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Abstract - The most traditional and popular biometric identification method is based on fingerprints. Everybody has a set of 

unchanging, distinctive fingerprints. It is essential to label minutiae appropriately and reject fake ones since recognition 

systems rely on local ridge characteristics. As a result, fingerprint pictures need to be controlled for clarity, minute results 

need to be computed, and then templates need to be compared to templates that are kept in the database. The research 

suggested three methods to enhance images, extract information, and match with fingerprint templates. The study’s first phase 

included 300 x 300 neural network picture inputs with various fingerprints gathered from two sets of false and actual images. 

In order to anticipate the optimal miniature extraction using genetically based chromosomal matching miniature analysis, we 

then use the VGG16 model. The suggested Model predicts 96.20 for smaller datasets, and when the size of the dataset was 

enlarged, the accuracy decreased to 86.89 percent, which may be employed in practical applications and contributes to system 

security. 

Keywords - VGG16, AlexNet, ResNet, Genetic Algorithm, Finger Print Classification. 

1. Introduction  
Learning necessitates the fundamental cognitive 

capacity to identify and distinguish among diverse items or 

patterns. This process commences with the collection of 

sensory input and concludes with the integration of new 

information into current knowledge. In the domains of 

artificial intelligence and computer vision, machine vision 

seeks to emulate human abilities by allowing computers to 

recognize and analyze things in real-world settings. Despite 

considerable advancements, the identification of three-

dimensional objects under varying ambient circumstances 

remains a substantial difficulty. A significant sector in which 

machine vision has shown substantial success is biometrics, 

especially in fingerprint identification. Fingerprint 

identification systems rely significantly on feature extraction 

methods, which provide the basis for matching algorithms [1, 

2].  

Raw biometric pictures often exhibit noise and poor 

contrast, requiring preprocessing procedures like 

segmentation, augmentation, orientation estimation, 

binarization, and thinning.  

In the identification phase, a 1:N matching method is 

used to identify probable matches in a database of fingerprint 

templates, while acceleration methods are implemented to 

minimize the search area and enhance processing efficiency 

[3]. Biometrics is the scientific study of using biological 

characteristics, including fingerprints, iris patterns, palm 

prints, face scans, DNA, and voiceprints, for individual 

identification [4]. Fingerprints are extremely distinctive, even 

among identical twins, making them very helpful in global 

forensic investigations. The extensive use of fingerprint-

based identification has led to the creation of large databases, 

requiring efficient and precise recognition systems [5].  

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Several methods achieve fingerprint detection, including 

ultrasonic, optical, and capacitive sensors. Each sensor type 

functions based on unique physical principles: ultrasonic 

sensors use reflected sound waves, optical sensors acquire 

light-based pictures, and capacitive sensors identify 

fluctuations in electrical fields due to changes in surface 

topography [6]. The disparities in sensing systems often 

result in discrepancies in collected fingerprint characteristics, 

which complicates the process of universal identification [7]. 

The primary characteristics collected for fingerprint 

identification generally include ridge flow, ridge frequency, 

terminations, and core/delta points. However, both external 

and internal variables, such as finger pressure, skin condition, 

distortion, and image alignment, significantly influence 

performance [8].  

Furthermore, current identification methods often 

depend on incomplete fingerprint scans, which limits 

precision. To mitigate this constraint, there is a growing 

exploration of models capable of reconstructing whole 

fingerprint imprints [9, 10]. This study enhances existing 

research by presenting a fingerprint identification system that 

combines Convolutional Neural Networks (CNNs) with 

genetic algorithms. Convolutional Neural Networks (CNNs) 

have the ability to learn hierarchical features from 

unprocessed fingerprint photos, differentiating nuanced 

variations across patterns.  

The proposed research presents an innovative hybrid 

architecture that combines a distributed deep neural network 

with a Genetic Algorithm (GA)-based feature optimization 

for tiny fingerprint identification. In contrast to traditional 

CNN-based biometric models that utilize static, high-

dimensional feature maps, this method employs VGG16 to 

extract hierarchical fingerprint representations and GA to 

dynamically select the most discriminative features for low-

resolution, partial inputs produced by miniature sensors. This 

dual-layer solution tackles significant issues in cross-sensor 

generalization, dataset heterogeneity, and resource-limited 

deployment by reducing feature redundancy and enhancing 

model adaptability across distributed infrastructures. 

Moreover, the GA-based feature subset functions as both an 

accuracy booster and a lightweight encryption layer for safe 

feature transmission, offering a comprehensive solution to 

the security and efficiency deficiencies in remote fingerprint 

recognition systems. 

Our Model presents a distributed deep neural network for 

tiny fingerprint identification, augmented by a feature 

optimization layer based on a Genetic Algorithm (GA). In 

contrast to traditional CNN designs that depend on static 

feature maps, the GA dynamically identifies the best 

discriminative VGG16 features, considerably diminishing 

redundancy and enhancing generalization across low-

resolution and cross-sensor datasets. Experimental findings 

on the FCV2000, FCV2002, and FCV2004 datasets indicate 

that the suggested Model attains an EER ranging from 1.0% 

to 2.4%, in contrast to the 6% to 9% observed in VGG16, 

AlexNet, ResNet, and conventional CNN methodologies. 

This illustrates a significant progression beyond current 

research by offering a lightweight, secure, and highly 

accurate fingerprint recognition framework tailored for 

distributed biometric systems. 

The next sections of this article are organized as follows: 

Section 2 provides a background study, examining current 

fingerprint identification techniques, sensor technologies, 

and the constraints of conventional methods. Section 3 

delineates the proposed methodology, including the VGG16-

based architecture, preprocessing methodologies, and 

optimization approaches used to augment accuracy and 

efficiency. Section 4 delineates the performance assessment, 

including the experimental configuration, dataset utilization, 

evaluation criteria, and a comparison with baseline 

methodologies. Section 5 closes the research and addresses 

prospective improvements, including the integration of 

multimodal biometrics, real-time deployment tactics, and 

adaptive learning mechanisms to promote system 

generalizability. 

2. Related Work  
Deep learning methods have evolved a lot in the last 30 

years. The advancements made in this area have profoundly 

affected several software packages using computer vision 

and pattern recognition. Since improving identification 

accuracy is a high priority, automated fingerprint recognition 

is a rapidly growing area of study. In addition, deep learning 

techniques eliminate the importance of manually extracted 

characteristics in favour of a broader approach to analysis. In 

this part, we look at some of the most recent studies that have 

focused on how best to catalogue fingerprint images.  

This technique has been proposed for applications like 

access control, ATM user verification, and criminal 

identification using a fingerprint data collection. In the 

author’s analyses forged fingerprints come to the conclusion 

that current fingerprint verification systems cannot 

effectively spot forgeries. It has been determined that 

adjusting the fingerprints has no effect on the picture quality. 

An effective method for identifying a forged fingerprint is 

now available. Significant advances in deep learning 

techniques have been made during the last three decades. 

These innovations greatly influenced several software 

packages using computer vision and pattern recognition [12-

14].  

Due to the need for high identification rates, research 

into automated fingerprint recognition is a hot issue. 

Furthermore, deep learning techniques move the emphasis 

away from approaches dedicated to detail extraction as 

handcrafted features and instead concentrate on the analysis 

of the whole picture. The most recent studies on the subject 
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of fingerprint image classification are discussed. In order to 

extract features based on minute differences, preprocessed 

contactless fingerprints must have their RGB pictures 

transformed to grayscale. Thus, machine learning must also 

be used for ROI, including tasks like ridge valley extraction 

and finger orientation prediction for the smallest details. In 

order to extract the ROI after finger detection, width, height, 

and resolution must be normalized. The input to this 

preliminary 3D contactless fingerprint processing step is an 

image of the fingerprint extraction.  

Finger detection and ROI extraction are both performed 

after the fact in the output. Contactless 3D finger geometry is 

essential for the colour-based segmentation of ROI 

extraction-limited setups. Several processes relied on the 

ridge’s form and direction to identify its centre. A Support 

Vector Machine (SVM) can quickly and accurately 

categorise fingerprints based on their minute details, with 

those details themselves serving as detection points. The grey 

mean, grey variance, contrast, coherence, and main energy 

ratio are five feature vector lengths that SVM may use to 

evaluate an image’s quality. The training required to integrate 

these features is extensive [15-17]. 

Employing an innovative method grounded on chaos 

theory and Hadamard matrices, Fingerprint and Iris Template 

Protection for Health Information System Access and 

Security tackles the problem of template database breaches, 

including threats to the integrity of biometric templates. 

Despite the extensive research on safeguarding biometric 

templates, the majority of the methods presented in the 

literature fall short of meeting the primary criteria of safety, 

efficiency, variety, and revocability. However, our method 

not only satisfies the needs of revocability, diversity, and 

privacy but also provides superior results in the cases of 

recognition rate (i.e., one hundred percent), false rejection 

rate (zero percent), and false acceptance rate (one hundred 

percent). This allows us to detect low-rate attacks with 

greater accuracy [18]. 

NLP, speech recognition, and object identification are 

just a few of the areas where deep learning has shown 

promising results. It also has remarkable results in 

biometrics, namely with a finger vein recognition system. 

The research uses Alex Net and VGG 16 architectures to 

improve upon previous methods of finger vein identification. 

To address the issue of low-quality images and insufficient 

data, the FV-GAN model is presented as a Generative 

Adversarial Network (GAN) Model for finger vein, based on 

the Cycle-GAN architecture. The authors present a fully 

convolutional neural network, an extension of U-Net, 

integrated with a conditional random field as an end-to-end 

system for pixel-wise fingerprint datasets to enhance vein 

pattern segmentation. This approach improves upon prior 

methods by modifying the Densenet-161 architecture and 

incorporating a distinctive embedding module into the core 

model [19-21]. There was some encouraging data from 

experiments using deep learning algorithms for finger vein 

detection. Unfortunately, inadequate data is still a challenge 

for the available approaches. 

 

The suggested approach differs from Current Genetic 

Algorithm (GA)-based fingerprint classification studies in 

that it presents many distinctive additions. This research 

integrates GA-driven optimization with deep hierarchical 

features extracted from VGG16, facilitating adaptive feature 

selection in high-dimensional CNN representations in 

contrast to traditional GA methods that rely on handcrafted 

or minutia-based descriptors in centralized architectures.  

The framework is specifically tailored for miniature 

fingerprint sensors and low-resolution data, a context seldom 

explored in previous GA-based research, and additionally 

integrates a distributed deep neural network architecture with 

secure feature transmission to facilitate privacy-preserving 

biometric processing. By dynamically eliminating 

superfluous activations and concentrating on distinguishing 

patterns, the Model attains computational efficiency and 

improved generalization across diverse and cross-sensor 

datasets. This integration of deep feature learning, genetic 

algorithm optimization, and distributed security signifies a 

significant progression beyond previous genetic algorithm-

based fingerprint classification studies, positioning the 

proposed system as a scalable and high-performance option 

for next-generation biometric authentication. 

The deficiencies underscore the need for a secure, 

distributed, deep neural network architecture that 

dynamically optimises deep hierarchical features for tiny 

fingerprint detection. A hybrid methodology integrating 

VGG16-based deep learning with GA-driven feature 

selection minimizes duplication, improves cross-sensor 

flexibility, and achieves high accuracy in low-resolution 

scenarios while safeguarding biometric data transfer. 

Rectifying these deficiencies is essential for the advancement 

of scalable, privacy-preserving fingerprint recognition 

systems appropriate for next-generation IoT and mobile 

authentication contexts. 

3. The Proposed Miniature-Based VGG16 

Fingerprint Matching 
3.1. Proposed Architecture 

Figure 1 depicts the operational flow of the enhanced 

fingerprint matching architecture, including a Genetic 

Algorithm (GA). The procedure emphasizes critical phases 

like preprocessing, feature extraction using VGG16, and 

enhanced matching precision through GA-based 

optimization. 
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Fig. 1 Optimized fingerprint matching architecture with GA
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Figure 1 represents the fingerprint identification process, 

which begins with the extraction of images from an existing 

database intended for training and testing. This is followed 

by segmentation to define the fingerprint area and 

normalization to standardize intensity values for a consistent 

contrast. Adaptive smoothing is applied to eliminate noise 

while preserving ridge structures. Subsequently, orientation 

and frequency mapping are conducted to optimize ridge flow, 

after which thinning produces a single-pixel skeleton for 

minutia extraction. A classification node identifies low-

quality images and directs them to a Genetic Algorithm 

(GA)-based optimization pathway, while valid images 

progress to a VGG16-based deep learning pipeline.  

 

This pipeline processes the fingerprints through 

sequential convolutional blocks (from Conv1_1 to Conv5_3, 

including pooling) and fully connected layers to extract 

hierarchical features. These features are refined using a 

genetic algorithm that employs selection, crossover, and 

mutation to retain only the most distinctive patterns. The 

optimized vector is then compared with stored database 

templates to identify the minutiae match with the highest 

similarity score. Ultimately, this process produces an output 

that verifies whether the input fingerprint matches a recorded 

template, ensuring robust and precise recognition. 
 

3.2. Preprocessing 

During the process of acquiring a fingerprint image, a lot 

of redundant data is collected. Scarred images, dry or damp 

fingertips and improper pressure are just a few of the issues 

that must be resolved in order to get a usable and accurate 

result. Thus, preprocessing of the new fingerprint images is 

required.  

Fingerprint images may be preprocessed using 

enhancement, normalization, filtering, noise reduction, 

binarization, and thinning techniques. Binarization and 

thinning are used in this study, since they are prerequisite 

processes for fingerprint categorization and matching. The 

suggested architecture’s preprocessing is divided into three 

stages: converting from 2D grayscale to 3D colour, 

binarization, and thinning [22]. 

3.2.1. Segmentation 

Block-wise coherence is used to generate a mask to 

separate the ridges from the background and define the ROI. 

The variance is determined for each sub-block of (W W) size 

that is created in the image. It adopts the morphological 

operations “OPEN” and “CLOSE.” Images can be expanded 

and background noise-induced peaks removed using the 

“OPEN” procedure. Images can be reduced in size, and tiny 

voids can be removed with the ‘CLOSE’ technique [23]. 

3.2.2. Image Normalization 

An image’s intensity can be improved by normalization, 

which involves altering the range of grey level values to bring 

them into a desirable range. During normalization, the grey 

level value along the ridges is standardized to make further 

processing more manageable. Each block undergoes 

normalization independently using the procedures outlined 

below. Instances of observation were counted in terms of 

their height and width. The total number of image widths 

divided by the total number of image heights gives the aspect 

ratio [23]. 

3.2.3. Adaptive Smoothening 

After the background has been removed, a fingerprint is 

produced and adaptively smoothed with the help of local 

orientations. This method eliminates most minor defects. The 

local ridge orientation is used to achieve a uniform 

smoothing, whereas a Gaussian smoothing is used in the 

opposite direction.  

The smoothing filter’s kernel is the product of µ = 0 and 

σ= 1 normalized 5 x I uniform kernel with a 1 x 3 Gaussian 

kernel. There are 16 discrete options for the smoothing 

filter’s orientation. Each pixel’s orientation must be taken 

into account before a filter is applied to it. Being able to 

identify items is crucial in everyday life. To identify 

anything, one must go through a process of seeing it and 

linking it to previously stored knowledge. Robotic 

eyeballs identify patterns. Computer systems are being 

developed by scientists and engineers to recognize items in 

the real world. Nevertheless, despite considerable progress, 

there have been encouraging findings from studies conducted 

in sub-fields of this science, such as biometrics [24, 25]. 

3.2.4. Orientation Field 

Sobel filters were employed to determine the direction of 

the field. The 3 by 3 operators Gx and Gy are employed to 

calculate the gradients in the horizontal and vertical 

directions. 

3.2.5. Frequency Map 

In computing a frequency block for constructing the 

Gabor filter, obtaining the local estimate of the frequency 

map in conjunction with the directional map is necessary. 

 
3.2.6. Thinning 

To simplify the extraction of details, the image must be 

“skeletonized” by removing unnecessary pixels from ridges 

until they are just one pixel wide. 

3.2.7. Minutiae Extraction 

To find ridge endpoints and ridge bifurcations, use the 

crossing number approach [26]. In 3x3 pixel blocks, the 

crossing number algorithm will operate. The CN value is 

calculated using the following formula. 
 

𝐶𝑁(𝑃) =  
1

2
∑  

8

𝑖=1

|𝑃𝑖 −  𝑃𝑖−1| 
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3.2.8. Singularities 

For closed curves, the Poincaré index assumes one of the 

discrete values: 0°, 180°, or 360°. This is well known and 

simple to demonstrate. Regarding singularities in fingerprints 

[27]: 

- 0° is not associated with any specific area. 

- 360° is classified as a unique area of the whorl type 

- 180° is classified as a loop-type singular area 

- 180° is classified as a delta-type unique area. 

𝑃𝐺,𝐶(𝑖, 𝑗) =  ∑  

 

𝑘=0,…,7

𝑎𝑛𝑔𝑙𝑒(𝑑𝑘, 𝑑(𝑘+1)𝑚𝑜𝑑 8) 

 
𝑃𝐺,𝐶(𝑖, 𝑗) =  ∑   

𝑘=0,…,7 𝑎𝑛𝑔𝑙𝑒(𝑑𝑘 , 𝑑(𝑘+1)𝑚𝑜𝑑 8                (2) 
 

   
Fig. 2 Singularites search between 360°, 180° and -180° 

3.3. Finger Print Matching Problem 

Consider the sets of minutiae in the template and the 

query fingerprints are {(Xn1, Xn, 2)} and {(ym 1, ym 2)} 

respectively, where n = 1, 2, 3,..., N, and m = 1, 2, 3,..., M. 

The template fingerprints contain N and M, respectively, 

minutiae. The transformation between Xi and Y is Yj = F(Xi). 

 

Yi = s.R.Xi + T 

Finding the optimized transformation that can translate 

as many details from the template fingerprint to the query 

fingerprint as possible may be considered the solution to the 

matching issue [28]. 

3.3.1. Selecting Optimized Fingerprint Matching Technique 

For the evaluation of their suitability for fingerprint 

identification, we have examined a wide range of frequently 

used optimization approaches [29].  

1) This heuristic amalgamates a random walk with 

breadth-first search in the following manner. 

- To get a relatively even distribution of states across the 

state graph, the sink node starts the whole process by 

doing a BFS of a user-specified depth, B, starting with 

the start states.  

- The following is carried out concurrently by each 

processor i that gets a portion of the BFS frontier Qi. The 

number, N, of random walk steps for each processor 

would have been selected by the user (before the entire 

process starts). As a result, processor i performs N/q 

random walks on each of Qi’s q states. Each random 

walk starts in a unique state in Qi, and every Sth state of 

each random walk is relayed to its home node. The 

probable secondary BFS start states are as follows, 

 

                      
  

 
Fig. 3 Heuristic searches 1, 2, and 3 integrate distributed random 

walks with breadth-first search, whereas Heuristic 4 is a specific 

instance of Heuristic 3, characterized by a secondary breadth-first 

search depth of zero 

- Employing calculus-based strategies (gradient 

approaches, resolving equation systems): The goal 

function does not have a mathematical closed-form 

formulation. The objective functional analysis reveals 

discontinuities and multimodal complexity. 

3.3.2. Theoretical Idea: Optimized problem GA. 

Genetic algorithms provide a learning methodology that 

is loosely grounded in simulated evolution. An initial 

population of hypotheses acts as the foundation for 

identifying an appropriate hypothesis via selection, 

crossover, and mutation, wherein individuals of the existing 

population generate the subsequent generation. The 

hypotheses of the current population are evaluated at each 

step using a fitness function, and the most suitable hypotheses 

are probabilistically selected to generate the subsequent 

population. The input of GA is the extracted features, which 

are then utilised to determine the optimal parameters and the 

highest fitness value. When the maximum fitness value 

surpasses a specific threshold, the input fingerprint originates 

from the identical fingerprint [29]. 

3.3.3. Pseudo Code: Selecting Best Features with GA  

Pseudo code 

function  GeneticAlgorithm(n_individuals, n_genes, 

desired_fitness)   

Returns an individual with fitness >= desired_fitness  

      generation = 0     

 population = init_population(n_individuals, n_genes)   

 fitness_vals = evaluate_fitness(population)   

   while max(fitness_vals) < desired_fitness   

        parents = select(population, fitness_vals)   

        children = reproduction(parents)   

        children = mutate(children, mutation_rate)   

           population = make_next_generation(children, 

parents)   

             fitness_vals = evaluate_fitness(population)   

             generation = generation + 1 
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3.3.4. Pseudo Code: GA based Optimized Fingerprint 

Recognition 

Pseudo code 

a. Chromosome representation and 

initialization 

- Length of chromosome encoded in 27 

bits 

- The total size of the search (randomly) 

space is 227 

b. Fitness function 

- Verifying the global coherence between 

two collections of minutiae 

- Next stride should align with the local 

characteristics of minutiae. 
Steps: 

1) Illustration of F̂e(∎)A. If nc, the number of potential 

corresponding points based on F̂e⏞(∎), is less than a 

threshold Tn, then let the fitness value for the 

transformation F̂e⏞(∎)  be FV(F̂e⏞)  =  ne . In this 

instance, it is illogical to continue assessing the 

correspondence.  
2) Triangles can be formed by any noncolinear triplet of 

possible related points and have various local features. 
3) Generate a population and determine the fitness 

values for crossover and mutations in a descending 

order. 
4) Next, the Model calculates fitness value hypotheses 
5) Calculate mutation based on Pm x Np hypotheses 

from P with uniform probability. For each hypothesis, 

invert one randomly selected bit. 
6) GA should come to an end if the maximal fitness value 

stays the same after Nt generations. 
7) Ultimately, we assess computation time with mutation 

value, which can alter the fitness value of these ideas.  

 
3.4. Method of Dry Finger Print Matching based on Genetic 

and VGG16 

Fully connected methods involving many features are 

not suggested since many features may lead to disastrous 

dimensional effects. Selecting fewer characteristics to 

include in the Model’s construction might make learning 

easier. The Model’s interpretability may be improved. 

However, figuring out how to filter and evaluate these 

features is a major challenge [30]. Researchers often suggest 

methods for selecting features by analyzing their 

imperfections. In neural networks, the feature’s source is 

obscured by the murkiness of the feature extraction process. 

With existing selection algorithms, genetic algorithms may 

iteratively search the feature space for the best possible 

solutions. Crossover, mutation, and selection are all 

biologically inspired processes that help highlight superior 

characteristics. To begin, a random population of length N 

(the same as the feature length) chromosomes is produced 

with a value of 0 or 1. If the value is 0, then the location 

feature is ignored; if it is 1, then it is used. Selecting. Second, 

the fingerprint image’s features at the appropriate 

chromosomal site are isolated during training and assessment 

using a single fully connected layer as a classifier. Take note 

of the test set’s classification precision as fitness.  

Finally, all chromosomes in the current population have 

an equal chance of being chosen as parent chromosomes via 

evolutionary processes. The formula for determining the 

likelihood of an evolution is as follows: 

𝑃𝑖  =  
𝐹𝑖 − 𝑀

∑  𝑁
𝑖=0 (𝐹𝑖 − 𝑀)

 

 

Where 𝐹𝑖For the fitness of the ith chromosome, N is the 

number of chromosomes, 𝑃𝑖Pi is the probability of the ith 

chromosome being selected, and M is the fitness penalty 

value. 

Pseudo code 

Input: The dataset of fingerprint D; The size of initial 

population N; The fitness penalty value M; The maximum 

number of iterations T ; 

Output: In T generation, the feature chromosome has the 

greatest fitness. 

i. Initiate the population by seeding it with N 

chromosomes of length S, where S is initially set to 

a random number between 0 and 1; 

ii. for i = 1… T 

iii. In a mutation, a chromosomal gene of length L is 

randomly re-initialized or inverted in accordance 

with the evolutionary probability. 

iv. In a crossover, two parents are chosen at random 

from the population and execute a single-point 

crossover to produce new offspring. 

v. To calculate fitness, we need to determine how 

accurately we can extract the fingerprint 

characteristic of the test set at the essential location 

on the chromosome. 

vi. To make a selection, we take the initial fitness and 

subtract the penalty amount. When the roulette 

algorithm determines an individual’s chance of 

survival, it has a greater impact on the least well-

adapted individuals in the population. 

 

4. Performance Evaluation 
The Average Classification Error (ACE) is a common 

measure of quality in the field of fingerprint liveness 

detection. The ACE is defined as the sum of the False Reject 

Rate (FRR) and the False Accept Rate (FAR), as shown in 

the equation: 

𝐴𝐶𝐸 =
𝐹𝑅𝑅 + 𝐹𝐴𝑅

2
 

 
The Equal Error Rate (EER) evaluates the efficacy of the 

proposed method. The Equal Error Rate (EER) is attained 
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when both the False Negative Match Rate (FNMR) and the 

False Match Rate (FMR) are zero.  

 

The FMR quantifies the frequency with which the 

matching algorithm erroneously accepts fingerprints from 

unrelated individuals as those of the query subject, whereas 

the FNMR quantifies the frequency with which it erroneously 

rejects fingerprints from unrelated individuals as those of the 

query subject.  

 

To calculate the FMR, an equation is used to determine 

the likelihood that a system would provide access to a false 

user. 

𝐹𝑁𝑀𝑅 =  
𝐹𝑎𝑙𝑠𝑒 𝑀𝑎𝑡𝑐ℎ𝑒𝑠

𝐼𝑚𝑝𝑜𝑠𝑡𝑒𝑟 𝐴𝑡𝑡𝑒𝑚𝑡𝑠 
 

 

Specifically, the impostor attempts are realized by cross-

referencing all input images against all template images. 

When the matching score was higher than the predetermined 

threshold, a false match was logged for each impostor 

attempt. The FNMR is an equation that describes the 

probability that a valid user would be denied access to the 

system. 

𝐹𝑀𝑅 =  
𝐹𝑎𝑙𝑠𝑒 𝑁𝑜𝑛 𝑀𝑎𝑡𝑐ℎ𝑒𝑠

𝐸𝑛𝑟𝑜𝑙𝑙 𝐴𝑡𝑡𝑒𝑚𝑡𝑠 
 

 

Table 1 shows the results of testing the suggested 

technique on the FCV2000 DB1, FCV2000 DB2, FCV2000 

DB3, FCV2000 DB4, FCV2002 DB1, FCV2002 DB2, 

FCV2002 DB3, FCV2002 DB4 and FCV2004 DB1, 

FCV2004 DB2, FCV2004 DB3, FCV2004 DB4 datasets in 

terms of both EER and accuracy. Calculating accuracy 

involves determining how many test match and non-match 

pairs were properly labeled. Where native-EER is somewhat 

higher than 3, and accuracy is still over 96%.  

This study evaluates the suggested fingerprint 

verification system based on its recognition rate (or 

accuracy). An easy way to describe recognition accuracy 

(ACC) is as a ratio, which may be computed by dividing the 

ratio of fingerprints identified by total fingerprints shown: 

𝐴𝐶𝐶 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑛𝑔𝑒𝑟𝑝𝑟𝑖𝑛𝑡𝑠 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑛𝑔𝑒𝑟𝑝𝑟𝑖𝑛𝑡𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑
 

In order to prove the efficacy and sturdiness of the 

proposed verification method, intensive testing and 

experimentation were conducted using three publicly 

available fingerprint databases: FVC2000, FVC2002, and 

FVC2004. As a benchmark for the overall efficacy of the 

described system, we calculate the average recognition 

accuracy. Table 1 shows the analysis and calculation results 

of accuracy and loss for training samples of fingerprint 

datasets. As seen in the table, most cases give 1% EER, which 

shows the quality of the recognition image. This study’s 

small dataset arises from both experimental design and the 

inherent real-world limits of biometric research. Firstly, 

privacy rules and ethical constraints on biometric data 

sharing limit the availability of high-quality fingerprint 

datasets with validated ground truth and cross-sensor 

variations. The FVC2000, FVC2002, and FVC2004 

benchmark datasets were chosen due to their status as some 

of the few publicly accessible collections that adhere to 

worldwide evaluation standards, thereby guaranteeing 

reproducibility and comparability with previous research. 

This study aims to assess the efficacy of the VGG16–Genetic 

Algorithm-based Model in extracting discriminative features 

and executing robust matching in constrained data 

conditions. In numerous practical applications, including law 

enforcement and embedded IoT devices, fingerprint systems 

frequently function with restricted samples per user. 

Consequently, exhibiting superior performance with limited 

datasets increases the method’s relevance in practical low-

data contexts. It is recognized that increasing the dataset size 

can enhance accuracy by presenting the network with 

increased intra-class and inter-class heterogeneity. The noted 

decline in accuracy while expanding to a larger dataset 

underscores the susceptibility of deep learning models to 

dataset diversity and emphasizes the necessity of optimal 

feature selection via genetic algorithms. Future endeavours 

will integrate larger multi-sensor datasets and synthetic 

augmentation methodologies to further improve 

generalization. 

Table 1. Performance of the proposed model 

Datasets No. of Samples Validation ACC (%) Validation Loss Test ACC (%) EER 

FCV2000 DB1 148 98.7 0.053 82.8 2.63 

FCV2000 DB2 187 86.8 3.162 67.8 2.60 

FCV2000 DB3 187 96.3 0.013 85.2 1.45 

FCV2000 DB4 187 95.6 0.034 86.1 1.56 

FCV2002 DB1 187 95.4 0.052 68.0 2.78 

FCV2002 DB2 187 96.2 3.011 82.3 2.42 

FCV2002 DB3 187 93.6 0.016 82.4 1.99 

FCV2000 DB4 187 97.6 0.052 85.4 0.98 

FCV2004 DB1 187 98.2 0.054 81.6 1.20 

FCV2004 DB2 187 98.1 0.321 82.4 1.89 

FCV2004 DB3 187 97.4 0.053 84.6 0.18 

FCV2004 DB4 187 96.4 0.036 86.6 2.63 
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Figure 3 shows the accuracy rate of the number of 

training epochs, which remains closely maintained at 1.0, and 

Figure 4 shows the loss rate of different folds of training 

samples. 

 
Fig. 4 Accuracy with the number of epochs 

Table 2 shows the result of the Average Classification 

Error of different fingerprint dataset images. Under the 

scenario, the Model compares the state-of-the-art deep 

learning methods. In FCV200 DB1 datasets, the VGG16 

model gives a classification error rate of 2.2% whereas our 

Model produces 1.3% w, indicating that Table 3 presented a 

false acceptance rate in fingerprint datasets. Figure 6 shows 

the accuracy rate of the number of training epochs, which 

closely maintains 1.0, and Figure 7 shows the loss rate of 

different folds of training samples. 

 
Fig. 5 Loss with the number of epochs 

Table 2. Average classification error (%)  

Datasets VGG16 AlexNet ResNet CNN Proposed 

FCV2000 DB1 2.2 3.0 3.5 9.1 1.3 

FCV2000 DB2 2.0 3.2 4.2 9.4 1.1 

FCV2000 DB3 3.4 4.6 6.8 11.4 2.3 

FCV2000 DB4 3.0 5.6 6.2 8.4 2.1 

FCV2002 DB1 3.0 4.2 7.2 9.8 1.1 

FCV2002 DB2 4.2 5.4 6.1 9.7 3.0 

FCV2002 DB3 3.6 4.2 7.3 12.6 2.1 

FCV2000 DB4 2.0 3.2 4.2 9.4 2.1 

FCV2004 DB1 2.1 3.6 3.8 7.2 1.2 

FCV2004 DB2 2.3 3.1 5.1 8.9 2.0 

FCV2004 DB3 3.3 4.5 5.7 11.1 3.1 

FCV2004 DB4 3.0 5.6 7.1 9.7 2.1 

 
Table 3. Average false acceptance rate (%)  

Datasets VGG16 AlexNet ResNet CNN Proposed 

FCV2000 DB1 8.8 7.5 6.8 9.2 1.1 

FCV2000 DB2 8.4 8.2 7.3 9.6 1.8 

FCV2000 DB3 8.0 6.7 6.6 8.8 1.8 

FCV2000 DB4 7.6 6.3 6.6 8.9 2.0 

FCV2002 DB1 8.2 6.8 7.6 9.1 1.2 

FCV2002 DB2 8.1 8.0 7.3 8.8 1.8 

FCV2002 DB3 8.1 7.7 6.0 8.9 2.0 

FCV2000 DB4 8.4 7.2 6.9 9.6 2.1 

FCV2004 DB1 8.8 7.4 6.2 9.8 1.0 

FCV2004 DB2 8.3 8.3 7.8 9.7 1.8 

FCV2004 DB3 8.7 7.7 7.8 9.7 1.9 

FCV2004 DB4 8.7 7.5 6.9 9.6 2.4 
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Fig. 6 Validation accuracy 

 

 
Fig. 7 Test accuracy of EER 

 

 
Fig. 8 Error rate comparison with different models 
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4.1. Comparison with Existing Methods  

This section examines recognition accuracy, another 

crucial factor in biometric system design. Our research 

reveals that the vast majority of currently available biometric 

systems, whether protected by a template or not, only perform 

recognition accuracy tests under ideal conditions that are 

completely inaccurate in real-world scenarios, where the 

obtained images are of extremely poor quality. The major 

reason for this is the information lost during feature 

adaptation, which involves re-creating original features in a 

different format in order to meet the matching metrics for 

transformed templates. Table 4 shows the recognition 

accuracy compared with other existing methods. The Model 

trains the different fingerprint datasets FCV2000 DB1 to 

DB4, FCV2002 DB1 to DB4, and FCV2004 DB1 to DB4. 

While testing FCV2000 DB4, FCV2204 DB4.  

 

Fingerprint verification is a vital biometric method 

because of its exceptional uniqueness and durability. A 

variety of methods have been investigated, from manually 

generated ridge-based descriptors to deep learning 

frameworks. Initial techniques, including Gabor filters, 

minutiae extraction, and orientation field estimation, 

demonstrated computing efficiency but showed limited 

flexibility in the face of cross-sensor variance, incomplete 

prints, and compromised ridge structures. With the 

emergence of Convolutional Neural Networks (CNNs), deep 

feature representations started to surpass conventional 

approaches on benchmark datasets. Nonetheless, CNNs often 

preserve redundant activations, leading to overfitting and 

reduced generalization to novel data sources. 

 

Trivedi et al. (2018) employed a hybrid ridge-based 

methodology and documented Equal Error Rate (EER) 

values across various FVC datasets. When these EER values 

are transformed into inferred accuracy (Accuracy = 100% – 

EER), the performance ranges from 91.96% (FVC2000 DB2) 

to 99.00% (FVC2002 DB1), with particularly poorer 

outcomes for the DB2 and DB4 subsets-contexts marked by 

significant cross-sensor mismatch. Baghel et al. (2021) 

developed a deep learning-based system that achieved 

remarkable results in certain instances-98.92% for FVC2002 

DB2-yet displayed substantial reductions in more 

challenging subsets, recording 90.18% for FVC2004 DB2 

and 91.05% for FVC2004 DB1. Martins et al. (2024) reported 

overall accuracies of 97.75% for FVC2000, 98.38% for 

FVC2002, and 96.01% for FVC2004; however, the 

individual deficiencies within these subsets are obscured by 

these aggregate figures. 

 

The comparison study indicates that the proposed 

VGG16–GA hybrid model exhibits consistently strong 

performance across all subsets, especially in DB4 situations 

where previous studies see the most significant accuracy 

decreases. For instance, FVC2004 DB2 exhibits an increase 

from 90.18% (Baghel) to 96.20% (Proposed), whereas 

FVC2000 DB2 advances from 91.96% (Trivedi) to 95.10% 

(Proposed). 

 

       This enhancement is ascribed to the evolutionary 

algorithm-driven pruning of CNN feature maps, which 

retains only the most discriminative ridge patterns while 

discarding noise and redundant activations. This method 

provides significant cross-sensor resilience and minimizes 

overfitting, thereby bridging the persistent gap in the 
development of fingerprint verification models that function 

consistently across various sensors, resolutions, and degraded 

inputs. 

● Previous work across all subsets, especially in low-

performance areas for older models (e.g., FVC2004 

DB2: +6.02% compared to Baghel et al.). 

● On the FVC2000 DB2 dataset, the technique bridges the 

historical divide between ridge-based and CNN 

methodologies, surpassing Trivedi’s 91.96% by 6.14%. 

● The accuracy is evenly distributed across subsets, 

demonstrating strong cross-sensor generalization instead 

of overfitting particular datasets.

  
Table 4.  Recognition accuracy comparison with State-Art-Method 

Datasets Proposed 
Trivedi et al. 

(2018) [9] 

Baghel et al 

[32] 

Martins et al et 

al [33] 

FCV2000 DB1 98.10% 93.19% - 97.75% 

FCV2000 DB2 98.10% 91.96% 97.91% 97.75% 

FCV2000 DB3 98.10% 97.49% — 97.75% 

FCV2000 DB4 98.00% 95.49% — 97.75% 

FCV2002 DB1 98.96% 98.00% 98.75% 98.38% 

FCV2002 DB2 98.96% — 98.92% 98.38% 

FCV2002 DB3 98.96% — 94.05% 98.38% 

FCV2000 DB4 98.96% — 97.78% 98.38% 

FCV2004 DB1 96.08% — 91.05% 96.01% 

FCV2004 DB2 96.20% — 90.18% 96.01% 

FCV2004 DB3 96.07% — — 96.01% 

FCV2004 DB4 96.20% — — 96.01% 
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The suggested strategy consistently surpasses or equals. 

This enhancement arises from the integration of VGG16 with 

the Genetic Algorithm (GA), whereby GA-induced pruning 

eliminates superfluous CNN filters while preserving high-

discriminative ridge features. This combination results in less 

overfitting, enhanced resilience, and competitive 

performance, even on the most difficult fingerprint subsets. 

 

 
Fig. 9 Performance comparison with other standard methods 

 
A grouped bar chart is shown in Figure 9, indicating the 

accuracy of the detection across different fingerprint datasets. 

The results clearly show that our approaches are more 

accurate. 

 

5. Conclusion 
 This study presents an innovative, end-to-end approach 

to fingerprint matching. The Finger ConvNet architecture is 

trained to extract fingerprint aspects from fingerprint images 

using the VGG16 framework. Using these characteristics, a 

trained binary neural network classifier with an optimized 

genetic approach can determine whether or not two 

fingerprints represent the same finger. In addition, the 

direction of optimization of the connection feature cannot be 

determined because of the unknown feature of the neural 

network extraction. In order to solve the aforementioned 

problem, we provide an Optimized selection of a genetic 

algorithm to optimize multimodal characteristics. Genetic 

algorithms allow for the adaptive optimization of 

concatenated characteristics and the extraction of the 

differences between authentic and fake fingerprint images. 

For instance, using different fingerprint databases, our 

contact-to-contactless matcher consistently achieves an EER 

of less than 1%. When compared to other State-of-the-Art 

techniques, the ACE for our suggested approach is an 

extremely acceptable 1.3. Future work proposes to use 

additional preprocessing approaches in combination with 

thorough hyper-parameter optimization to further enhance 

classification performance and the generalization potential of 

CNN architectures. We will utilize additional fingerprint 

databases to speed up feature extraction, minimize the 

processing time per image, and boost recognition accuracy. 
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