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Abstract - Depending on the mammoth size of the hyperspectral image, the wavelet transform-based compression algorithm has 

achieved impressive performance in the compression of hyperspectral images. Set partition wavelet transform hyperspectral 

image compression algorithms have superior performance than other transform compression algorithms, such as embeddedness, 

low coding complexity and high coding efficiency. Fractional wavelet-based zero memory set partitioned embedded block (ZM-

SPECK) reduces the demand for transform memory and coding memory with at par transform complexity and high coding 

efficiency. But comparing every coefficient/block/set for each frequency frame with the current threshold is time-consuming. The 

present algorithm deals with the complexity and memory of the transform image coding algorithms. The block-based fractional 

wavelet filter delivers exact transform results like other wavelet transforms, but demands the least transform memory with at 

par wavelet transform complexity. With the employment of the low complexity zero memory set partitioned embedded block (LC-

ZM-SPECK), the coding complexity of the compression algorithm is further reduced. The simulation results show that the 

proposed compression algorithm reduces the overall complexity by ~ 25% to other state-of-the-art compression algorithms and 

reduces the transform memory by ~ 40%, making it a suitable choice for the resource-constrained hyperspectral image sensors. 

Keywords - Hyperspectral image analysis, Coding algorithm, Wavelet transform, Fractional wavelet filter, Wireless sensor 

network.

1. Introduction  
HyperSpectral (HS) imaging is an advanced optical 

sensing technique that captures images in multiple narrow (~ 

10 nm) and contiguous spectral wavelengths (400 nm to 2500 

nm) [1, 2]. This technique gathers hundreds of images at 

densely packed spectral frequency bands (visible to short-

wave infrared of the electromagnetic spectrum) for the same 

spatial location [3]. With its high spatial and spectral 

resolution capacity, an HS image can detect the object's 

chemical and physical properties under observation [4]. Every 

pixel present in the HS image consists of a spectral signature 

similar to a unique fingerprint [5]. This rich data is invaluable 

for multiple applications such as astronomy [6], biomedical 

[7], cultivation [8], defence [9], environmental monitoring 

[10], food quality analysis [11], health care (medical) [12], 

geology [13], remote sensing [14], urban planning [15], 

security [16] etc. Remote Sensing (RS) is fastest growing field 

of HS images in which researchers are involved in the 

development of the algorithm for band selection [17], change 

detection [18], classification [19], compression [20], 

denoising [21], dimensional reduction [22], feature extraction 

[23], and segmentation [24]. Despite the enormous potential it 

possesses, the implementation of HyperSpectral Imaging 

(HSI) technology is met with a number of obstacles [25]. Due 

to its data size (~150 MB), it poses big challenges to the HS 

image sensor performance, communication channel and cost 

[26].  

An efficient compression algorithm is required to 

improve the sensor performance by reducing the coding 

complexity, trimming the sensor power consumption, saving 

the communication channel bandwidth, minimizing the 

browsing time and cutting down the overall processing cost 

[27]. The performance of the compression algorithm is 

measured by the coding efficiency, coding memory and 

coding complexity [28]. The Compression Ratio (CR), Peak 

Signal to Noise Ratio (PSNR) and SSIM (Structural Similarity 

Index) are the main key performance indicators for the coding 

efficiency, while the coding memory is defined as the memory 

required by the compression algorithm during the 

compression process [29]. The coding complexity is measured 

with the aid of the time taken by the compression algorithm to 
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perform the encoding and decoding process (without the time 

required for the wavelet transform and inverse wavelet 

transform process) [30].  

HS image compression algorithms can be split into 

different subgroups on the basis of loss of HS image data 

during transmission or on the basis of the working of the 

encoder of the compression algorithm [31, 32]. The 

compression algorithm is divided into 3 categories, namely 

lossy, lossless and near lossless on the basis of the HS image 

data loss (lost HS image data can not be recovered) [30]. 

While the compression ratio is low for lossless compression, 

for near-lossless loss less, the compression ratio is slightly 

higher. With the loss of some HS image data, lossy 

compression has the highest CR. It has been known that 

human eyes can not detect HS image degradation after 40 dB 

(PSNR) [2]. Compression algorithms are divided into the 

seven different sub group named as predictive coding [33], 

vector quantization [34], transform coding [35], tensor 

decomposition [36], compressive sensing [37], machine 

learning based compression algorithm [38] and hybrid 

compression algorithm [39], based on the process of coding 

(encoding and decoding) of compression algorithm. 

The TC-based compression algorithms exploit the 

correlation (unwanted redundancy) of the HS image through 

the mathematical transform (fourier, wavelet, cosine, curvelet, 

shearlet) and convert the HS image from the time domain to 

the frequency domain [40]. Among all the transforms, the 

performance of the wavelet transform is best as it exhibits a 

simultaneous localization in the time and frequency domains 

[41]. 

The two-fold major contribution to the present 

manuscript is as follows 

 The demand for the transform memory (wavelet) is only 

reduced to a few kilobytes. 

 The complexity (coding) is reduced, saving transmission 

bandwidth and power consumption. 

 

The present manuscript is organized as follows. Section 2 

covers the background of the proposed compression 

algorithm, including the overview of the set-partitioned 

compression algorithms. Section 3 describes the materials and 

methods, including A description. Block-Based Fractional 

Wavelet Filter (BFrWF) and B. 2D-Low Complexity Zero 

Memory Set Partitioned Embedded Block (2D-LC-ZM-

SPECK). Section 4 focuses on the proposed compression 

algorithm, detailing its procedure and analyzing its 

performance. Section 5 presents experimental validation of 

the compression algorithm’s performance on coding 

efficiency, memory, and complexity. Finally, the conclusions 

of the proposed compression algorithm are provided in 

Section 6.  

2. Background 
Compression of any HS image is achieved by removing 

the redundancy present within. There are two types of 

redundancy present in the HS image: spatial and spectral 

redundancy [42]. Spectral redundancy exists due to the 

similarity between the pixels present in the nearby continuous 

frequency frames of HS images, while spatial redundancy is 

present due to the correlation between the nearby pixels. It has 

been known that spectral redundancy has a higher weight than 

spatial redundancy in any HS image [43, 44]. 

The mathematical transform removes redundancy by 

eliminating the correlation present in the HS image [45]. The 

3D dyadic wavelet transform (3D-DWT) is an optimum 

choice to reduce the present correlation in the HS image. Apart 

from this, it has the excellent property of energy clustering in 

time and space. The 3D wavelet transform is implemented as 

1 D wavelet transform in all three dimensions of the HS image, 

one by one [28]. 

Among wavelet transform-based compression 

algorithms, mathematical transform-based set partition 

compression algorithms used the properties of the wavelet 

transform of energy clustering to achieve the compression 

[26]. It uses the set structure to represent the large number of 

insignificant coefficients at the high bit plane. Due to the set 

structure, this large number of insignificant coefficients in the 

set can be represented by a single bit ‘0’. Due to this property, 

these compression algorithms have a greater advantage than 

the other transform-based compression algorithms [30].  

A short comparative analysis between the different 

compression algorithms is covered in Table 1.  

3. Related Work 
The present section will briefly overview the associated 

wavelet transform, “Block Based Fractional Wavelet Filter,” 

applied on the HS image frame by frame.  

3.1. Block-Based Fractional Wavelet Filter 

  There are three types of approaches for calculating 

transform coefficients that minimize the necessity of 

transform memory [46]. Line-based DWT, strip-based DWT, 

and block-based DWT are the three approaches [47-49]. When 

using line-based DWT, lines from the image are read into the 

system buffer until vertical filtering is possible. When applied 

to wide blocks, the DWT based on stripes is analogous to the 

DWT based on lines. Block-based DWT is more applicable to 

the job that we are doing since it first divides the image into 

several different blocks and then transforms each of those 

blocks individually. They are not appropriate for altering 

images utilizing low- Cost sensor nodes or portable devices 

because of the memory and complexity limits those devices 

have. 
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Table 1. A short comparable review of multiple mathematical transform-based HSICAs for compression of HS images 

Set Partition 

Type 
MT-SP-HSICA Year Ref 

List/ 

Listless 

Coding 

Memory 

Embeddedness 

Property  

Zero Block 

Cube 

3D-SPECK 2006 [51] List (2) Variable 

 

Yes 

3D-SPEZBC 2007 [60] List (2) Variable 

3D-LSK 2010 [52] Listless Fixed 

3D-ST-SPECK 2015 [61] List (2) Variable 

3D-ZM-SPECK 2022 [57] Listless Zero 

3D-BCP-ZM-SPECK 2023 [32] Listless Fixed 

3D-M-ZM-SPECK 2023 [28] Listless Zero 

FrWF based 2D-ZMSPECK 2024 [58] Listless Zero 

3D-LBCSPC 2024 [2] Listless Fixed 

BFrWF based 2D-ZMSPECK 2025 [62] Listless Zero 

CT-LSK 2025 [63] Listless Fixed 

SFrWF based 2D-LC-

ZMSPECK 
2025 [64] Listless Fixed 

Zero Tree 

3D-SPIHT 2004 [53] List (3) Variable 

3D-FSPIHT 2012 [65] List (3) Variable 

3D-NLS 2013 [54] Listless Fixed 

3D-SDB-SPIHT 2017 [66] List (3) Variable 

3D-LEZSPC 2023 [40] Listless Fixed 

3D-BPEC 2023 [41] Array (6) Variable 

3D-MELS 2023 [27] Listless Fixed 

3D-LMZC 2024 [30] Listless Fixed 

3D-SLS 2025 [67] List (1) Variable 

Zero Block 

Cube Tree 

3D-WBTC 2019 [55] List (3) Variable 

3D-LMBTC 2019 [56] Listless Fixed 

3D-M-WBTC 2019 [59] List (3) Variable 

3D-LCBTC 2022 [26] List (2) Fixed 

3D-LBCTC 2022 [20] Listless Fixed 

 

The fractional wavelet filter (FrWF) [58] is one of the 

more recent developments that has helped reduce the amount 

of memory needed for the computation of forward DWT [47]. 

Although FrWF requires very little memory for its 

implementation, the amount of memory it needs to store data 

still varies depending on the size of the HS image frequency 

frame, making it unsuitable for transforming HS images on 

platforms with limited memory. Block-based FrWF [49] is a 

modified form of FrWF.  

Compared to FrWF, BFrWF has fewer complexities and 

memory requirements. When using BFrWF, a single 

frequency frame is initially broken up into blocks, and then 

the FrWF algorithm is utilized on each individual block in 

turn. The BFrWF makes use of five buffers: an input buffer I 

for storing one image line from the vertical filter area selected 

from the frequency frame block, four temporary buffers for 

storing and updating the sub-band coefficients created, and an 

output buffer F for outputting the sub-band coefficients. In 

order to illustrate the concept that underpins BFrWF, it starts 

by supposing that a frequency frame of an HS image is divided 

up into a certain number (call it 'b') of blocks. To keep things 

simple, we will look at one level of wavelet decomposition 

here. 

3.2. 2D-Low Complexity Zero Memory Set Partitioned 

Embedded Block (2D-LC-ZM-SPECK) 

The 2D-Low Complexity Zero Memory Set Partitioned 

Embedded block is a low complexity version of 2D-ZM-

SPECK, which uses the magnitude of the largest coefficient in 

each subband through search and stores it while computing the 

transform before the encoding or decoding process [50]. Thus, 

only a small piece of memory is required to store the highest 

coefficient for each sub-band according to the level of 

transformation. For the ‘L’ level of BFrWF transform for one 

frequency frame (spatial dimensions only), ‘N x (3L + 1)’ 

coefficients are required, with the necessity of coding memory 

of ‘8N x (3L + 1)’ bytes of memory. After this listing of the 

highest coefficients, the encoding process starts. When seen 

from a hierarchical perspective, the detailed sub-bands are 

grouped in three distinct orientations, which are the HLn, LHn 

and HHn, n = 1,2,3,…, L. The sub-bands are arranged in 

groups as  𝑆𝜃
𝑛 and 𝐼𝑛  For each frequency frame with each 

threshold (where n is represented as n = L, L-1,…, 3, 2,3,2,1). 

4. Encoding Process  
The proposed compression algorithm effectively exploits 

both spatial and spectral correlations inherent in HS images. 

Spatial correlation is utilized through the BFrWF, while 
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spectral correlation between frames is leveraged by computing 

the difference between consecutive frames. To enhance 

efficiency, the algorithm organizes the spectral bands of the 

HS image into groups, each comprising eight consecutive 

frequency frames of the HS image. This grouping strategy 

facilitates the effective exploitation of inter-frequency frame 

dependencies, contributing to the overall compression 

performance. 

 

The 2D BFrWF is applied to each frame of the HS image. 

Subsequently, the HS image cube is modified by grouping 

eight consecutive frames and processed according to the 

following sub-steps: The first frame is retained as is, while the 

second frame is computed as the difference between the 

second and first frames of the transformed HS image. This 

differential procedure is repeated for the remaining six frames, 

from the third to the eighth frame.  

 

This process is iterated across all frames of the HS image 

to construct the modified HS image cube (MH). Morton 

mapping (linear indexing) is then employed to convert the MH 

into a 1D array, followed by the application of 2D-LC-ZM-

SPECK to each frame of the HS image. The algorithm 

operates frame by frame, processing bit planes iteratively until 

the allocated bit budget is exhausted. 

 

5. Simulation Result 
The proposed compression algorithm performance is 

evaluated using the publicly available hyperspectral dataset 

‘Yellowstone’ (named YSUS 0 HS Image is 'Image I', YSUS 

0 HS Image is 'Image II', YSUS 3 HS Image is 'Image III',  and 

YSUS 11 HS Image is 'Image IV') on the four different 

performance metric name as transform memory, transform 

complexity, Peak to Signal Noise Ratio, SSIM, Coding 

memory, and coding complexity [29, 68, 69].  

 

For the simulation, the HS image under test is cropped to 

‘128 x 128 x 128’. All simulations were carried out on a 

computing device with 20 GB, with the CPS processing speed 

of 1.6 GHz on Windows 11 OS using the MATLAB 

simulation software.  

 

The five-level BFrWF is applied to the spatial dimension 

of the HS image frame by frame. 1D wavelet transform is 

applied to the spectral dimension of the HS image. All 

compression algorithms, apart from FrWF-based 2D-ZM-

SPECK [50], used 3D dyadic wavelet transform. The 

transform HS image coefficients are quantized to the nearest 

integer. The transformed HS image coefficients are arranged 

in a 1D array through linear indexing. This 1D array is 

encoded using the compression algorithms under test 3D-

SPECK (CA 1) [51], 3D-LSK (CA 2) [52], 3D-SPIHT  (CA 

3) [53], 3D-NLS (CA 4) [54], 3D-WBTC (CA 5) [55], 3D-

LMBTC (CA 6) [56], 3D-ZM-SPECK (CA 7) [57] and FrWF 

based 2D-ZM-SPECK  (CA 8) [58]. 

 

5.1. Transform Memory and Complexity  
From Table 2, it is clear that the requirement of transform 

memory is minimum for the BFrWF. It has been known that 

BFrWF requires only one input buffer for storing the part of 

the frequency frame and four other buffers to calculate the four 

final sub-bands [62]. Let the size of the HS image frequency 

frame be ‘N’ by ‘N’, and ‘b’ is the number of blocks of the HS 

image frequency frames. The dimension of the input buffer is 

1 ×  
𝑁

𝑏/2
  while the rest of the buffer dimension is 1 ×  

𝑁

𝑏
 .  

 

It is clear from Table 3 that the requirement of the 

transform memory is minimum for the BFrWF, while for the 

other transforms. The 3D-DWT and 2D-DWT have very high 

transform memory requirements as they need to save the 

whole HS image (for 3D-DWT) or save the whole frequency 

frame (for 2D-DWT) [64, 70].  

 

The fractional wavelet filter significantly reduces the 

need for transform memory, and further, it is reduced by the 

use of BFrWF to make the transform memory in line with the 

coding memory, which is near zero [58, 71]. 

 
The transform complexity is calculated by the time taken 

by the wavelet filter to calculate the transform coefficients. It 

has been clear from Table 3 that BFrWF has lower transform 

complexity than FrWF, but it has higher complexity than 2D-

DWT and its 3D version. With the increase in size of the HS 

image, the complexity of the BFrWF decreases to the 2D-

DWT.  

 

The transform complexity of 3D-DWT is lower than that 

of the other 2D wavelet transform because 2D-DWT is applied 

to the 3D HS image one one frequency frame at a time. The 

complexity of BFrWF is lower due to the calculation of the 

coefficients in a different way.  

 

5.2. Coding Efficiency 

We evaluate our compression algorithm with the other 

state-of-the-art compression algorithm by calculating the 

average RD performance (PSNR and SSIM) on the different 

HS images [72, 73]. It is a quality measurement between the 

original and the compressed image.  

The PSNR is widely used to measure the distortion effect 

after compression [2]. As a quantitative measure of the 

subjective quality, the SSIM demonstrates the quality of 

detailed information, such as the textures and edges of the 

reconstructed HS image [29, 74] 
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Table 2. Comparative Analysis between the different types of art  wavelet transform with Block-Based Fractional Wavelet Transform on wavelet 

transform memory requirement 

Dimension of HS Image Cube 

Type of wavelet 

Transform 

128 256 512 

3D-DWT 38.34 MB 306.72 MB 2453.76 MB 

2D-DWT 174.592 KB 698.368 KB 2793.472 KB 

FrWF 3.123 KB 6.246 KB 12.493 KB 

Block-Based Fractional Wavelet Transform 1.5615 KB 3.123 KB 6.246 KB 

 
Table 3. Average time requirement (for calculation of the transform complexity) of the different wavelet transforms for different HS image sizes 

Dimension of HS Image Cube 

Type of wavelet 

Transform 

256 512 

3D-DWT 2.96 sec 18.47 sec 

2D-DWT 5.65 sec 44.54 sec 

FrWF 7.59 sec 47.24 sec 

Block-Based Fractional Wavelet Transform (4) 6.01 sec 37.06 sec 
 

Table 4. Structural Similarity (SSIM) index between different HSICAs at fifteen different bit rates for YSUS 0 
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 Image I 

0.00625 0.39 0.38 0.38 0.38 0.39 0.38 0.37 0.41 0.4 

0.0125 0.44 0.43 0.43 0.43 0.47 0.43 0.43 0.44 0.44 

0.025 0.56 0.55 0.55 0.53 0.57 0.53 0.53 0.61 0.61 

0.0375 0.62 0.62 0.61 0.61 0.62 0.61 0.62 0.67 0.66 

0.05 0.66 0.65 0.65 0.65 0.66 0.65 0.65 0.71 0.7 

0.1 0.75 0.75 0.75 0.74 0.75 0.74 0.75 0.8 0.79 

0.2 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.87 0.86 

0.3 0.87 0.88 0.87 0.87 0.87 0.87 0.87 0.9 0.89 

0.4 0.91 0.9 0.9 0.9 0.9 0.9 0.89 0.92 0.92 

0.5 0.93 0.93 0.92 0.92 0.93 0.92 0.92 0.94 0.94 

0.6 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.96 0.96 

0.7 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.97 0.94 

0.8 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.98 0.98 

0.9 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.98 0.98 

1 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.98 

𝑃𝑆𝑁𝑅 = 20 log10 [
𝑀𝑎𝑥 {𝐴(𝑥, 𝑦, 𝑧)}

𝑀𝑆𝐸
] 

 

𝑀𝑆𝐸 =  
1

(𝑁 × 𝑁 × 𝑁)
 ∑ ∑ ∑[𝐴(𝑥, 𝑦, 𝑧) − 𝐵(𝑥, 𝑦, 𝑧)]2

𝑁

𝑧=1

𝑁

𝑦=1

𝑁

𝑥=1

 

 

SSIM (A, B) =  
(2μAμB + C1)(2σAB +  C2)

(μA
2 + μB

2 +  C1 )(σA
2 + σB

2 + C2)
 

 

 

The mean and variance of the original HS image A(x,y,z) 

are defined as μA and 𝜎𝐴
2 while for the reconstructed HS image, 

it is defined as μB and 𝜎𝐵
2. The covariance between these two 

HS images 𝜎𝑥𝑦 and associated constant is defined as C1 and 

C2 [74]. 

 

From Table 4, it is clear that the SSIM of the proposed 

compression algorithm has higher numeric values than all 

other compression algorithms except for the FrWF-based 2D-

ZM-SPECK [58]. The SSIM values of these two compression 

algorithms are nearly the same [73]. 
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Table 5 (Appendix) shows that the proposed compression 

algorithm outperforms the other compression algorithms 

except for FrWF-based 2D-ZM-SPECK [58], which has 

nearly the same RD performance. It is due to the large number 

of insignificant coefficients that are identified and defined in 

the single bit at early bit plane passes. 

5.3. Coding Memory 

Coding memory is required by the HS image compression 

algorithm to keep the tracking record of 

significant/insignificant coefficients for the bit plane [63]. The 

proposed compression algorithm only required a fixed amount 

of memory, which is necessary to save the maximum 

magnitude of the set in the transform image [28]. The same 

memory data is shared at the decoder end. This is a very small 

quantity of memory [75]. Table 6 (Appendix) shows that only 

two compression algorithms have slightly lower coding 

memory requisition than the other compression algorithms. 

5.4. Coding Complexity 

The proposed compression algorithm reduces the coding 

complexity by storing the maximum magnitude of each set of 

transform HS image in a fixed memory. FrWF-based ZM-

SPECK [40, 41] check the magnitude of each coefficient for 

every threshold, making it slow with increased complexity. 

Increasing complexity also increases the demand for power 

and processing time. The proposed compression algorithm, a 

modified version of ZM-SPECK, uses the same process but in 

a different fashion. Tables 7 and 8 (Appendix) show the 

encoding time and decoding time. The encoding time is the 

total time needed to encode the coefficients till the bit budget 

is available. The decoding time is the total time needed for 

decoding the bit stream received from the encoder end [2]. It 

has been known that decoding time is always less than the 

encoding time, as the decoder does not need to check the 

threshold each bit plane for every coefficient or set [27].  

 

6. Conclusion  

This study presents a low-memory, low-complexity lossy 

hyperspectral image compression algorithm designed for 

resource-constrained HS image sensors. The proposed 

compression algorithm minimizes multiple memory accesses, 

thereby enhancing its computational speed. By leveraging the 

inherent correlation within HS images, the algorithm achieves 

high coding efficiency. The Block-based Fractional Wavelet 

Transform reduces transform memory requirements, while the 

2D-LC-ZM-SPECK [50] eliminates coding memory to reduce 

coding complexity, resulting in a faster compression process 

compared to other transform-based compression algorithms. 

Although the proposed compression algorithm operates in a 

listless manner, it requires slightly more computational time 

than existing listless compression algorithms. This is 

attributed to its frame-by-frame search for significant 

coefficients, which introduces a marginal increase in 

algorithmic complexity. 
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Appendix 
Table 5. Numeric values of PSNR for the proposed compression algorithm with the eight other algorithms on four different HS image datasets 
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0.00625 26.4 26.9 26.3 26.3 26.4 26.9 26.9 30.2 30.1 26.5 26.2 26.2 26.5 26.5 26.1 26.1 28.9 28.8 

0.0125 27.6 27.5 27.4 27.4 27.6 27.5 27.5 31.5 31.4 27.6 27.5 27.5 27.4 27.5 27.5 27.5 29.6 29.6 
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0.025 32.9 32.9 32.7 32.6 32.9 32.9 33 34.1 34 33 33 32.9 32.7 33 32.9 33 34.4 34.3 

0.0375 34.0 33.8 33.8 33.8 34 33.8 33.8 36.7 36.6 34.1 33.9 33.9 33.8 34.1 33.8 33.8 35.8 35.7 

0.05 34.9 34.7 34.6 34.4 34.8 34.6 34.7 37.9 37.9 34.9 34.4 34.6 34.5 34.8 34.4 34.4 36.7 36.7 

0.1 37.2 37.1 37 37 37.2 36.9 36.9 41 41 36.9 36.6 36.7 36.7 36.9 36.5 36.6 39.1 39 

0.2 40.4 40.1 40.2 40.1 40.4 40.1 40.1 44.2 44.1 38.9 38.8 38.8 38.8 38.9 38.8 38.8 42.2 42.1 

0.3 42.9 42.8 42.7 42.4 42.9 42.4 42.5 46.9 46.8 40.5 40.1 40.4 40.2 40.5 40 40 44 44 

0.4 45 44.6 44.7 44.6 45 44.5 44.5 49.2 49.2 41.9 41.7 41.8 41.5 41.9 41.3 41.4 46 45.9 
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0.5 47 46.7 46.8 46.3 47 46.1 46.2 51.5 51.5 43.2 43.1 43.1 43 43.2 43 43.0 47.7 47.7 

0.6 48.9 48.9 48.5 48.5 48.9 48.9 48.9 53.7 53.6 44.5 43.9 44.3 44.3 44.4 43.8 43.8 48.6 48.6 

0.7 50.7 50.2 50.3 50.2 50.7 50 50 54.8 54.8 45.6 45.1 45.4 45.1 45.7 44.8 44.8 50.1 50.1 

0.8 52.1 52.2 51.8 51.7 52 51.4 51.4 56.4 56.3 46.7 46.7 46.6 46.5 46.7 46.1 46.1 51.5 51.5 

0.9 53.8 53.8 53.4 53.4 53.8 53.8 53.8 58.5 58.5 47.8 47.8 47.7 47.7 47.8 47.8 47.8 52.1 52.1 

1 55.4 55.1 55.0 54.9 55.3 54.9 54.9 59.9 59.8 48.8 48.5 48.6 48.5 48.8 48.3 48.3 53.1 53.1 

 
Table 6. Coding memory requirement of nine compression algorithms for four different HS image datasets 
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 Image I Image II 

0.00625 18 512 15 1024 8 12 0 0 0.018 19 512 15 1024 11 12 0 0 0.018 

0.0125 31 512 36 1024 23 12 0 0 0.018 33 512 37 1024 34 12 0 0 0.018 

0.025 62 512 71 1024 53 12 0 0 0.018 65 512 71 1024 64 12 0 0 0.018 

0.0375 109 512 111 1024 100 12 0 0 0.018 112 512 116 1024 101 12 0 0 0.018 

0.05 109 512 117 1024 108 12 0 0 0.018 163 512 123 1024 113 12 0 0 0.018 

0.1 237 512 249 1024 208 12 0 0 0.018 276 512 289 1024 282 12 0 0 0.018 

0.2 494 512 513 1024 489 12 0 0 0.018 448 512 489 1024 446 12 0 0 0.018 

0.3 597 512 615 1024 578 12 0 0 0.018 822 512 833 1024 826 12 0 0 0.018 

0.4 843 512 896 1024 844 12 0 0 0.018 920 512 881 1024 891 12 0 0 0.018 

0.5 1224 512 1222 1024 1184 12 0 0 0.018 1038 512 1055 1024 1037 12 0 0 0.018 

0.6 1329 512 1354 1024 1230 12 0 0 0.018 1352 512 1389 1024 1355 12 0 0 0.018 
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0.7 1456 512 1461 1024 1356 12 0 0 0.018 1634 512 1561 1024 1592 12 0 0 0.018 

0.8 1653 512 1680 1024 1554 12 0 0 0.018 1681 512 1652 1024 1634 12 0 0 0.018 

0.9 1892 512 1906 1024 1876 12 0 0 0.018 1741 512 1710 1024 1712 12 0 0 0.018 

1 2010 512 2072 1024 2022 12 0 0 0.018 1825 512 1813 1024 1824 12 0 0 0.018 

 Image III Image IV 

0.00625 16 512 17 1024 8 12 0 0 0.018 15 512 16 1024 11 12 0 0 0.018 

0.0125 26 512 28 1024 20 12 0 0 0.018 26 512 29 1024 27 12 0 0 0.018 

0.025 71 512 73 1024 63 12 0 0 0.018 69 512 74 1024 71 12 0 0 0.018 

0.0375 78 512 81 1024 72 12 0 0 0.018 79 512 87 1024 80 12 0 0 0.018 

0.05 117 512 124 1024 109 12 0 0 0.018 112 512 121 1024 112 12 0 0 0.018 

0.1 205 512 204 1024 186 12 0 0 0.018 196 512 198 1024 196 12 0 0 0.018 

0.2 397 512 414 1024 378 12 0 0 0.018 467 512 486 1024 469 12 0 0 0.018 

0.3 678 512 682 1024 621 12 0 0 0.018 634 512 669 1024 633 12 0 0 0.018 

0.4 726 512 753 1024 708 12 0 0 0.018 993 512 1013 1024 998 12 0 0 0.018 

0.5 947 512 947 1024 894 12 0 0 0.018 1074 512 1102 1024 1076 12 0 0 0.018 

0.6 1119 512 1155 1024 1091 12 0 0 0.018 1112 512 1102 1024 1112 12 0 0 0.018 

0.7 1234 512 1243 1024 1121 12 0 0 0.018 1409 512 1431 1024 1407 12 0 0 0.018 

0.8 1343 512 1324 1024 1282 12 0 0 0.018 1564 512 1560 1024 1547 12 0 0 0.018 

0.9 1439 512 1473 1024 1400 12 0 0 0.018 1689 512 1678 1024 1640 12 0 0 0.018 

1 1498 512 1517 1024 1440 12 0 0 0.018 1789 512 1821 1024 1790 12 0 0 0.018 
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Table  7. Encoding time (sec) requirement for the complexity analysis of nine different compression algorithms for four different datasets 
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 Image I Image II 

0.00625 1.1 0.2 1.3 0.3 1.1 0.3 0.6 0.6 0.5 1.8 0.2 0.6 0.4 0.8 0.9 0.4 0.6 0.5 

0.0125 1.4 0.4 1.1 0.6 1.3 1.2 0.7 0.7 0.6 2.5 0.3 1.1 0.5 1.4 1.2 0.7 0.9 0.8 

0.025 2.8 0.5 1.5 0.7 1.7 1.5 0.9 0.8 0.7 5.1 0.4 1.6 0.6 1.7 1.5 0.9 1.1 1 

0.0375 4.3 0.6 2.2 0.8 2.2 1.7 1 1.1 0.9 5.6 0.5 2.2 0.7 2.1 1.7 1.1 1.3 1.1 

0.05 7.3 0.7 3.4 0.9 3.5 2 1.2 1.3 1 8.5 0.6 3.3 0.8 3.5 2.1 1.2 1.4 1.2 

0.1 18.5 0.9 6.7 1 6.2 3.1 1.8 2.1 1.6 18.8 0.7 8.1 0.9 5.9 3.2 1.7 2.2 1.8 

0.2 89.7 1.1 31 1.4 17.6 4.9 2.8 3.7 2.4 83.5 1.1 28.9 1.3 23.6 5.3 3.7 3.7 3.6 

0.3 195 1.5 67 1.8 60.7 7.1 3.9 5.4 4.1 110 1.3 50.3 1.7 32.5 6.6 3.9 5.3 4.2 

0.4 249 1.8 96 2.1 118 8.6 4.9 7 5.3 326 1.7 181 2.0 199 9.2 5.3 7.2 5.5 

0.5 340 2.1 118 2.4 173 10 5.8 8.4 7.2 472 2 241 2.3 294 11.5 7.2 10.8 8.9 

0.6 692 2.6 257 2.9 376 13 7.1 9.9 7.9 588 2.2 264 2.5 363 11.3 8.4 11.4 9.5 

0.7 961 2.8 463 3.2 657 14.2 8.1 11.6 8.9 678 2.5 281 2.7 398 12.5 7.8 12.6 10.6 

0.8 1167 3.0 491 3.5 759 15.8 9.2 13.4 11.2 1151 2.9 531 3.2 772 15.8 10 15.2 12.2 

0.9 1304 3.3 513 4.1 855 16.8 9.9 15.3 12.9 1745 3.1 883 3.4 1223 17.1 12 17.6 14.8 

1 1441 3.8 560 4.9 878 17.4 10.9 20.6 16.6 2558 3.3 1034 3.9 1517 18.3 13.7 18.5 15.8 

 Image III Image IV 

0.00625 0.9 0.2 1.0 0.4 0.5 0.4 0.4 0.9 0.7 1.0 0.2 0.7 0.3 0.6 0.9 0.5 0.5 0.4 

0.0125 1.6 0.3 1.1 0.6 1.3 1.1 0.8 1.7 0.9 1.6 0.3 1.0 0.4 2.3 1.8 0.9 0.6 0.5 

0.025 2.9 0.4 1.6 0.7 1.8 1.4 0.9 2.1 1.2 3.0 0.4 1.5 0.5 3.1 1.7 0.9 0.8 0.6 

0.0375 5.0 0.5 2.2 0.8 2.4 1.7 1.3 2.2 1.6 5.5 0.5 2.1 0.6 6.0 2.1 1.2 1.1 1 

0.05 6.7 0.6 4.3 0.9 2.7 2.1 1.4 2.4 1.9 7.4 0.6 2.9 0.7 15.4 2.5 1.3 1.3 1.1 

0.1 18.2 0.8 9.9 1.4 7.1 3.2 1.9 3.3 2.2 19.7 0.7 7.8 0.9 17.8 3.6 2.1 2.1 1.9 

0.2 57.3 1.2 24.3 1.9 25.0 5.5 3 5.1 3.7 81.4 1.1 21.3 1.3 29.1 6.7 3.2 4.4 4.1 

0.3 97.1 1.4 39.9 2.1 47.9 6.7 3.9 6.8 4.6 142 1.4 67.0 1.7 70.6 7.7 4.1 6.7 5.3 
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0.4 206 1.8 104 2.4 122 9.3 5.1 8.4 6.8 227 1.8 77.7 2.0 99.8 9.3 4.9 7.8 6.6 

0.5 303 2.2 131 2.9 177 10.5 6.1 10.1 7.5 509 2.1 227 2.4 280 12.2 7.2 9.3 8.1 

0.6 349 2.5 141 3.2 190 11.5 7.2 11.8 10.1 755 2.3 405 2.8 495 14.2 7.6 11.1 9.4 

0.7 706 2.7 338 3.5 528 14.3 8.6 13.5 11.5 981 2.5 424 3.0 578 14.5 8.5 12.2 10.6 

0.8 835 3.0 408 3.8 601 15.7 9.5 15.2 12.8 1018 2.8 449 3.2 646 14.7 9.1 16.5 11.3 

0.9 981 3.5 414 4.5 633 16.8 10.7 16.9 14.1 1329 3.3 447 3.5 738 17.9 10.2 18.2 14.9 

1 1373 3.8 632 5.1 977 19.9 11.9 18.3 16.3 2073 3.6 873 4.1 1291 19.9 11.4 24.3 16.3 

 
Table 8.  Decoding time (sec) requirement for the complexity analysis of nine different compression algorithms for four different datasets 
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 Image I Image II 

0.00625 0.7 0.1 0.9 0.2 0.7 0.3 0.36 0.46 0.33 0.8 0.1 0.3 0.3 0.2 0.5 0.3 0.4 0.4 

0.0125 0.7 0.3 0.3 0.4 0.4 0.5 0.7 0.5 0.4 1.9 0.2 0.3 0.4 0.4 0.6 0.6 0.6 0.6 

0.025 1.5 0.4 0.7 0.8 0.7 0.7 0.8 0.7 0.6 2.3 0.3 0.7 0.5 0.7 0.7 0.8 0.8 0.7 

0.0375 2.8 0.4 1.2 0.6 0.9 0.8 1 1 0.8 2.8 0.4 1.2 0.6 0.9 0.8 1 1 0.9 

0.05 5.1 0.5 2.2 0.6 2.3 1 1.1 1.3 0.9 5.9 0.5 2.2 0.7 2.3 1 1.2 1.1 1 

0.1 12.9 0.7 5.3 0.8 4.6 1.8 1.5 1.8 1.5 12.8 0.6 6.5 0.8 4.4 1.8 1.6 1.9 1.7 

0.2 61.4 1.0 23.9 1.2 15.4 3.4 2.7 3.2 2.6 62.2 1 25.8 1.1 21.6 3.3 2.8 3.2 3.1 

0.3 136 1.1 52.4 1.6 57.9 4.7 3.5 5 3.3 80.0 1.2 47.3 1.5 29.2 4.9 4 5.1 3.9 

0.4 204 1.7 87.9 1.9 108 6.2 4.3 6.5 4.9 307 1.4 172 1.9 175 6.7 5.5 7 5.9 

0.5 306 1.9 98.9 2.2 148 7.8 5.2 8 6.6 441 1.7 219 2.1 262 7.6 7.8 9.6 7.5 

0.6 600 2.2 217 2.5 341 9.2 6.7 9.3 7.1 555 1.9 230 2.2 319 9.0 6.6 10.1 8.1 

0.7 906 2.4 456 2.7 618 10.4 7.7 11.1 8.2 609 2.2 246 2.5 359 10.5 7.5 12 9.6 

0.8 1005 2.5 486 3 727 13.8 8.5 12.5 10.4 1080 2.5 496 2.8 717 11.8 9.2 14.3 11.4 

0.9 1249 3.1 501 3.3 830 13.3 9.4 14.5 12.5 1692 2.9 818 3.1 1130 13.3 10 16.5 12.9 

1 1389 3.6 512 4 832 14.5 10.6 19 15.1 2179 3.4 930 3.4 1384 14.7 11.5 17.2 14.8 

 Image III Image IV 

0.00625 0.8 0.5 0.7 0.3 0.2 0.3 0.3 0.5 0.4 0.66 0.2 0.2 0.2 0.2 0.5 0.4 0.4 0.3 
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0.0125 0.9 0.3 0.8 0.5 0.4 0.5 0.6 0.7 0.7 0.93 0.3 0.3 0.4 0.8 0.6 0.7 0.5 0.4 

0.025 1.6 0.4 1.2 0.6 0.6 0.7 0.8 0.9 0.8 1.63 0.4 0.6 0.4 0.9 0.8 0.8 0.7 0.6 

0.0375 3.5 0.4 1.5 0.7 1.2 0.9 1.1 1.1 1 3.74 0.4 1.2 0.5 3.3 1.2 1.1 0.9 0.8 

0.05 4.6 0.5 2.7 0.8 1.6 1.1 1.2 1.4 1.2 4.9 0.5 1.9 0.6 4.1 1.7 1.2 1.1 1 

0.1 14.5 0.7 6.6 1.1 9.5 1.9 1.5 2.3 1.9 15.8 0.7 6.5 0.8 11.5 2.3 1.9 1.9 1.5 

0.2 49.4 1 22.3 1.5 17.6 3.5 2.6 4.1 3.2 61.1 1.0 16.2 1.1 20.9 3.9 2.8 4.1 3.5 

0.3 81.9 1.4 31.6 1.8 40.1 5.1 3.5 5.8 4.2 118 1.3 56.1 1.6 54.1 5.7 3.9 5.5 4.6 

0.4 190 1.7 90.4 2.2 110 6.7 4.8 7.6 6.5 195 1.7 70.2 1.9 89.4 7.3 4.8 6.5 5.9 

0.5 284 2.0 118 2.5 156 8.1 5.9 9.4 6.9 400 2.0 216 2.2 250 9.1 6.1 8 6.7 

0.6 321 2.4 128 2.9 176 9.4 6.9 11.1 8.6 847 2.2 394 2.5 471 11.3 7.3 10.2 8.9 

0.7 684 2.5 309 3.2 577 11.0 8.3 13 10.2 840 2.3 419 2.9 575 12.6 8.2 11.8 9.8 

0.8 822 2.8 373 3.4 553 12.5 9.3 14.7 11.3 1059 2.6 436 3.1 621 13.4 8.7 15.6 10.6 

0.9 860 3.2 400 3.8 589 13.9 10.3 16.2 14.1 1186 2.9 440 3.3 706 14.2 9.5 17.8 12.3 

1 1258 3.4 589 4 849 15.6 11.5 18.1 15.7 1901 3.4 867 3.9 1260 17.4 10.6 20.9 14.6 

  
Table 9. Requirement of coding memory for different transform-based compression algorithms at three HS image sizes (in KB) 

3D-

LSK 

3D- 

NLS 

3D- 

LMBTC 

3D-

ZM- 

SPECK 

3D-BP-ZM-

SPECK 

3D-M-

ZM- 

SPECK 

3D-

LCBTC 

3D-

LEZ 

SPC 

3D-

MELS 

3D-

LMZC 

FrWF based ZM-

SPECK 

Proposed 

Compression 

Algorithm 
[52] [54] [56] [57] [32] [28] [26] [40] [27] [30] [58] 

512 1024 12 0 0 0 300.5 - 128 - 0 18.25 

4096 8192 96 0 0 0 2318 2304 1024 2176 0 146 

32768 65568 768 0 0 0 18544 - 8192 17408 0 1168 
 

 

 

 

 

 

 


