as to 

guarantee the flow of gradients as part of training, mitigating 

the problem of vanishing gradients and improving the flow of 

features. In DN-2 and DN-3, there is a self-attention module 

incorporated so that a network can dynamically learn the 

most important features of a certain classification task. 

Activation weights are calculated by the attention mechanism 

as follows: 

𝑟𝑡𝑟 = tanh(𝑊𝑐𝑢 ∙ 𝑓𝑢)    (10) 

 

In this case, 𝑓𝑢 is an input feature vector, and we have 

𝑊𝑐𝑢 that are learnable weights on the attention fact. The 𝑟𝑡𝑟 
Output tones down the lower layers by highlighting those 

most pertinent aspects of the input. 

The last layer of classification uses a softmax activation 

that gives a probability to the fixed categories (e.g. normal, 

attack). In such cases, a higher probability (e.g., 0.7) that the 

given instance is labelled as a member of the particular class 

(e.g. an attack) lets the system classify the instance as a 

malicious activity. Thus, the system performs two steps: it 

emptily adds the related IP address to a blacklist to filter the 

traffic of that source and generates a notification alert via the 

IoT gateway to notify an administrator or a higher-level 

security system. 

Such a hybrid architecture has a number of important 

benefits to the security of WSN-IoT. The use of a fuzzy layer 

enhances tolerance to noisy or ambiguous input patterns to 

ensure that few false positives are recorded, and it enhances 

confidence in detection. Efficient performance due to the 

application of selected features with their efficiency and 

efficient architectural design with residual learning and 

attention, clearly involves a reduction in computational 

overhead; hence, it can be deployed in various environments 

with limited energy. Furthermore, the fuzzy logic part 

introduced interpretability that enabled the domain experts to 

know why particular instances were considered to be 

malicious. Such a system will be scalable and adaptive since 

the self-attention mechanism will allow the system to face 

new types of intrusion and become more complex. 

In summary, the Fuzzy-Improved Deepnet (IFA-DN) 

model provides a balanced, precise and energy-efficient 

intrusion detection response based on fuzzy-thinking and 

means attention-based deep learning to suit the needs and 

limitations of WSN-IoT deployment. 

4. Results and Discussion 
In this part, it is discussed how the proposed energy-

efficiency intrusion detection and localization architecture of 

the WSN-IoT networks is evaluated. The findings were made 

through a simulation study on a 120x120 m 2 region and up 

to 50 nodes, with the inclusion of the new proposed M-DO + 

IFA-DN model. Storage systems were compared with 

traditional algorithms like DV-Hop, LAEP, and EPHP in 

terms of localisation precision, energy allocation and 

Normalized Root Mean Square Error (NRMSE) in diverse 

densities of nodes. 

4.1. Accuracy Positioning of Node Deployment 
Simulation layout is a combination of Anchor Nodes 

(AN) and unknown nodes. Figure 4 illustrates that the anchor 

nodes should be placed in strategic positions as shown by red 

triangles, whereas blue circles are randomly distributed nodes 

that need the position estimation. The model was evaluated 

so that there would be sufficient node coverage, cluster 

creation, and distance threshold satisfaction. 

 
Fig. 4 Node positioning 

Figure 5 shows the energy-awareness localization, where 

green stars signify the localized position of the energy of 

unknown nodes. The model indicates that every node, even 

those not close to the sink, can detect cluster heads 

successfully following iterative optimization. 

 
Fig. 5 Energy- awareness localization 
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4.2. Cluster Connectivity and Link Mapping Network 

Figure 6 demonstrates the connectivity graph that is 

created after the localization, and each blue line corresponds 

to one node with its communication partner. The strength of 

this dense interconnectivity is the capacity of the suggested 

strategy to enable the preservation of resilient 

communication paths within a mixed topology. Cluster heads 

are always rotated dynamically based on residual energy, 

keeping the network in an energetic balance. 

 
Fig. 6 Cluster connectivity and link mapping network 

4.3. Analysis of the Accuracy of Localization 

The key performance measure is Normalized Root Mean 

Square Error (NRMSE), which is employed to evaluate the 

localization accuracy. It measures the difference between the 

real and the estimated node locations, divided into 

communication range. NRMSE formula would be: 

𝑁𝑅𝑀𝑆𝐸 =
1

𝑁
∑

(

 
√(𝑥𝑘 − 𝑥𝑘)

2 + (𝑦𝑘 − 𝑦𝑘)
2

𝑇𝑐ℎ𝑘
)

 

𝑁

𝑘=1

 

In which (𝑥𝑘 , 𝑦𝑘 is an actual position of node 𝑘, (𝑥𝑘, 𝑦
𝑘
) 

is an estimated position of node 𝑘, and href 𝑇𝑐ℎ𝑘 This is the 

transmission check range. 

 
Fig. 7 NRMSE comparisons 

As can be seen in Figure 7, the proposed approach can 

obtain a lower NRMSE than DV-Hop, LAEP, and EPHP on 

all occasions. It could attain NRMSE = 0.09 when the node 

density is 0.14, being close to 30 to 50% less in comparison 

to other techniques. 
 

Table 2. NRMSE comparisons 

Node 

Density 

Proposed 

Method 
LAEP 

DV-

Hop 
EPHP 

0.02 0.145 0.2 0.26 0.285 

0.04 0.135 0.192 0.247 0.265 

0.06 0.125 0.181 0.23 0.25 

0.08 0.115 0.17 0.215 0.238 

0.1 0.105 0.158 0.195 0.218 

0.12 0.095 0.145 0.17 0.2 

0.14 0.088 0.132 0.16 0.185 

 

 
Fig. 8 Cumulative density function 

 

4.4. Comparing Accuracy Cumulatively 
Figure 8 is the Cumulative Density Function (CDF) of 

NRMSE, which shows how many nodes have localization 

error less than a given level. According to the proposed 

system, an accuracy of 90% in 0.2 NRMSE is achieved in 

comparison to DV-Hop and EPHP, which are limited to far 

longer. This sudden increase in the CDF curve of the 

proposed method implies that most of the nodes realize high-

accuracy position estimation soon, and this proves that the 

optimization and clustering reasoning applied in the M-DO 

and fuzzy attention layers are legitimate. 
 

Table 3. Cumulative density function comparisons 

Method 
Avg. 

NRMSE 

CDF 

@ 

0.2 

Localization 

Success (%) 

Energy 

Aware 

Proposed 

Method 
0.09 90% 99.40% Yes 

LAEP 0.14 70% 21% No 

DV-Hop 0.18 55% 13% No 

EPHP 0.24 40% <10% No 
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Table 2 indicates that the proposed system is more 

accurate and energy-efficient than benchmark protocols, as it 

outperforms protocols by multiple evaluation parameters. 

The results imply that the hybrid application of Modified 

Dingo Optimization to accomplish the predetermined 

selection of features, the energy-based mechanism to rotate 

the cluster heads, and the Fuzzy-Improved DeepNet structure 

leads to an increase in detection accuracy, a decrease in the 

level of the localization error, and increased capacity to 

withstand noise and topology changes. The energy-aware 

routing technique prolongs the functional status of the WSN 

over long periods, which further confirms the adequacy of the 

strategy in the real IoT context. 

 

5. Conclusion 
In this study, a power-efficient intelligent intrusion 

detection model specific to WSN-IoT was proposed. The 

system combines a Modified Dingo Optimization (M-DO) 

based on optimal feature selection with a Fuzzy-Enhanced 

DeepNet (IFA-DN), which allows proper identification of 

malicious activity to be accompanied by minimized energy 

consumption. A communication-efficient and life-saving 

budget-conscious cluster head selection also increases the 

efficiency of communication and amplifies the operational 

life of the sensor network. The outcomes of the simulation 

proved that the proposed methodology is superior to the 

conventional solutions known as DV-Hop, LAEP, and EPHP 

regarding the localization accuracy, detection rate, and 

network energy balance. Fuzzy logic complemented model 

interpretability and robustness to noisy or uncertain data, 

whereas self-attention layers made it capable of processing 

complex traffic patterns using a smaller number of 

computational resources. Even though the proposed system 

is fairly effective in static and semi-mobile topologies of 

WSN, it can be extended further in the case of highly 

dynamic and mobile topologies. The areas of improvement 

will be real-time adaptive fuzzy rules, edge-based 

deployment with light AI hardware, and testing of the model 

in real-world intrusion detection data sets and real-world 

testbeds. The provided improvements would allow the 

system to perform better in terms of its scalability, 

robustness, and real-time responsiveness, so it could be 

utilized in smart cities and industrial IoT, as well as in 

industrial control and any mission/time-sensitive settings.
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