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Abstract - Molecular Communication has emerged as a prominent area of research, particularly for drug-based medical 

therapies. Nanomachines are utilized to inject drugs (such as anti-inflammatory molecules) into the human body, targeting 

infected cells through communication technologies. Nevertheless, creating an effective Targeted Drug Delivery (TDD) system 

that minimizes drug wastage remains a significant challenge. Previous research has tackled various issues, including improper 

drug delivery and low success rates. These challenges have inspired us to set the goal of accurately delivering drugs to the 

intended location using molecular Communication in TDD. Furthermore, we propose an AI-enhanced TDD system aimed at 

achieving improved therapeutic outcomes for a range of conditions, including cancer and heart disease. This research also 

addresses the problems of high side effects, improper path selection, and inefficient drug delivery. The main objective of this 

research is to design an advanced targeted drug delivery using molecular Communication. So, we employ Artificial Intelligence 

(AI) technology for Targeted Drug Delivery with an adaptive Drug Release Rate optimization method (AI-TDD) to overcome 

the existing issues. We execute a Double Deep Q Network (DDQN)- based adaptive Drug Release method to minimize drug 

wastage. This method uses biomarker concentrations and timely signal provisioning from external devices and entities. This 

work’s simulation is performed using Python-based simulations with fine-tuned system and simulation configurations. Our 

work’s performance assessment is carried out using four major metrics: Delivery Error Analysis, RMSE Analysis, Drug 

Release Rate Analysis, and Drug Reception Rate Analysis, which shows that our proposed AI-TDD model outperforms the 

existing model. 

 

Keywords - Molecular Communication, Targeted Drug Delivery, Adaptive Drug Release Rate, Artificial Intelligence, 

Nanomachines.

1. Introduction  

Molecular Communication is a biometric system that 

uses an aqueous environment to communicate with bio-

machines [1]. Molecular Communication is an emerging field 

that explores the exchange of information using chemical 

molecules, mimicking natural biological communication 

processes to enable Communication between nano-scale 

entities in environments where traditional electromagnetic 

Communication is impractical. Molecular Communication 

serves as a biometric system that allows bio-nanomachines to 

communicate through an aqueous medium [2]. Recent 

advancements in Molecular Communication (MC) discuss 

biological, chemical, and physical processes, modulation 

techniques, and communication engineering aspects, while 

highlighting the need for interdisciplinary work and future 

research directions in engineering reliable MC systems [3]. 

Molecular Communication is a platform for transmitting text 

messages using chemical signals, demonstrating the 

feasibility of molecular Communication at macroscales. It 

emphasizes simplicity, cost-effectiveness, and motivates 

future research on realistic modeling and analysis of these 

systems [4]. Molecular communications applications in 

medicine, focusing on disease detection, treatment, immune 

System triggering, tissue engineering, and nanosurgery, 

targeted drug delivery while addressing challenges and future 

perspectives for implementing these advanced, minimally 

invasive, and biocompatible healthcare solutions [5]. 

Molecular Communication (MC) and Molecular Networks 

(MN) for Targeted Drug Delivery (TDD), discussing their 

potential to enhance drug localization, address challenges in 

clinical translation, and provide a framework for evaluating 

MC-based TDD systems and their implementation [6]. By 

delivering the medication to a specific location, the TDD 

lessens the likelihood of the medicine spreading throughout 

the body and avoids adverse consequences. The medications 

are contained in the nanomachines to lessen the harm to 

healthy cells [7]. The conventional medication system can 

spread the drug all over the body and harm healthy cells, 

which is the main cause of ineffective drug delivery. 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Therefore, in order to build a smart medication delivery 

system that addresses the problems with conventional 

treatment approaches, the molecular communication system 

requires Artificial Intelligence (AI). The 

pharmacokinetic/pharmacodynamic models are enhanced by 

this kind of intelligent therapeutic Technology [8]. AI makes 

intelligent decisions to provide the right treatment for a 

patient, and it also manages the clinical data for future drug 

development. The AI addressed the time-consuming issues in 

traditional drug delivery systems, and it provides the drugs 

quickly and precisely [9]. 

 

Another key idea in TDD is drug route administration, 

which determines which medicine-topical, oral, or parental-

is administered [10]. Clinicians choose the route based on 

patient convenience, which is partly influenced by 

pharmacokinetic characteristics [11]. Since an aqueous 

environment is used for Communication between the 

nanomachines and the targeted location, the best route for 

drug administration is crucial to boosting the success rate of 

drug delivery [12]. The best route is found by taking into 

account the location and direction of the targeted site and 

nanomachines. The nanomachines release the drug molecules 

by choosing the best route [13]. The nanomachines, which 

are typically implanted directly into the targeted region, are 

nanometers in size.  

 

The medications are released from the nanomachines if 

they reach the intended location. To minimize drug waste and 

traffic, the release rate of drug molecules must be at its peak 

[14]. Static, then there is a set distance between the targeted 

spot and nanomachines [15, 16]. If the nanomachines are 

mobile, then the distance is adjusted dynamically; 

consequently, the drug molecule concentration is also 

dynamically modified. Therefore, to enhance the 

effectiveness of therapeutic drug delivery, it is essential to 

employ a dynamic and adaptive drug release mechanism that 

regulates the dosage in real time. Such an approach prevents 

excessive drug accumulation at the target site, minimizes 

potential side effects, conserves therapeutic resources, and 

significantly reduces treatment time. To address this 

drawback, we propose using AI Techniques to optimise both 

the drug delivery route and the adaptive drug release rate, 

thereby ensuring precise and personalized therapeutic 

outcomes. 

 

2. Motivation & Objectives 
The interaction between artificial materials and human 

body cells presents several problems for molecular 

Communication for tailored medication delivery systems.  

 

Numerous issues, including improper medication 

administration and low success rates, have been addressed by 

current research, but no ideal answers have been offered. The 

following concerns were the subject of this study:  

2.1.1. Poor Choice of Path 

Few current studies are focused on optimum path 

selection for drug delivery; however, they examine only a 

restricted metric (i.e., direction), which is not adequate for 

optimal path selection that leads to a low success rate owing 

to the existence of barriers in the extracellular channel.  

 

2.1.2. High Side Effects 

Some current works do not optimize the timing and 

amount of medication delivery, which results in side effects 

from either an overdose or an underdosage of drug emission. 

Because the medications are absorbed by the healthy cells, 

ineffective target site localization also results in side effects.  

 

2.1.3. Ineffective Drug Delivery 

Ineffective drug delivery is caused by a lack of 

intelligence in the regulation of nanomachines and drug 

release rate. Furthermore, ineffective medication delivery is 

also caused by a lack of connection between transceivers. The 

effectiveness of therapeutic medications is decreased by the 

current work’s consideration of static releasing rates for 

pharmaceuticals, which are not appropriate for all kinds of 

molecular compounds. 

 

The above-described issues led us to suggest the goal of 

employing molecular Communication in TDD to swiftly and 

accurately deliver a medication to the intended location. 

Furthermore, the AI-based TDD is suggested to create a TDD 

system for improved treatment outcomes for a number of 

illnesses, including cancer, heart disease, and others. The 

issues of excessive side effects, poor route selection, and 

ineffective medication delivery are also covered in this study. 

The primary goal of this project is to use an adaptive drug 

release rate to manage the drug load and minimize drug 

waste, which also increases the effectiveness of therapeutic 

outcomes. We use the DDQN algorithm, which automatically 

learns the environment and takes an action that reduces 

toxicity and side effects, to perform an adaptive drug release 

rate, which is used to reduce drug waste and control drug 

load. The release rate is adaptively changed by considering 

biomarker concentration, location, and distance.  

 

3. Literature Review 
This section provides the literature review of the existing 

works in the molecular drug delivery system. Further, we also 

detail the existing literature work along with the 

corresponding Issue. 

 

In order to address delivery-time errors caused by 

propagation delays, Tania et al. [17] propose a molecular 

communication-based simultaneous drug-delivery scheme 

using internal controller nanomachines to synchronize drug 

release from multiple nanomachines. This scheme improves 

energy efficiency and robustness, but random propagation 

delays cause delivery-time errors because drug-carrying 

nanomachines may not arrive simultaneously. Abd El-atty et 
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al [18] present a bio-cyber interface architecture coupling 

MC with IoBNT for intelligent TDD, emphasizing 

sustainable/energy-aware operation and end-to-end system 

blocks from sensing to drug release, but Closed-loop AI 

control is unspecified/unevaluated, as well as 

Security/privacy not co-designed with control.  

 

Junejo et al. [19] suggested using a deep learning system 

to analyze diseases based on molecular Communication..In 

this study, a transmitter and receiver for a target medication 

delivery system employing molecular Communication were 

designed using a deep learning technique called Multilayer 

Perceptron Deep Neural Network Autoencoder. Biological 

signals are used to monitor the patient’s health state, and 

patient health data is kept on the cloud. According to the 

simulation findings, the suggested work performed better in 

terms of accuracy and BER. This study designed a transceiver 

using a deep learning-based autoencoder method, which has 

a delayed convergence and requires a lot of training time, 

resulting in substantial transmission latency.  

 

Sharifi et al. [20] This study proposed a touchable 

molecular communication system for targeted medication 

administration. Finding the best medication delivery 

strategies that minimize pharmacokinetic system uncertainty 

is the primary goal of this study. In order to incorporate the 

random concentration of tumour sites, a tumour immune 

communication model was suggested. A new controller for 

spreading the best medication delivery plan was presented in 

this study. While the blood vessel is in charge of drug 

transportation, the nanorobots transport the drug and inject it 

into the human body for signal transmission and reception. 

Islam et al. [21]  To achieve high accuracy during sequential 

medication administration, this research presented a 

multidrug delivery approach. Controlling the drug’s release 

timing is the primary goal of this study.  

 

Here, a controller nanomachine implanted in the human 

body managed drug-carrying nanomachines. Three 

nanomachines-a controller, a releaser, and a monitor-are part 

of the suggested project. The controller then estimates the 

medication release time by calculating the difference 

between the first and second drug delivery times. Lastly, the 

difference between the present and real medication time 

interval was taken into account when estimating the 

inaccuracy. The experimental findings show that the 

suggested work performed better in terms of medication 

release intervals. Nanomachines were suggested in this work 

for the best possible medication delivery; nonetheless, large 

delivery time mistakes result from a lack of intelligence 

during drug administration. Monteiro et al. [22] A suggested 

deep learning approach for drug target interaction prediction 

was presented in this publication. The deep learning method 

used raw data and SMILES strings to determine the drug-

protein interaction. Here, interaction prediction was done 

using a mix of a fully connected network technique and a 

convolutional neural network. Two parallel convolution 

methods were used by the suggested convolution neural 

network approach to extract the features from the data. 

Lastly, conventional machine learning techniques were used 

to compare and assess the suggested deep learning 

algorithms. The experimental findings demonstrate that, in 

comparison to conventional machine learning methods, the 

suggested work performed better. Due to the generation of 

undesired convolutional layers that increase prediction time, 

two parallel convolutional neural networks were proposed for 

target interaction prediction, which results in a significant 

communication delay..  

 

Al-Zubi et al. [23] To forecast the spatiotemporal 

attention of anticancer medications in tumour 

microenvironments, our study put out a numerical and 

simulation model. This study used molecular 

Communication to develop a mathematical model for 

channel impulsive response with drug release rate. The drug’s 

physicochemical characteristics were used to alter the release 

rate. Lastly, a stochastic simulation model was introduced for 

simulating drug interaction and transportation. The drug 

release rate was predicted using a MATLAB simulation tool. 

The outcomes demonstrated that the suggested approach 

performed better in terms of medication release rate in the 

tumour microenvironment. In this case, the drug release rate 

was altered by taking into account physicochemical 

characteristics, which were insufficient to identify the ideal 

release rate that influences the therapeutic outcomes due to 

ineffective drug delivery.  

 

The targeted drug delivery models for cancer 

applications are estimated by Tang et al. in [24]. The many 

nano-system models for cancer recovery applications are 

examined in this research. Nanoemulsion, nanogel, exosome, 

hybrid NP, rHDL, dendrimer, micelle, and liposome are 

among the several encapsulation types. Any of the 

aforementioned methods is used to encapsulate the 

medications, which are subsequently injected into the human 

body and activated at the target (i.e., cancer cells).  

 

In this case, targeted medication administration was 

carried out for the cancer application, but less precision was 

achieved when choosing the best route. A drug detection 

model with nanoparticle assistance for cancer applications 

was designed by Raj S. Khurana et al. [25]. For practically 

every portion of the human body, a number of approaches 

were examined. With or without a designated target, the 

nanoparticles functioned as therapeutic agents. Adopting 

medicine delivery based on nanoparticles makes it simple to 

identify malignant cells and release medications to overcome 

them without potentially harmful consequences. Notably, the 

adverse consequences of medication delivery based on 

nanoparticles must also be taken into account. 
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4. Problem Statement  
Along with related issues and answers, the section 

addresses the main problem statements in this particular body 

of previous work. 
 

El-Fatyany A. et al. [26] used the Internet of bio-

NanoThings to propose a target medicine delivery system. 

The primary goal of this study was to develop an ideal model 

for enhancing the effects of medication delivery by 

employing an end-to-end system to target therapy at the target 

spot.  

 

In contrast to the proposed technique, which uses two 

communication types-forward link and reverse link-the 

doctor initially transmitted the data to the transmitter via an 

access point. The issues mentioned in this method include 

 In this case, forward and reverse link communication 

was used to increase the rate of medication delivery; 

nevertheless, it fails to take into account the best route 

from the source to the target location, resulting in a lower 

success rate. 

 R2 is in charge of drug emission in this case, but the 

amount and timing of drug release are not regulated or 

optimized, which results in side effects from either an 

excessive or insufficient rate of drug release for the 

target cell. 

 

A novel approach to drug release rate optimization for 

targeted drug delivery devices was presented by Zhao et al. 

[27]. Measuring the optimal medication release rate is the 

primary goal of this study. The intended site’s closest 

position was where the nanomachine was immediately 

inserted. In this case, the targeted location served as a 

receiver and the nanomachine as a transmitter. The issues 

mentioned are 

 In this case, location and distance were used to optimize 

the medicine delivery rate, which was insufficient. 

Furthermore, the continuous medication delivery rate 

predicted by this study is insufficient to provide 

therapeutic medicines. 

  Drug delivery systems are less effective when there is a 

lack of communication tracking between the transmitter 

and the receiver. 

 
4.1. Research Solution 

The following are the difficulties raised in the specific 

existing studies stated above. The primary goal of this 

research is to improve the effectiveness of molecular 

Communication by minimizing medication waste. Using the 

DDQN algorithm based on dynamic distance, dynamic 

location, and biomarker concentration, the adaptive drug 

release is carried out. Finally, the error between drug delivery 

times is computed and updated as feedback to improve 

efficacy.        

 

5. Methodology  
Using Double Deep Q-Network (DDQN) for Targeted 

Drug Delivery (TDD), we can optimize the nanomachine’s 

path planning in a dynamic blood environment, considering 

factors like obstacles (blood clots), blood flow, velocity, and 

target site location. Blood flow is highly dynamic and 

unpredictable. DDQN adapt to changing conditions without 

overestimating path values. 

 

The nanomachines in the targeted site release the drug 

molecules by using the adaptive release rate method. Here, 

the drug release rate adaptively changes by considering 

biomarker concentration, dynamic location, and dynamic 

distance. The nanomachines are tracked by the clinician to 

update the current location and distance. The clinician sends 

the signal to the nanomachine for drug release time, load, and 

location. Here, an improved reinforcement learning 

algorithm, namely Double Deep Q Network (DDQN), is 

proposed for adaptive drug release, in which the DDQN 

automatically balances the exploration and exploitation for 

increasing the performance of adaptive drug release rate, 

which reduces drug wastage and controls drug load.  

 

The proposed DDQN is based on a markov decision 

process composed of tuples representing the state, the action 

space, the transition, and the reward. Table 1 denotes the 

illustration of state, action, and rewards towards the real-time 

environment. 

Table 1. Proposed DDQN parameters 

DDQN 

Parameters 
Description 

Agent The drug nanomachine. 

State (st) 

Representation/Features of 

Environment’s position (x,y), 

velocity, and surrounding 

obstacle data(blood clot) 

Action (ac) 

Movement in discrete directions 

at any given time (left, right, 

forward, backwards). Performs 

adaptive drug release 

Reward (rew) 

Performance improvement and 

drug wastage reduction 

Positive reward for moving 

towards the target and drug 

release. 

Negative reward for collisions 

with obstacles (e.g., blood 

clots). 

Next state (st + 1) 

The next state is updated based 

on the selection policy of the 

nodes 
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Fig. 1 Molecular Communication-Based Targeted Drug Delivery  

Model [28] 

 

The proposed DDQN is introduced to increase the 

learning rate by learning in the offline environment. Clearly, 

during training, the exploitation and exploration rate can be 

controlled adaptively by mixing the training samples. In 

addition, performance improvement is achieved by 

introducing a greater Q-network in the proposed design. To 

overcome the Issue of improper interaction with the 

environment, we have introduced an ordered storage method 

to permanently store the interactions on the agents in the 

reply buffers. Only the amplified policy data can be stored in 

the buffer, whereas the lesser policy data cannot be stored; 

thus, the mixing control can be effectively achieved.  

A molecular communication system in drug delivery 

consists of three primary components, as shown in Figure 1. 

 
5.1. Transmitter (Drug Carrier)  

The transmitter is responsible for releasing the drug 

molecules into the biological environment. 

 

5.1.1. Channel  

The channel is the medium through which drug 

molecules propagate from the transmitter to the target 

cells. The characteristics of the channel determine the 

effectiveness of drug transport. Key channels include: 

 Bloodstream: The most common medium, where drug 

molecules diffuse through blood plasma and interact 

with cells. 

 Extracellular Fluid (ECF): Drugs diffuse through 

interstitial fluid in tissues to reach target cells. 

 

5.1.2. Receiver (Target Cells/Tissues) 

The receiver is the site where the drug molecules bind 

and initiate a therapeutic effect. 

 

Figure 2  below is the proposed DDQN-based drug 

release. The diagram given below represents a proposed 

Double Deep Q-Network (DDQN) Algorithm for adaptive 

drug release in a molecular communication-based targeted 

drug delivery system. 

 

Fig. 2 DDQN algorithm-based adaptive drug release 
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Figure 2 consists of four sections, which can be 

elaborated as follows. 

 Searching Stage: A Graph CNN (G-CNN) Processes the 

Environment, and The Online Network Selects the Best 

Action Based On Q-Values. 

 Environment Interaction: A Nanomachine Releases 

Drugs in A Blood Vessel, Adapting to Infected Regions. 

 Reply Buffer: Stores State-Action-Reward Data and 

Updates If a Better Reward Is Found. 

 Updating Stage: The Online Network is Trained Using 

Stored Experiences, and The Target Network is 

Updated Periodically to Refine Drug Delivery 

Decision. 

DDQN uses two networks to separate action selection 

from action evaluation: 

 Online Network (ϴ) - This primary network learns from 

experience, updates during training, and selects the best 

action. 

                      𝑏∗ = 𝑎𝑟𝑔𝑚 max 𝑄(𝑆′, 𝑏′, 𝛳−)                  (1) 

 𝑏∗ ∶ The best possible action to take in the state s′ 

 argm max: argument that maximizes Q-value. 

 𝑄(𝑠′, 𝑏′; 𝛳):   The estimated Q-value of taking action b’ in 

state s’, given parameter  𝛳. 

 

 Target Network (ϴ-) – This is a delayed copy of the 

online network, updated periodically (not every step) and 

evaluates the action’s Q-value. 

 

𝑄(𝑆′, 𝑏∗, 𝛳−                 (2) 

Q(s′,b∗; ϴ-) is the Q-value function that estimates the 

expected future reward for taking the optimal action b∗ in the 

next state s′. 

 

𝛳−  Represents the parameters of the target network, 

which is a separate set of weights used for more stable 

learning.  

 

b∗ is the optimal action selected using the online Q-

network. 

 

The target network is updated periodically to improve 

training stability and reduce the problem of moving target 

values. 

 

The expression below is a crucial part of the target value 

calculation in DDQN updates: 

 

                         𝑦 = 𝑟 + 𝜆𝑄(𝑆′, 𝑏∗, 𝛳−                   (3) 

 

Where y is the target Q-value, r is the immediate reward, 

and λ is the discount factor. 

5.1.3. DDQN Update Rule 

Instead of directly taking the maximum Q-value for the 

next state, DDQN updates Q-values as: 

 

𝑄(𝑠, 𝑏) = 𝑟 + 𝜆Qtarget(s′, arg 𝑚𝑎𝑥  Qonline(𝑠′, 𝑏′))        (4) 

                                               

Q(s,b) is the Q-value function estimating the expected 

reward for taking action b in state s. 

 r is the immediate reward obtained after taking action b. 

λ is the discount factor (typically between 0 and 1), which 

determines the importance of future rewards. 

Qtarget is the Q-value from the target network. 

 

Arg max Qonline(s’, b’) selects the best action in the next 

state s′ using the online network. 

 

Instead of directly using the target network to select and 

evaluate actions (as in DQN), Double Q-learning first selects 

the best action using the online network and then evaluates it 

using the target network. This helps reduce overestimation 

bias. Target, online, and developed networks are the three 

sub-networks that make up the larger Q-network that was 

introduced. The online network is used to choose the action, 

the target network serves as an action evaluator, and the 

generated network functions as a Q-network. Furthermore, 

Graph Convolutional Neural Networks (GCNNs) may be 

used to parameterize the suggested Q-network. GCNN 

involves two sub-phases: variables to constraints and 

constraints to variables. Below is a formulation of the 

suggested DDQN restrictions, 

 

ℇj ← fℇ(ℇj, ∑ φℇ(ℇj, ωi, Υj,i)
(j,i)∈ℇ
i )                 (5) 

 

ωj ← fω(ωj, ∑ φω(ℇj, ωi, Υj,i)
(j,i)∈ℇ
i )              (6) 

                                                                                                           

        From the above equations (5) and (6), the ReLU 

activation function double-layer perceptron can be denoted as 

fℇ, fω, φℇ, and φω respectively. Furthermore, the overall loss 

function of the proposed DDQN can be formulated as, 

Loss(θ) = 𝔼 (rew + 𝔵 max
ac′

ℚt(st′, ac′, θt) − ℚ(st, ac, θ)) +

𝔼(ℚdev(st, ac, θdev) − ℚ(st, ac, θ))                    (7) 

From the above equation, the script t and dev represent 

the target and developed network, respectively. The 

pseudocode for the proposed DDQN-based drug release can 

be provided as given. 

Pseudocode for DDQN-based adaptive drug release 

Initialize: 

     → Random Initialization of θ 

     → Random Initialization of θt 

     → Random Initialization of θdev 

     Target network update frequency fret 

     Policy evaluation frequency fredev 

     Policy assessment threshold ∂0  
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     Cumulative reward policy during training ∂best 

     For Steps T ∈ 1,2…., do 

         Get trial action from policy behaviour ac~πℚdev
 

         Perform ac and perceive (st′, rew) 

         Stock (st, ac, rew, st′) → Buff Temp 

         Get a mini-batch sample from Buff Reply 

         Compute Loss based on (12) 

         Update θ using gradient descent 

         If t mod Υt = 0 then 

            θt ← θ 
         End If 

         If t mod Υdev = 0 then 

            Calculate ∂ for policy training assessment 

            If  ∂ > ∂best then 

               θdev ← θ 

            End If 

            If ∂ > ∂0 then 

               Stock (st, ac, rew, st′) → Buff Temp, Buff Reply 

               Overwrite the oldest policy 

            End If 

         End If 

         dev ← dev′ 
     End For 

End                                    

 

Ultimately, we assess the error in drug delivery time by 

analyzing both the fastest and slowest delivery times. The 

collected error rates are fed back into the DDQN, which helps 

to minimize the delivery time discrepancies. This approach 

enhances therapeutic drug efficacy and pharmacokinetics 

systems. Moreover, it mitigates side effects and toxicity 

associated with both excessive and insufficient medication 

dosages in targeted drug delivery systems. The cloud server 

retains all environmental data for ongoing patient health 

monitoring. This method streamlines targeted drug delivery 

by enhancing precision and minimizing waste. The system 

and simulation configurations are provided in Tables 2 and 3, 

respectively. 

 
Table 2. System configurations 

Software Settings 

Processer 

AMD Ryzen 7 

5700U with 

Radeon 

Graphics            

1.80 GHz 

Operating 

System 
Windows 10 

Simulation 

Software 
Python 3.10.11 

Hardware 

Settings 

Random 

Access 

Memory 

6GB 

Hard Disk 1 TB 

Table 3. Simulation parameter 

Simulation Parameter Description 

No. of Nano machine nodes 5 

No. of Receptors 25 

Time step duration 200ns 

Coefficient of diffusion 1 × 10−2μm2/μsμs 

Radius of space receptors 250nm 

Time step for simulation 0.005s 

Time interval for drug delivery {1,10} Min 

Molecules Released 6K,8K,10K,12K 

Molecules 

Radius of a nanomachine {5,7,9,11,13}μm 

 

6. Results and Discussion  
This section details the experimental results of the 

proposed work in both qualitative and quantitative manners. 

Further, this section also provides a comparative analysis of 

the proposed and existing works to enumerate the 

performance of the proposed work. The supplementary 

sections in the experimental results are explained as follows, 

 

6.1. Comparative Analysis  

This section summarizes the quantitative and qualitative 

study of the suggested AI-TDD model, as well as previous 

studies like Release rate Optimization for Targeted Drug 

Delivery (Optimized-TD) [27] and Internet of Bio-nano 

Things-based Targeted Drug Delivery (IoBT-TD) [26]. 

Delivery error, RMSE, medication release rate and drug 

reception rate are the assessment criteria used.  

 

6.2. Implemented System 

We built an AI “agent” that learns when and how much 

drug to release while moving through a noisy blood 

environment. 

 

 It gets a high score (“reward”) when the drug reaches the 

target site quickly and safely, using a minimal dose. 

 It loses points for delays or off-target exposure. 

 Each episode is one full simulated delivery attempt. 

 Epsilon (ε) tells how often the agent still tries random 

actions (exploration). A smaller ε means it’s mostly 

following what it has learned. 

 

Figure 3 shows the output of the final episodes of DDQN 

training for targeted drug delivery. Each line lists the episode 

number, achieved reward, and epsilon value.  

 

Rewards fluctuate but remain relatively high, indicating 

the agent has learned effective strategies. The steadily 

decreasing epsilon (from ~0.09 to ~0.08) reflects reduced 

exploration and increased exploitation of the learned policy. 
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Fig. 3 Training progress: episode rewards and decay in reinforcement 

epsilon 

 

Fig. 4 Learning curve across 500 episodes 

Figure 4 indicates the graph that shows DDQN training 

for targeted drug delivery. Rewards start low and unstable in 

early episodes but gradually increase, indicating the model 

learns effective strategies. By later episodes, higher rewards 

reflect improved optimization of the drug route and release 

rate. 

6.3. Performance Metrics 
6.3.1. Delivery Error Analysis 

The delivery error is defined as the number of errors 

incurred when delivering the drug to the targeted site. 

Mathematically, it is defined by the ratio of overall error to 

the drug delivery error, which can be formulated as, 

           Delerr =
Apperr−Acterr

Acterr                             (8) 

Where, Delerr denotes the delivery error, 

Apperr and Acterr denotes the approximate and actual error, 

respectively. 

 
Fig. 5 Drug delivery error Vs Release rate 

 

Figure 5  compares the medication delivery error rate 

between the suggested and current works. The graphic makes 

it quite evident that when the release rate rises, so does the 

medication delivery rate. Compared to the other two existing 

efforts, the suggested AI-TDD achieves a lower drug delivery 

error. The suggested AI-TDD reduces the likelihood of drug 

waste and ensures good control over the drug control method 

by performing the adaptive drug release process using a 

reinforcement algorithm called DDQN with appropriate 

metrics like biomarker concentration, dynamic location, and 

dynamic distance. On the other hand, despite designing an 

adaptive drug release model, the current works Optimized-

TD and IoBT-TD fail to take into account crucial 

measurements and intelligence, which results in inadequate 

control and drug waste. Overall, the existing works are more 

prone to drug delivery error than the proposed work.          
 

When the release rate is increased to 8000 molecules/500 

ns, the current works IoBT-TD and Optimized-TD obtain 

drug delivery error rates of 22 and 28, respectively, whereas 

the suggested AI-TDD achieves 19, according to the 

numerical data from the graphical analysis above. There is a 

3–9 lower difference between the projected and current 

medication delivery error rate studies. 
 

6.3.2. RMSE Analysis 

The Root Mean Square Error (RMSE) is defined as the 

estimation of drug delivery time error over the simulation 

replication time steps. The formulation of RMSE is provided 

below, 
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                         RMSE = √
∑ 𝜏2(c)∝

c=1

∝
                            (9) 

Where 𝜏 ∝ is the time steps of simulation replications, 𝜏 

is the delivery time error of the c-th replication.    

                    
Fig. 6 Distance Vs RMSE 

 

Figure 6 compares the proposed AI-TDD’s RMSE rate 

to previous efforts. The RMSE rises as the distance increases, 

as the image illustrates. Additionally, the suggested approach 

performs better than the current model in terms of attaining 

lower RMSE. The primary cause of this lower RMSE is that 

the suggested work uses the DDQN algorithm to pick the best 

option among the obstruction paths while taking into account 

parameters like blood flow, blood velocity, position, and 

direction. The suggested work reduces the Issue of greater 

RMSE by calculating the best flow. However, IoBT-TD and 

Optimized-TD, the current works, do not have optimum path 

selection, which lowers the medication success rate and raises 

the RMSE compared to the suggested work.  

 

When the distance is increased to 1500 millimeters, the 

current works IoBT-TD and Optimized-TD reach 50 and 58 

drug RMSE, respectively, whereas the suggested AI-TDD 

achieves 40, according to the numerical findings from the 

graphical analysis above. There is a 10–18% lower 

discrepancy between the suggested and current medication 

delivery error rate studies.    

 

6.3.3. Drug Release Rate Analysis 

The drug release rate is defined as the number of drugs 

released when they reach the targeted site. Typically, the drug 

release rate is computed based on the disease severity and 

patients’ conditions. The formulation of the drug release rate 

is provided below, 
 

                  DRR = Totam − relam                          (10) 

Where DRR denotes the drug release rate, Totam 

denotes the total amount of drugs stocked in the 

nanomachine, and relam denotes the amount of drug 

released.     

                                                                    
Fig. 7 Time Vs Drug release rate 

Figure 7 compares the medication release rates of the 

planned AI-TDD study with those of the current studies. The 

line plot indicates that as time grew, so did the medication 

release rate. Despite the steady increase in duration, our 

suggested approach produces a lower drug release rate. The 

use of the DDQN-based adaptive release method resolves the 

problem of drug waste. However, despite their adaptive drug 

release capabilities, the current works, including IoBT-TD 

and Optimized-TD, lack optimal route selection, which 

results in a greater drug release rate than the suggested work. 

When the duration is increased to 140, the current works 

IoBT-TD and Optimized-TD obtain drug release rates of 41 

mg/s and 47 mg/s, respectively, but the suggested AI-TDD 

achieves 35 mg/s, according to the numerical data from the 

above graphical analysis. There is a disparity of 6–12 mg/s 

between the projected and current medication delivery error 

rate studies.  

 

6.3.4. Drug Reception Rate Analysis 

The drug reception rate is defined as the amount of drug 

received by the targeted site. The drug reception rate must be 

higher when the release rate is higher.  

 

Figure 8 presents a study of the medication reception rate 

for both the proposed AI-TDD and previous efforts. It is 

evident from the graphic that medication reception increases 

when the release rate is progressively raised. Accordingly, 

when the release rate is raised, our suggested approach 

achieves a larger drug reception rate. The main factor 

contributing to the suggested work’s increased medication 

reception rate is its efficient target identification and route 
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delivery, respectively, which uses metrics like vessel pore 

size, cell density, and blood vessel perfusion status (i.e., 

blood, pressure, blood velocity, and red blood cell 

concentration) to enable precise localization, which in turn 

increases the drug release rate.        

         

 
Fig. 8 Release rate Vs Drug reception rate 

IoBT-TD and Optimized-TD, on the other hand, lack a 

superior target identification approach, which lowers their 

localization rate and results in a poor drug reception rate. 

 

When the release rate is maximized to 180 ns, the current 

works, IoBT-TD and Optimized-TD obtain drug reception 

rates of 41 and 37, respectively, whereas the suggested AI-

TDD achieves 47, according to the numerical data from the 

graphical analysis above. The suggested and current studies 

on medication delivery error rate varied by 6–10%. 

 

6.3.5. Research Summary 

The planned work’s comprehensive research overview is 

given in this section. By using route administration, target 

localization, optimum route selection, and adaptive drug 

release techniques, the suggested work lowers the energy 

consumption rate, drug delivery error rate, and raises the drug 

delivery success rate. To achieve more intelligence and 

automated control, such approaches are structured according 

to machine learning, optimization, and reinforcement 

learning algorithms, respectively. Table 4 below displays the 

average quantitative analysis for the proposed and existing 

work, while the figures from (5) to (8) give the qualitative 

analysis in the form of a graphical depiction to help visualize 

the full impact of the planned work.  

 

 
Table 4. Average results of proposed Vs Existing works 

Metrics AI-TDD IoBT-TD Optimized-TD Difference  

Release Rate Drug Delivery Error 86 120.5 143.5 23-57.5 

Distance RMSE 25.3 35.3 45 9.7-19.7 

Time Drug Release Rate 20.1 26.1 32.9 6.8-12.8 

Release Rate Drug Reception Rate 34.7 29.6 24.7 4.9-10 

7. Conclusion  
The absence of intelligence, poor path selection, and 

ineffective drug delivery rates are the utmost pitfalls of the 

existing works. The aforementioned issues are resolved by 

adopting the proposed AI-based DDQN intelligent 

nanomachine control system. The AI-TDD model 

outperforms existing methods, Optimized-TD and enhances 

targeted drug delivery efficiency, minimizes side effects, and 

improves patient outcomes. The adaptive drug release model 

is framed by considering metrics such as biomarker 

concentration, dynamic location, and dynamic distance using 

the DDQN algorithm to enable robust drug delivery control 

and reduce drug wastage. The validation of the proposed 

work is evaluated using metrics such as drug delivery error, 

RMSE, drug release rate, and drug reception rate. The results 

show that the proposed model reflects better performance 

than the existing models (IOBT-TD and Optomized-TD). AI-

driven optimization in drug delivery significantly reduces 

drug wastage and increases precision, making AI-TDD a 

promising method for molecular communication-based 

targeted drug delivery. 
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