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Abstract - Since the onset of the COVID-19 pandemic, more than 700 million people have been impacted by the disease, and 

more than 7 million people have died, underlining the necessity of quickly and efficiently identifying and diagnosing the disease 

in controlling its spread. Despite the immense progress, conventional methods of testing usually experience the drawback of 

being too slow, accessible, and imprecise, especially within resource-limited settings. Existing COVID-19 classification models 

based on Artificial Intelligence (AI) are affected by noise interference of the medical images, sub-optimal segmentation, and 

inefficient feature selection, all of which contribute to a low reliability of diagnosis. To overcome these challenges, the novel 

CT-CXR-COVID-19 Classification Network (CT-CXR-Net) method begins with Block-Matching and 3D filtering (BM3D) 

denoising to effectively eliminate complex noise patterns, ensuring high-quality input for further analysis. An Optimal U-Net 

(OU-Net) segmentation model is employed, whose loss is minimized using Modified Grey Wolf Optimization (MGWO), leading 

to precise lung region extraction. Subsequently, ResNet50 is utilized for deep feature extraction, capturing complex and 

informative patterns from both Computer Tomography (CT) and Chest X Ray (CXR) images. To reduce feature dimensionality 

and enhance classification performance, Improved Brown Bear Optimization (IBBO) is adopted for optimal feature selection. 

Finally, a Ridge Classifier provides robust and efficient classification, maintaining a balance between bias and variance. This 

approach achieves exceptional results on separate datasets, with the CT dataset recording 100% accuracy, while the CXR 

dataset achieves 99.30% accuracy, 99.60% precision, and 99.95% recall and F1-score, demonstrating its potential for reliable 

and high-performance COVID-19 diagnosis. 

Keywords - BM3D denoising, COVID-19 detection, medical image classification, Modified Grey Wolf Optimization, U-Net 

segmentation. 

 

1. Introduction 
Since late 2019, COVID‑19 has surpassed 700 million 

confirmed cases and produced over 7 million deaths globally, 

marking one of the most devastating pandemics in modern 

history [1]. Its rapid transmission, driven by asymptomatic 

spread and variants of concern, has placed unparalleled 

pressure on healthcare systems, revealing a critical need for 

fast, accurate, and scalable diagnostic tools to manage disease 

progression and prevent further casualties. 

Conventional diagnostic approaches [2], such as 

radiologist-interpreted imaging, have faced significant 

challenges. RT‑PCR testing delays and variable Sensitivity 

hinder timely detection, particularly in asymptomatic and 

early-stage cases [3]. Meanwhile, radiological analysis of 

chest CT and CXR scans depends heavily on clinician 

expertise, leading to inconsistent results, high workloads, and 

limited access, especially in under-resourced settings. To 

address these limitations, several companies have developed 

AI-integrated medical imaging solutions. Infervision’s AI-

powered CT tool [4], deployed in over 34 Chinese hospitals, 

flagged signs of COVID‑19 pneumonia within seconds from 

thousands of scans. US-grown Aidoc’s AI triage system, 

FDA-approved for chest CT scans, is now in use in more than 

1,500 imaging centers globally, including Yale New Haven 

and Cedars‑Sinai. Additionally, Alibaba’s cloud-based CT 

analysis system [5] reached diagnosis speeds of around 20 

seconds with 96 % accuracy across 26 hospitals. These 

examples demonstrate industry-scale strides in integrating AI 

for rapid and accurate imaging support. Hospitals worldwide 

have begun adopting AI-augmented imaging tools to assist 

clinical workflows. Zhongnan Hospital of Wuhan University 

deployed Infervision’s CT software to triage and isolate 

suspected cases early in the outbreak [6]. In South Korea and 

Brazil, Lunit’s CXR AI solution [7] supported radiologists in 

high-volume COVID‑19 screening. Meanwhile, Minnesota 

hospitals conducted prospective validation of interpretable 

CXR AI tools across 12 institutions, demonstrating specificity 

and sensitivity improvements during real-time clinical use. 

Academic institutions and multinational hospital networks 
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have pursued rigorous AI research [8] in thoracic imaging-a 

deep-learning CT community pneumonia across diverse 

patient cohorts. An ensemble CXR network in Italy achieved 

98 % sensitivity and 94 % AUC, outperforming radiologists 

on independent test sets [9]. A Minnesota-based prospective 

observational study found AI CXR tools supported clinical 

decision-making across 12 hospitals, though emphasized they 

should augment, not replace, clinical judgment. These efforts 

showcase AI's growing role in diagnostic accuracy and 

workflow integration. 

The remaining part of the paper is organized as follows: 

Section 2 has an outline of the literature survey with a 

highlight of the available methods. Section 2 clears up the 

suggested CT-CXR-Net structure, Section 3 examines the 

outcomes of experiments, and Section 4 ends the study. 

2. Literature Survey  
This section reviews recent methodologies exhausting 

both CXR and CT datasets, highlighting their strengths and 

limitations. It helps identify critical research gaps that guide 

the novel contributions of the proposed work. 

2.1. Related Work on CXR Dataset 

Patnaik et al. [10] proposed a Convolutional Neural 

Network (CNN)-based model named ReSqNet; they included 

residual and squeeze‑excitation blocks to enhance feature 

extraction and spatial attention. However, gradient vanishing 

occurred due to very deep network layers. Olowolayemo et al. 

[11] proposed a mortality risk prediction model using fused 

CNN‑extracted image features with structured health 

variables to generate risk scores. However, image‑derived 

features lacked discriminative power due to poor feature 

correlation. Thilagavathi et al. [12] proposed multi‑level 

convolutional filters and channel‑wise attention. However, 

segmentation boundaries lacked precision when local features 

were weak. Agarwal and Arya [13] proposed CXRNet, a CNN 

enhanced with attention modules to focus on disease‑relevant 

regions and suppress background noise. The feature maps 

showed redundancy due to a lack of feature selection. 

 Jacob and Lal [14] proposed C19XNet, a multiclass 

model that classified lungs using a tandem of parallel CNN 

paths and decision fusion. The model suffered slow 

convergence due to a late fusion strategy. Roy et al. [15] 

proposed a pooling‑based Vision Group Geometry (VGG) 

Lite network tailored to detect outcomes; it replaced 

max‑pooling with hybrid pooling to preserve spatial 

information.  

The high-dimensional output led to increased classifier 

overhead. Alotaibi et al. [16] developed a CNN model with a 

modified ResNet-50. Their method achieved strong accuracy 

but required significant computing resources due to extensive 

convolutional layers.   

Singh et al. [17] proposed Deep CP CXR, a deep learning 

model combining dual-path convolution modules for feature 

fusion. The overlapping feature boundaries led to 

classification ambiguity. Fu et al. [18] proposed 

LungMaxViT, an explainable hybrid Vision Transformer 

(ViT) structure integrating CNN initial blocks with Squeeze-

and-Excitation (SE) modules to classify multiple diseases. 

The model still extracted noisy features due to a lack of 

explicit feature pruning. Padmavathi & Ganesan [19] 

proposed a ViT-based severity detection model optimized 

through metaheuristic techniques on multimodal COVID-19 

images. Here, high performance came at the cost of increased 

compute complexity.  

Pal et al. [20] proposed a comparative study exploring 

models, including ensemble methods. The feature-level 

misalignment reduced multiclass performance. Wang et al. 

[21] proposed TMscNet, a deep network with multiple 

information interaction layers to integrate spatial and 

contextual features. The model suffered from feature overlap 

due to the absence of effective feature selection. Ameta et al. 

[22] combined DenseNet 121, a densely connected CNN, with 

a Support Vector Machine (SVM), leveraging rich feature 

reuse and margin-based decision boundaries. The elevated 

feature dimensionality increased computational complexity. 

Islam [23] employed a genetic algorithm to optimize layer 

configurations and freezing strategies in CNNs for low-cost 

disease detection, targeting efficient model design. The model 

suffered inconsistent feature alignment across tuned layers. 

Kumar et al. [24] introduced a hybrid VGG16 enhanced with 

texture rectified cross attention to combine CNN and attention 

mechanisms; it emphasized both local textures and global 

context. The transformer extracted noisy texture features due 

to a lack of feature pruning. M. R et al. [25] used advanced 

InceptionV3 techniques and optimal weight initialization 

methods to classify COVID-19. The pretrained feature 

misalignment reduced classification consistency. 

2.2. Related Work on CT Dataset 

Balasamy and Seethalakshmi [26] proposed HCO‑RLF, 

which fused recurrent learning via a hybrid optimization 

framework. The framework increased feature redundancy due 

to a lack of dimensionality control. Kordnoori et al. [27] 

designed a deep learning framework that processed raw CT 

scans end-to-end for accurate COVID‑19 classification.  

It demonstrated strong detection rates but suffered from 

over-parameterisation. Sahu and Kashyap [28] proposed 

FINE_DENSEIGANET, a hybrid model that integrated 

GAN‑based data augmentation with DenseNet to improve CT 

classification. Here, feature noise persisted due to unrefined 

synthetic content. Alharbi and Ahmad [29] presented the 

DI‑QL approach, which incorporated quantum gates 

(Hadamard and coupling). Here, unpruned features led to 

increased classifier variance. 
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 Fathy and Abdel‑Kader [30] developed a method that 

applied meta‑heuristic feature selection on deep CT image 

descriptors before classification. The feature inconsistency 

reduced stability in classification performance. Pham et al. 

[31] proposed XCT‑COVID, a deep transfer learning 

framework augmented with Explainable AI (XAI) tools to 

diagnose COVID‑19. The XAI outputs highlighted broad 

areas, which reduced feature localization precision, affecting 

interpretability.  Antunes et al. [32] developed CTCovid19, 

fine‑tuning ResNet50 on CT scans with added classification 

layers. The fine‑tuned network centralized on deep features 

without any feature selection, which increased model 

redundancy.  

Kordnoori et al. [33] introduced the LungXpertAI 

network that jointly performed segmentation and COVID‑19 

classification. The joint training caused feature conflicts, 

which reduced classification accuracy due to competing task 

objectives. Rezvani et al. [34] proposed FusionLungNet, 

combining multi‑scale feature fusion. The fused multi‑scale 

pipelines generated excessive feature maps, significantly 

increasing computational overhead. Padmavathi & Ganesan 

[19] integrated a ViT model with metaheuristic optimizers to 

classify severity using multimodal COVID‑19 images, 

enhancing feature interaction and adaptive weighting. The 

transformer architecture required high computational 

resources, which lowered processing efficiency.  

Suseela and Parekh [35] proposed an Attention‑CNN 

model that used pixel‑level attention mechanisms on chest CT 

images to focus on COVID‑impact regions and improve 

diagnostic performance. It extracted redundant attention 

features due to the absence of feature selection. Appati et al. 

[36] proposed a bootstrapped ViT‑B/16 model, which applied 

ViT pretraining and bootstrap aggregation for SARS 

detection. The transformer model suffered from noisy feature 

interference due to the lack of dimensionality reduction. 

Chowa et al. [37] proposed a VGG19 model that combined 

dense connectivity with neuro‑fuzzy reasoning to classify 

COVID‑19, delivering adaptive rule‑based predictions. It 

suffered from unrefined neuro‑fuzzy features, causing 

classification inconsistency.  

Tan, Nurlaila et al. [38] proposed a lightweight VGG16 

model designed for lung lesion segmentation in COVID‑19 

CTs, balancing model depth and resolution for accurate lesion 

delineation. The segmentation exhibited weak feature 

localization for minor lesions. Singh and Retinderdeep [39] 

proposed a hybrid deep CNN capable of diagnosing 

COVID‑19, with InceptionV3, which included a heat map for 

disease region explanation. The model’s high feature 

dimensionality increased computational complexity. 

2.3. Research Gaps 

The research gaps identified from the research are as 

follows 

 Most existing works lack a complete pipeline that 

combines all critical stages: preprocessing, feature 

extraction-selection, and classification. Instead, many 

focus only on one or two stages, limiting overall system 

performance. This affects robustness and end-to-end 

accuracy. 

 Very few studies have explored COVID-19 detection 

using CT and CXR datasets together. Most research 

targeted either CT or CXR independently, missing the 

opportunity to develop a unified, multi-modal diagnostic 

framework that enhances reliability. 

 Current segmentation methods often rely on pre-trained 

weights or manual tuning, without using nature-inspired 

optimization to fine-tune segmentation parameters. This 

results in suboptimal region separation, affecting 

downstream feature quality. 

 Advanced feature selection approaches like IBBO are not 

integrated into existing pipelines. Most models depend on 

basic selection methods, which fail to reduce feature 

redundancy effectively or optimize classifier input for 

better accuracy. 

 

2.4. Novel Contributions 

To overcome those research gaps, the novel contributions 

of the work are defined as follows: 

 A novel CT-CXR-Net was developed with various 

pipelined stages with both datasets to improve 

classification performance. 

 An OU-Net is optimized using MGWO for better 

boundary extraction to achieve precise lung region 

segmentation. 

 ResNet50 is integrated for both CT and CXR images to 

extract deep, informative features, improving pattern 

recognition. 

 IBBO is used to enhance classification accuracy and 

select the most relevant features. 

 A Ridge Classifier is deployed to ensure reliable and 

balanced diagnosis, effectively managing bias and 

variance in predictions. 

 

3. Proposed CT-CXR -Net 
The proposed CT-CXR-Net introduces a unique 

combination of advanced denoising, segmentation, feature 

extraction, and selection techniques, which have not been 

presented collectively in any existing surveys for COVID-19 

detection. This approach addresses the critical drawbacks 

identified in current literature, such as a lack of robust noise 

removal in medical images, sub-optimal segmentation 

accuracy, inefficient feature reduction, and inconsistent 

classification performance. Figure 1 shows the proposed CT-

CXR-Net system architecture. This method forms an entirely 

new diagnostic pipeline by integrating BM3D denoising, 

optimal U-Net segmentation with MGWO, ResNet50-based 

deep feature extraction, IBBO for feature selection, and a 

Ridge Classifier.  
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3.1. Step 1: Image Acquisition 
The methodology begins with the collection of two 

separate datasets, one comprising CT images and the other 

containing CXR images. Both datasets are processed 

independently to evaluate the model’s performance across 

different imaging modalities used for COVID-19 detection. 

3.2. Step 2: BM3D Denoising 
Medical images often suffer from high-frequency noise, 

which can distort important diagnostic features. To address 

this, BM3D denoising is applied as a preprocessing step. Thus, 

ensuring cleaner and more reliable inputs for further 

processing. 

3.3. Step 3: Optimal U-Net Segmentation with MGWO 
U-Net segmentation is employed following denoising. 

MGWO is integrated to fine-tune the U-Net loss function to 

enhance segmentation precision. MGWO dynamically adjusts 

the hyperparameters to minimize segmentation loss, ensuring 

that lung regions are accurately isolated, reducing false 

detection from irrelevant areas. 

3.4. Step 4: ResNet50 Deep Feature Extraction 
Once the lung regions are segmented, ResNet50, a 

powerful deep CNN, is utilized for feature extraction. 

ResNet50 captures intricate hierarchical features from both 

CT and CXR images, providing deep, discriminative 

representations crucial for differentiating COVID-19-infected 

cases from healthy ones. 

3.5. Step 5: IBBO for Feature Selection 
Deep features often contain redundant or irrelevant 

information, which can hinder classification performance. To 

overcome this, the IBBOs algorithm is applied to optimize 

feature selection. IBBO enhances traditional Brown Bear 

Optimization by improving exploration and exploitation 

balance, leading to the selection of the most relevant and non-

redundant features while reducing computational overhead. 

 
Fig. 1 Proposed CT-CXR-Net system architecture 

3.6. Step 6: Ridge Classifier 
The Ridge Classifier provides a stable and efficient 

classification mechanism, distinguishing COVID-19 positive 

and negative cases with high accuracy and generalizability 

across both CT and CXR datasets. 

3.7. BM3D Denoising 

Unlike basic filters that often blur edges and details, 

BM3D utilizes a combination of block matching, 3D 

collaborative filtering, and transform-domain thresholding, 

which allows for effective noise suppression while preserving 

structural information. Its unique approach of grouping 

similar patches across the image and applying joint filtering in 

a high-dimensional domain enhances sparsity, leading to 

superior denoising performance without sacrificing image 

quality. This results in clearer, more reliable medical images, 

essential for accurate diagnosis, especially when dealing with 

complex patterns in COVID-19-affected lung regions. 

Figure 2 shows the proposed BM3D Denoising flowchart. 

Initially, the process begins by inputting either a CT or CXR 

image, which typically contains noise due to acquisition or 

transmission limitations, particularly in medical imaging. To 

ensure uniformity, the input image undergoes normalization 

to scale pixel intensity standards within a normal range, often 

[0, 1] or [0, 255]. Additionally, resizing performed to maintain 

consistent dimensions across the Dataset improves the 

efficiency of further processing steps. Let I𝑖𝑛𝑝𝑢𝑡(x, y) is 

original data and I𝑛𝑜𝑟𝑚(x, y) is normalized data: 

 

𝐼𝑖𝑛𝑝𝑢𝑡(𝑥, 𝑦) =
𝐼𝑖𝑛𝑝𝑢𝑡(𝑥,𝑦)−𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛
    (1) 

The normalized image is divided into small overlapping 

patches (blocks), and similar patches across the image are 

identified using a similarity metric (e.g., Euclidean distance).  

These similar patches are grouped into a 3D array for joint 

processing, which increases the redundancy essential for 

effective denoising. Mathematically, for a reference patch 𝑃𝑟  

and candidate patch 𝑃𝑐: 

𝐷(𝑃𝑟 , 𝑃𝑐) = √∑ (𝑃𝑟(𝑖) − 𝑃𝑐(𝑖))
2𝑁

𝑖=1       (2) 

Here, 𝐷 is the distance metric, and patches satisfying 𝐷 <
𝜏 are grouped together. The grouped similar patches are 

transformed into a sparse domain using a combination of a 2D 

Discrete Cosine Transform (DCT) for spatial decorrelation 

within each patch and a 1D transform along the grouped 

dimension.  

 

This enhances sparsity, making distinguishing noise from 

actual image content easier. For a patch 𝑃(𝑥, 𝑦), the 2D DCT 

is: 

𝐶(𝑢, 𝑣) =

∑ ∑ 𝑃(𝑥, 𝑦). cos (
𝜋(2𝑥+1)𝑢

2𝑁
) 𝑐𝑜𝑠 (

𝜋(2𝑦+1)𝑣

2𝑁
)𝑁−1

𝑦=0
𝑁−1
𝑥=0           (3) 
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Fig. 2 Proposed BM3D denoising flowchart 

In the transformed domain, collaborative filtering is 

applied to suppress noise. Two filtering methods are 

commonly used, such as hard threshold-based Wiener 

filtering. A statistical approach that weights the coefficients 

based on estimated signal and noise variances. 

𝐶′(𝑢, 𝑣) = {
𝐶(𝑢, 𝑣), 𝑖𝑓 |𝐶(𝑢, 𝑣)| ≥ 𝑇

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    (4) 

Here, 𝑇 is the hard threshold value, 𝐶′(𝑢, 𝑣) is the filtered 

outcome. The filtered patches are transformed back to the 

spatial domain using inverse 2D DCT and inverse 1D 

transform, reconstructing each patch in its denoised form. The 

inverse DCT: 

𝑃′(𝑥, 𝑦) =
1

𝑁
∑ ∑ 𝐶′(𝑢, 𝑣). cos (

𝜋(2𝑥+1)𝑢

2𝑁
) 𝑐𝑜𝑠 (

𝜋(2𝑦+1)𝑣

2𝑁
)𝑁−1

𝑣=0
𝑁−1
𝑢=0         (5) 

Finally, overlapping denoised patches are aggregated by 

averaging to produce the final denoised image. This 

overlapping mechanism enhances reconstruction quality by 

reducing block artifacts. If multiple estimates 𝑃′(𝑥, 𝑦) 

Overlap at a pixel location, the aggregated output is: 

𝐼𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑(𝑥, 𝑦) =
∑ 𝑤𝑖

𝑀
𝑖=1 .  𝑃′(𝑥,𝑦)

∑ 𝑤𝑖
𝑀
𝑖=1

    (6) 

Where 𝑤𝑖  There are weights based on the confidence of 

each patch estimate. The final denoised image 𝐼𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑(𝑥, 𝑦) 

It is produced, significantly reducing noise while preserving 

critical diagnostic details, making it suitable for precise 

medical analysis in the subsequent steps of the proposed 

methodology. 

3.8. Proposed OU-Net Segmentation 

The proposed OU-Net offers significant advantages over 

conventional U-Net and other segmentation models by 

integrating MGWO for dynamic weight optimization, which 

is often absent in existing methods. Traditional U-Net relies 

on fixed or manually tuned weights, which can lead to sub-

optimal segmentation, especially in complex medical images 

like CT or CXR scans with low contrast or noise. In contrast, 

OU-Net continuously adjusts the network weights through an 

iterative optimization process inspired by grey wolf hunting 

behavior, allowing the model to minimize segmentation loss 

more effectively.  

This results in more precise lung region segmentation, 

better boundary detection, and improved overall performance, 

particularly for COVID-19 diagnosis. Additionally, OU-Net 

provides enhanced stability, faster convergence, and greater 

adaptability to varying datasets compared to static or purely 

deep learning-based approaches, making it highly reliable for 

real-time medical image segmentation tasks. Figure 3 shows 

the proposed OU-Net segmentation flowchart. The system 

begins with the input of preprocessed medical images 

(CT/CXR) of dimension 64×64×3, representing RGB or 

grayscale images resized for uniformity across the Dataset. 

3.8.1. OU-Net Encoder 

The OU-Net architecture initiates with the encoder path, 

where the input image undergoes successive convolutional 

layers and pooling operations to extract hierarchical features 

while reducing spatial dimensions. 

𝐹𝑖,𝑗
(𝑙)

= 𝜎 (∑ 𝐼𝑚,𝑛
(𝑙−1)

. 𝐾𝑚,𝑛
𝑁−1
𝑚,𝑛 + 𝑏)  (7) 

Here, 𝐹𝑖,𝑗
(𝑙)

 Is the feature map at layer 𝑙,  𝐼𝑚,𝑛
(𝑙−1)

 Is input 

from the previous layer, 𝐾 is the convolutional kernel, b is the 

bias term, 𝜎 is the Rectified Linear Unit (ReLU). The output 

of the encoder captures essential features required for 

segmentation. At the bottleneck layer, the most abstract. This 

contains critical spatial and semantic information, but in a 

reduced form. 

3.8.2. MGWO Initialization (Metaheuristic Weight 

Assignment) 

Simultaneously, MGWO initializes a population of 

"wolves," where each wolf represents a possible set of U-Net 

weights.  

MGWO mimics grey wolf hunting behavior with 

modified operators. Each wolf's fitness is estimated based on 

a validation set's segmentation performance (loss function). 

3.8.3. Fitness Evaluation (Loss Calculation) 

The fitness of each wolf (weight set) is assessed by 

calculating the segmentation dice loss.  

𝐿𝐷𝑖𝑐𝑒 = 1 −
2𝑥|𝑃∩𝐺|

|𝑃|+|𝐺|
    (8) 

Here, 𝑃 is the predicted mask, 𝐺 is the ground truth mask. 

Lower loss indicates better fitness, guiding the optimization 

process. 
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Fig. 3 Proposed OU-Net segmentation flowchart 

3.8.4. Global Best Identification 

MGWO identifies the global best position (i.e., the best-

performing set of U-Net weights) among the current 

population, which represents the most optimal segmentation 

capability at that iteration. 

3.8.5. Wolf Position Update (Weight Optimization) 

The positions (weights) of the wolves are updated using 

MGWO-specific equations inspired by social hierarchy and 

hunting strategies. Modified Grey Wolf Optimization 

enhances the standard GWO with improved convergence 

behavior. The update equations: 

𝐷𝛼 =∣ 𝐶1 ⋅ 𝑋𝛼 − 𝑋 ∣      (9) 

𝑋1 = 𝑋𝛼 − 𝐴1 ⋅ 𝐷𝛼      (10) 

Here, 𝑋𝛼 The position of the best wolf, 𝑋 is the current 

wolf position, 𝐴1, 𝐶1 The coefficients controlling exploration 

and exploitation. These updates guide the weights toward 

globally optimal values. 

3.8.6. Convergence Check 

Upon termination, the optimal set of U-Net weights, 

determined through MGWO, is applied to the segmentation 

model. These weights yield the most accurate lung region 

masks with minimized loss, improving segmentation precision 

over standard U-Net training. 

3.8.7. OU-Net Decoder 

With optimized weights, the U-Net decoder performs 

upsampling and feature reconstruction, restoring the image to 

its original dimensions while generating an accurate 

segmentation mask highlighting the lung regions. This 

facilitates precise isolation of affected areas, critical for 

downstream COVID-19 classification. 

3.9. ResNet50 Feature Extraction 

ResNet50 offers clear advantages over traditional CNNs 

by introducing residual connections, which effectively solve 

the vanishing gradient problem that often limits the depth and 

performance of deep models. 

Unlike standard CNNs, where increasing layers can 

degrade accuracy, ResNet50 allows for much deeper 

architectures by enabling shortcut paths that carry information 

forward, preserving both low-level and high-level features. 

This results in more stable training, faster convergence, and 

better generalization on complex tasks like medical image 

analysis. Additionally, its bottleneck design reduces 

computational complexity without compromising 

performance, making ResNet50 both efficient and highly 

effective for extracting detailed, discriminative features. 

Figure 4 shows the proposed ResNet50 feature extraction 

flowchart. Channels are adjusted or replicated for grayscale 

medical images like CT or CXR scans to fit this dimension. 

 
Fig. 4 Proposed ResNet50 feature extraction flowchart

3.9.1. Initial Convolution and Down-sampling 

Mathematically, the convolution operation is: 

𝐹𝑖,𝑗,𝑘 = ∑ 𝐼𝑚,𝑛,𝑐 . 𝐾𝑖−𝑚,𝑗−𝑛,𝑐,𝑘
𝑁−1
𝑚,𝑛,𝑐 + 𝑏𝑘   (11) 

Here, 𝐹𝑖,𝑗,𝑘 Is the output feature map at position (𝑖, 𝑗) and 

filter 𝑘, 𝐼𝑚,𝑛,𝑐 Is input data pixels, 𝐾 is the convolution kernel, 

𝑏𝑘 It is a biased term. The Batch Normalization and ReLU are 

used to normalize activations and introduce non-linearity. 
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3.9.2. Max Pooling Layer 

A 3×3 max pooling layer, while retaining the most 

prominent activations. This focuses on strong feature 

responses for downstream layers. 

3.9.3. Conv2-x with Identity Block 

This stage applies a combination of convolutional blocks 

and identity blocks, implementing skip connections and 

preventing degradation in deep networks. The residual 

mapping is expressed as: 

𝐻(𝑥) = 𝐹(𝑥, {𝑊𝑖}) + 𝑥    (12) 

Here, 𝐹(𝑥, {𝑊𝑖}) Contains non-linear transformations 

including convolutions, activations, and 𝑥 is a shortcut 

connection (input). The Output size remains 56×56, with 64 

feature channels. 

3.9.4. Conv3-x with Identity Block 

This block applies deeper convolutions with increasing 

filters (128 channels), and identity mappings to preserve 

gradient flow. Output dimensions are reduced to 28×28, 

capturing more abstract patterns and structural features. 

3.9.5. Conv4-x with Identity Block 

With additional convolutional and identity blocks, filters 

increase to 256, and spatial dimensions reduce to 14×14. This 

stage captures complex features such as shapes, patterns, and 

relevant high-level structures crucial for tasks like detecting 

lung anomalies in CT/CXR images. 

3.9.6. Conv5-x with Identity Block 

The deepest layer applies residual learning with 512 

filters, reducing the feature maps to 7×7 spatial dimensions, 

encoding highly abstract, discriminative representations 

essential for classification or detection. 

3.9.7. Global Average Pooling (GAP) 

A GAP layer compresses the 7×7×2048 feature map into 

a 1×2048 vector by averaging each feature map: 

𝐺𝐴𝑃𝑘 =  
1

𝑀∗𝑁
∑ ∑ 𝐹𝑖,𝑗,𝑘 𝑀−1

𝑗=1
𝑁−1
𝑖=1    (13) 

Here, 𝐹𝑖,𝑗,𝑘 Is the activation. The resulting 2048-

dimensional feature vector is extracted as the deep feature 

representation of the input data. This rich feature set was 

highly discriminative and passed to the IBBO feature selection 

procedure. 

3.10. IBBO Feature Selection 

The IBBO feature selection method offers distinct 

advantages over traditional selection techniques by combining 

both exploration and exploitation in a more balanced, adaptive 

way. Unlike conventional methods that get trapped in local 

optima or depend heavily on random search, IBBO simulates 

brown bears' intelligent foraging and social behaviors to refine 

feature subsets dynamically. This results in better 

convergence speed, higher chances of finding globally 

optimal solutions, and reduced feature redundancy. By 

selecting only the most relevant and non-redundant features 

efficiently, IBBO enhances classification performance, lowers 

computational complexity, and significantly improves model 

generalization, especially in high-dimensional datasets like 

medical imaging or deep feature spaces.  

Figure 5 shows the proposed IBBO feature selection 

flowchart. The process begins by defining the feature search 

space using deep features extracted from ResNet50. Assume 

there are 𝑁 total features, and each potential feature subset is 

represented as a binary vector: 

𝑆 = [𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑁]    (14) 

Here, 𝑠𝑖 = 1  indicates the feature is selected, and 𝑠𝑖 = 0 

indicates exclusion. 

3.10.1. Bear Population Initialization 

A population of candidate solutions (bears) was primed, 

with each bear representing a different feature subset 𝑆. The 

population size is 𝑃, and each bear has its unique feature 

combination for evaluation. 

3.10.2. Fitness Function Definition 

A common fitness function balances classification 

accuracy and subset reduction: 

𝐹(𝑆) = 𝛼 × (1 − 𝐴𝑐𝑐(𝑆))  + 𝛽 × (
|𝑆|

𝑁
)   (15) 

Here, 𝐴𝑐𝑐(𝑆) is classification accuracy using subset 𝑆, |𝑆| 
The number of selected features, 𝑁 is the total features, 𝛼, 𝛽 

are weights to balance accuracy and subset size. 

3.10.3. Global Best and Personal Best Update 

The algorithm tracks the global best-performing bear 

(best feature subset) and each bear's personal best position to 

guide the optimization process. Here,𝐺𝑏𝑒𝑠𝑡  is the best feature 

subset, 𝑃𝑏𝑒𝑠𝑡 Is the personal best of bear 𝑖. 

3.10.4. Apply IBBO Operators 

Bears adjust their feature subset positions using two main 

behaviours. Foraging (Exploration), where bears randomly 

explore new regions of the search space.  

Socialization (Exploitation), where bears imitate 

successful peers to refine feature selection. Position updates 

are modelled as: 

𝑆𝑖
𝑛𝑒𝑤 = 𝑆𝑖

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝛾 × (𝑃𝑏𝑒𝑠𝑡
𝑖 − 𝑆𝑖

𝑐𝑢𝑟𝑟𝑒𝑛𝑡) + 𝛿 ×

(𝐺𝑏𝑒𝑠𝑡
𝑖 − 𝑆𝑖

𝑐𝑢𝑟𝑟𝑒𝑛𝑡)   (16) 
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Fig. 5 Proposed IBBO feature selection flowchart 

Here, 𝛾, 𝛿 are random factors controlling exploration and 

exploitation. Binary positions are discretized using a transfer 

function (e.g., sigmoid) to ensure feature inclusion/exclusion: 

𝑆𝑖
𝑛𝑒𝑤 = {

1, 𝑖𝑓 𝑟𝑎𝑛𝑑()  < 𝜎(𝑆𝑖
𝑛𝑒𝑤)

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (17) 

Here, 𝜎 is a sigmoid transfer function. 

3.10.5. Iterative Optimization Loop 

Repeat for a defined number of iterations or until 

convergence criteria are met (e.g., no significant fitness 

improvement). This ensures that bears continuously refine 

feature subsets to reach optimal solutions. Once maximum 

iterations are reached or convergence is achieved, the feature 

subset associated with the global best bear is selected for final 

model development. 

3.11. Ridge Classifier 

The Ridge Classifier offers a simple yet highly effective 

solution for handling high-dimensional data, especially when 

features are correlated or datasets have more features than 

samples. Figure 6 shows the proposed didge classifier 

flowchart. Unlike traditional classifiers that can easily overfit 

in such scenarios, this prevents the model from becoming 

overly complex. This leads to better generalization on unseen 

data. Additionally, it is computationally efficient, easy to 

implement, and particularly robust when dealing with 

multicollinearity or noisy features, for medical image 

classification, where interpretability and stability are crucial. 

3.11.1. Initiation 

The training phase begins with initializing the Ridge 

Classifier and providing the training dataset, consisting of a 

feature matrix 𝑋𝑡𝑟𝑎𝑖𝑛 ∈ 𝑅𝑚 𝑥 𝑛, label vector 𝑦𝑡𝑟𝑎𝑖𝑛 ∈ 𝑅𝑚 , here 

𝑚 is the number of samples, 𝑛 is the number of features. 

3.11.2. Set Regularization Parameter (α) 

The regularization strength α is set to control the trade-off 

between minimizing classification loss and penalizing large 

coefficient values. Higher α reduces model complexity, 

enhancing generalization. 

 
Fig. 6 Proposed ridge classifier flowchart 

3.11.3. Training 

The ridge classifier minimizes the L2-regularized loss 

function to find optimal model weights 𝑤. For binary 

classification, this often involves minimizing the following 

cost: 

𝐽(𝑤) = 𝐿(𝑦𝑡𝑟𝑎𝑖𝑛 , 𝑋𝑡𝑟𝑎𝑖𝑛 ⋅ 𝑤) + 𝛼|𝑊|2
2  (18) 

Here, 𝐿 is hinge loss for classification, |𝑊|2
2 is the sum of 

squared model coefficients (L2 penalty). This step ensures 

both accurate classification and prevents overfitting by 

discouraging large weights. 

3.11.4. Prediction Phase 

Once the loss is minimized, the model outputs the learned 

coefficients 𝑤, which are the optimized weights assigned to 

each feature, reflecting their contribution to the prediction. 

Predictions are computed by applying the learned weights 𝑤 

to the test feature set: 
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𝑧 = 𝑋𝑡𝑒𝑠𝑡 ⋅ 𝑤      (19) 

Here, 𝑧 represents the raw prediction scores for each test 

sample. A decision function is applied to the prediction scores. 

For binary classification, this usually involves applying the 

sigmoid function: 

𝑦̂ = {
1, 𝑖𝑓 𝜎(𝑧) > 0.5
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    (20) 

Here, 𝜎(𝑧) is the sigmoid activation. The predicted class 

labels 𝑦̂ They are generated as the final output, indicating the 

model’s classification decision for each test sample (e.g., 

COVID-19 positive or negative). 

 

4. Results and Discussion 
The section presents a comparative analysis of different 

methods evaluated on the same CT and CXR datasets. It 

highlights performance variations across models using 

standard metrics. 

4.1. Datasets 

4.1.1. CT Dataset 

The CT-based COVID-19 dataset of a total of 1229 

images of the COVID-19 class and 1229 cases of COVID-19 

not being present in the downloaded data. To access the 

Dataset, follow this link 

https://www.kaggle.com/datasets/plameneduardo/sarscov2-

ctscan-dataset?resource=download  

4.1.2. CXR Dataset 

A group of researchers from Qatar University, Doha, 

Qatar, and the University of Dhaka, Bangladesh, together with 

their partners in Pakistan and Malaysia, in association with 

medical doctors, have prepared a collection of subjects of 

CXR images of COVID-19 positive persons, as well as 

Normal and Viral Pneumonia images. The data on COVID-

19, normal, and other infection datasets of the lungs are 

published in phases.  

In this initial release, we have published 219 COVID-19, 

1341 normal and 1345 viral pneumonia CXR images. In the 

first update, we have augmented the COVID-19 category up 

to 1200 CXR images. The 2 nd update uses 3616 COVID-19 

positive cases, 10,192 Normal, 6012 Lung Opacity (COVID 

lung infection) and 1345 Viral Pneumonia images with their 

lung masks. 

https://www.kaggle.com/datasets/anasmohammedtahir/covid

qu  

4.2. Results on CT Dataset 

This section gives the detailed results of the proposed CT-

CXT-Net with various stages on the CT dataset, including 

preprocessing, segmentation, and classification stages. 

4.2.1. Preprocessing Results 

Figure 7 illustrates the effect of BM3D denoising along 

with various data augmentation operations on CT images. The 

first set shows how noisy input images are rotated before and 

after BM3D denoising, highlighting that the noise-free image 

preserves structural clarity even after rotation. The second set 

demonstrates contrast enhancement, where images after 

BM3D denoising undergo contrast adjustment, producing 

sharper visual outputs.  

Similarly, the final set displays intensity adjustment 

applied to both noisy and denoised images, confirming that 

BM3D preprocessing provides a cleaner foundation, leading 

to clearer intensity variations. These examples collectively 

demonstrate that BM3D denoising improves image quality 

and ensures data augmentation operations produce meaningful 

and reliable outputs for subsequent processing stages. 

Figure 8 demonstrates the effect of BM3D denoising 

combined with multiple augmentation techniques applied to 

CT images. The first column shows noisy input images, 

followed by their scaled output, where size adjustments are 

clearly visible with improved clarity after noise removal. The 

second set of images illustrates how BM3D-denoised outputs 

undergo scaling, ensuring that structural details remain sharp 

and noise-free even after resizing.  

Similarly, motion blur adjustments are applied to both 

noisy and denoised images, confirming that BM3D 

preprocessing significantly improves visual consistency even 

under simulated distortions.  

The final set highlights sharpening operations on noisy 

and denoised images, demonstrating that BM3D provides a 

cleaner base image, enhancing the effectiveness of 

sharpening, thereby preserving fine lung structures.  

 
Fig. 7 BM3D denoising results with data augmentation techniques 

https://www.kaggle.com/datasets/plameneduardo/sarscov2-ctscan-dataset?resource=download
https://www.kaggle.com/datasets/anasmohammedtahir/covidqu
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Fig. 8 BM3D denoising impact with various augmentation techniques on CT images 

Table 1 presents the Peak Signal-to-Noise Ratio (PSNR) 

with Wavelet Thresholding (WT) [40] and BM3D algorithms 

under different preprocessing techniques. For COVID-19 

images, the BM3D algorithm consistently provided higher 

PSNR values, indicating superior image quality, with 

61.86487 for rotation, 76.26048 for scaling, 82.28839 for 

contrast adjustment, 82.28839 for intensity adjustment, 

74.28114 for motion blur, 79.46884 for sharpening, and 

82.28839 for flipping.  

In comparison, WT [40] produced lower PSNR values 

with 55.60968 for rotation, 57.04691 for scaling, 51.05974 for 

contrast adjustment, 51.05966 for intensity adjustment, 

57.04691 for motion blur, 57.04691 for sharpening, and 

56.0276 for flipping. Similarly, for non-COVID-19 images, 

BM3D outperformed WT [40] across all methods, achieving 

61.51998 for rotation, 78.69673 for scaling, 84.90672 for both 

contrast and intensity adjustment, 78.81164 for motion blur, 

83.65212 for sharpening, and 84.90672 for flipping. In 

contrast, WT [40] resulted in comparatively lower PSNR 

values of 56.87786 for rotation, 58.84652 for scaling, 

52.85734 for contrast adjustment, 52.85687 for intensity 

adjustment, 58.84652 for motion blur, 58.84652 for 

sharpening, and 57.84639 for flipping. The results clearly 

demonstrate the superior denoising and quality preservation 

capability of the BM3D algorithm in preprocessing tasks. 

Table 2 presents the Structural Similarity Index Measure 

(SSIM) performance analysis under different preprocessing 

methods. The BM3D algorithm consistently achieved superior 

SSIM values compared to the WT method [40]. For COVID-

19 images, the BM3D algorithm recorded 0.745489 for 

rotation, 0.843516 for scaling, 0.840268 for both contrast and 

intensity adjustment, 0.696439 for motion blur, 0.919483 for 

sharpening, and 0.840268 for flipping.  

 

Table 1. PSNR performance analysis 

Method 

COVID-19 
Non-COVID-

19 

WT [40] BM3D 
WT 

[40] 
BM3D 

Rotation 55.609 61.864 56.877 61.519 

Scaling 57.046 76.260 58.846 78.696 

Contrast 

Adjustment 
51.059 82.288 52.857 84.906 

Intensity 

Adjustment 
51.059 82.288 52.856 84.906 

Motion Blur 57.046 74.281 58.846 78.811 

Sharpening 57.046 79.468 58.846 83.652 

Flipping 56.027 82.288 57.846 84.906 

 

In contrast, WT [40] resulted in lower SSIM values, with 

0.232125 for rotation, 0.564695 for scaling, 0.000159 for 

contrast adjustment, 0.000155 for intensity adjustment, 

0.564695 for motion blur, 0.564695 for sharpening, and 

0.224782 for flipping.  

 

Similarly, for Non-COVID-19 images, BM3D achieved 

SSIM values of 0.839128 for rotation, 0.909002 for scaling, 

0.909821 for both contrast and intensity adjustment, 0.855923 

for motion blur, 0.926469 for sharpening, and 0.909821 for 

flipping, while WT [40] produced 0.400267 for rotation, 

0.693541 for scaling, 0.000569 for contrast adjustment, 

0.000564 for intensity adjustment, 0.693541 for motion blur, 

0.693541 for sharpening, and 0.396578 for flipping. 

 

Table 3 shows the Mean Squared Error (MSE) 

performance, where lower values indicate better image 

quality. The BM3D algorithm consistently achieved the 

lowest MSE across all preprocessing methods. For COVID-

19 cases, BM3D yielded 0.042325 for rotation, 0.001538 for 
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scaling, 0.000384 for both contrast and intensity adjustment, 

0.002426 for motion blur, 0.000735 for sharpening, and 

0.000384 for flipping, significantly outperforming WT [40], 

which recorded 0.178695 for rotation, 0.128348 for scaling, 

0.509455 for contrast adjustment, 0.509464 for intensity 

adjustment, 0.128348 for motion blur, 0.128348 for 

sharpening, and 0.162301 for flipping.  

 

Similarly, for Non-COVID-19 cases, BM3D achieved 

0.045823 for rotation, 0.000878 for scaling, 0.00021 for both 

contrast and intensity adjustment, 0.000855 for motion blur, 

0.00028 for sharpening, and 0.00021 for flipping, while WT 

[40] recorded higher errors with 0.133443 for rotation, 

0.084806 for scaling, 0.33678 for contrast adjustment, 

0.336817 for intensity adjustment, 0.084806 for motion blur, 

0.084806 for sharpening, and 0.106768 for flipping. These 

results clearly indicate that the BM3D algorithm provides 

significantly improved image quality compared to WT [40] 

under all preprocessing conditions. 

Table 2. SSIM performance analysis 

Method 

COVID-19 
Non-COVID-

19 

WT 

[40] 
BM3D 

WT 

[40] 
BM3D 

Rotation 0.2321 0.7454 0.4002 0.8391 

Scaling 0.5646 0.8435 0.6935 0.9090 

Contrast Adjustment 0.0001 0.8402 0.0005 0.9098 

Intensity Adjustment 0.0001 0.8402 0.0005 0.9098 

Motion Blur 0.5646 0.6964 0.6935 0.8559 

Sharpening 0.5646 0.9194 0.6935 0.9264 

Flipping 0.2247 0.8402 0.3965 0.9098 

 
Table 3. MSE performance analysis 

Method 

COVID-19 Non-COVID-19 

WT 

[40] 
BM3D 

WT 

[40] 
BM3D 

Rotation 0.1786 0.0423 0.1334 0.0458 

Scaling 0.1283 0.0015 0.0848 0.00087 

Contrast 

Adjustment 
0.5094 0.00038 0.33678 0.00021 

Intensity 

Adjustment 
0.5094 0.00038 0.3368 0.00021 

Motion Blur 0.1283 0.0024 0.0848 0.00085 

Sharpening 0.1283 0.0007 0.0848 0.0002 

Flipping 0.16230 0.0003 0.1067 0.0002 

 

4.2.2. Segmentation Results 

Figure 9 illustrates the segmentation outcomes for 

COVID-19 CT images. Figure 9 (a) shows the original CT 

images containing lung regions with visible infection areas. 

Figure 9 (b) presents segmentation results obtained using the 

Convolutional Auto Encoder and Decoder (CAED) [41] 

method, which partially captures infection regions but lacks 

structural precision. Figure 9 (c) shows the proposed OU-Net 

integrated with MGWO, achieving accurate infection 

boundary extraction with fewer artifacts and improved region 

continuity. Figure 10 depicts the segmentation outcomes for 

non-COVID-19 CT images. Figure 10 (a) shows the original 

lung CT images without COVID-19-specific infections. 

Figure 10 (b) demonstrates the CAED [41] segmentation, 

which produces noticeable over-segmentation with irregular 

boundaries. Figure 10 (c) displays the proposed OU-Net with 

the MGWO approach, delivering precise lung structure 

segmentation with enhanced smoothness and minimal false 

detections. 

 
Fig. 9 Segmentation outcomes on COVID-19 CT images. (a)Original 

image, (b)CAED [41], and (c) Proposed OU-Net with MGWO 

 
Fig. 10 Segmentation outcomes on Non-COVID-19 CT images.                     

(a) Original image, (b) CAED [41], and                                                                       

(c) Proposed OU-Net with MGWO. 

Table 4 presents the Segmentation Performance Analysis 

on CT datasets using existing CAED [41] and the proposed 

OU-Net with the MGWO method. For COVID-19 images, the 

proposed OU-Net with MGWO achieved significantly higher 

Accuracy of 0.9899 compared to 0.7333 with CAED [41], 

while Sensitivity improved from 0.4631 to 0.9899, and 

Specificity increased from 0.5207 to 1. The Precision and 

Recall also saw considerable enhancement, both reaching 
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nearly 1 with the proposed method, compared to 0.8631 using 

CAED [41]. Similarly, the F1 score improved from 0.8631 to 

0.9949, the Jaccard Index from 0.7271 to 0.9949, and the Dice 

Score from 0.7836 to 1. For Non-COVID-19 images, OU-Net 

with MGWO again outperformed CAED [41], with Accuracy 

increasing from 0.7333 to 0.9987, Sensitivity from 0.4990 to 

0.9987, Specificity from 0.4037 to 1, Precision from 0.8990 to 

1, Recall from 0.8990 to 0.9987, F1-Score from 0.8990 to 

0.9993, Jaccard Index from 0.7309 to 0.9993, and Dice Score 

improving from 0.7836 to 1, clearly demonstrating the 

superiority of the proposed segmentation approach. 

Table 4. Segmentation performance analysis on CT dataset 

Metric 

COVID-19 Images 
Non-COVID-19 

Images 

CAED 

[41] 

OU-Net 

with 

MGWO 

CAED 

[41] 

OU-Net 

with 

MGWO 

Accuracy 0.733 0.9890 0.7333 0.9987 

Sensitivity 0.463 0.989 0.4990 0.9987 

Specificity 0.520 1 0.4037 1 

Precision 0.863 1 0.8990 1 

Recall 0.863 0.989 0.8990 0.9987 

F1-Score 0.8631 0.994 0.8990 0.9993 

Jaccard 

Index 
0.72717 0.994 0.7309 0.999379 

Dice Score 0.783 1 0.7836 1 

 

4.2.3. Classification Results 

Table 5 presents the overall Classification Performance 

Analysis on the CT dataset, comparing existing models with 

the proposed CT-CXR-Net. InceptionV3 [39] achieved 

90.75% accuracy, 90.76% precision, 90.75% recall, and 

90.75% F1-score. VGG16 [38] recorded slightly lower results 

with 89.23% accuracy, 89.78% precision, 89.23% recall, and 

89.17% F1-score. VGG19 [37] performed similarly with 

89.23% accuracy, 89.82% precision, 89.23% recall, and 

89.16% F1-score. ResNet50 [31] outperformed these models 

with 96.54% accuracy, 96.61% precision, 96.54% recall, and 

96.54% F1-score.  

The proposed CT-CXR-Net delivered perfect 

performance with 100% across all metrics, showcasing its 

robustness for COVID-19 classification. Table 6 focuses on 

COVID-19 Class Performance Analysis using the CT dataset. 

InceptionV3 [39] achieved 91% across all metrics, while 

VGG16 [38] reached 85% accuracy and precision, 95% recall, 

and 90% F1-score. VGG19 [37] had the same accuracy and 

precision (85%), higher recall at 96%, and an F1-score of 

90%. ResNet50 [31] provided better performance with 95% 

accuracy and precision, 98% recall, and 97% F1-score. Again, 

the proposed CT-CXR-Net outperformed all models, 

achieving a perfect 100% accuracy, precision, recall, and F1-

score for COVID-19 cases. 

Table 5. Classification performance analysis on CT dataset 

Model Acc. Pre. Recall 
F1-

Score 

InceptionV3 

[39] 
0.9075 0.9076 0.9075 0.9075 

VGG16 [38] 0.8923 0.8978 0.8923 0.8917 

VGG19 [37] 0.8923 0.8982 0.8923 0.8916 

ResNet50 [31] 0.9654 0.9661 0.9654 0.9654 

Proposed CT-

CXR-Net 
1.000 1.000 1.000 1.000 

 
Table 6. COVID-19 class performance analysis on CT dataset 

Model Acc. Pre. Recall F1-Score 

InceptionV3 [39] 0.91 0.91 0.91 0.91 

VGG16 [38] 0.85 0.85 0.95 0.90 

VGG19 [37] 0.85 0.85 0.96 0.90 

ResNet50 [31] 0.95 0.95 0.98 0.97 

Proposed CT-

CXR-Net 
1.00 1.00 1.00 1.00 

 

Table 7 provides the Performance Analysis of the non-

COVID-19 Class. InceptionV3 [39] achieved 90% 

performance and 91%. VGG16 [38] achieved an accuracy and 

precision of 94 percent as well as 83 percent recall with an 88 

percent F1-score. The VGG19 [37] yielded an accuracy and 

precision of 95 percent, a recall of 82 percent, and an F1-score 

of 88 percent. A better outcome was revealed in ResNet50 

[31] with 98 percent accuracy, the precision of 95 percent, the 

recall of 95 and an F1-score of 0.96. The tested CT-CXR-Net 

recorded an accurate performance, once again, recording 

100% in performance. 

Table 7. Non-COVID-19 class performance analysis on CT dataset 

Model Acc. Pre. Recall F1-Score 

InceptionV3 [39] 0.90 0.90 0.91 0.90 

VGG16 [38] 0.94 0.94 0.83 0.88 

VGG19 [37] 0.95 0.95 0.82 0.88 

ResNet50 [31] 0.98 0.98 0.95 0.96 

Proposed CT-

CXR-Net 
1.00 1.00 1.00 1.00 

 

 
Fig. 11 Predicted outcome of COVID-19 by proposed CT-CXR-Net 

 
Fig. 12 Predicted outcome as non-COVID-19 by proposed CT-CXR-Net 
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Figure 11 displays the processing of a CT scan by the 

Proposed CT-CXR-Net, which ultimately classifies the image 

as COVID-19. The "Original Image" undergoes denoising and 

segmentation to highlight specific lung regions, leading to the 

"Classified Output" indicating the presence of COVID-19.  

Figure 12 illustrates the same processing pipeline by the 

Proposed CT-CXR-Net, but for a CT scan classified as non-

COVID-19. The "Original Image" is denoised and segmented, 

and the "Classified Output" clearly states "Classified as: 

Normal," indicating the absence of COVID-19. 

4.3. Results on CXR Dataset 

This section gives the detailed results of the proposed CT-

CXT-Net with various stages, including preprocessing, 

segmentation, and classification stages, on the CXR dataset. 

4.3.1. Preprocessing Results 

Figure 13 showcases the impact of different image 

preprocessing techniques (Intensity, Motion Blur, Sharpening, 

Flipping) applied, comparing the results of the Existing WT 

against a proposed BM3D method. The various 

transformations demonstrate how image characteristics are 

altered, aiming to improve clarity or generate diverse training 

data while highlighting the potential differences in output 

quality between the existing and proposed preprocessing 

approaches. Figure 14 illustrates the application of various 

image preprocessing techniques (Noisy, Rotate, Scaling, 

Contrast) to a non-COVID-19 image, comparing the outcomes 

of the existing WT with the proposed BM3D method. This 

comparison helps in evaluating how each preprocessing 

technique affects the visual quality and characteristics of 

normal lung images, and how the proposed method potentially 

offers superior or different results compared to the existing 

approach for non-COVID-19 cases. 

 
Fig. 13 Preprocessing results of existing WT and proposed BM3D 

on COVID-19 set 

Table 8 presents the PSNR performance analysis on the 

CXR dataset under various preprocessing attacks, comparing 

WT [42] and BM3D methods. For Non-COVID-19 images, 

the BM3D approach consistently outperforms WT [42], 

achieving PSNR values of 66.57214 dB for noisy images, 

59.08357 dB for rotation, 66.23095 dB for scaling, 66.26108 

dB for contrast adjustment, 66.26106 dB for intensity 

adjustment, 66.18853 dB for motion blur, 66.65802 dB for 

sharpening, and 62.20782 dB for flipping, whereas WT [42] 

produced lower PSNR values ranging from 57.37731 dB to 

57.82889 dB across these attacks.  

 
Fig. 14 Preprocessing results of existing WT and proposed BM3D 

on non-COVID-19 set 

Table 8. PSNR performance analysis on CXR dataset 

Attack 
Non-COVID19 COVID-19 

WT [42] BM3D WT [42] BM3D 

Noisy 57.8146 66.5721 56.3325 66.21806 

Rotate 57.6524 59.0835 56.3115 60.91104 

Scaling 57.8176 66.2309 56.33713 65.57614 

Contrast 57.3773 66.2610 55.89617 65.74749 

Intensity 57.6736 66.2610 56.20889 65.74746 

Motion Blur 57.8072 66.1885 56.33586 65.57866 

Sharpened 57.8288 66.6580 56.33684 65.79001 

Flipping 57.7599 62.2078 56.3217 63.60607 

 

Similarly, for COVID-19 images, BM3D consistently 

yielded better PSNR results with 66.21806 dB for noisy 

images, 60.91104 dB for rotation, 65.57614 dB for scaling, 

65.74749 dB for contrast, 65.74746 dB for intensity, 65.57866 

dB for motion blur, 65.79001 dB for sharpening, and 63.60607 

dB for flipping, outperforming WT [42], which recorded 

values between 55.89617 dB to 56.33684 dB across all 

scenarios. These results confirm BM3D's superior noise 

reduction and image quality preservation. 

Table 9 provides the SSIM performance analysis under 

different preprocessing attacks using WT [42] and BM3D 

techniques. For non-COVID-19 images, BM3D consistently 

delivers higher structural similarity, achieving SSIM values of 
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0.497122 for noisy images, 0.278917 for rotation, 0.915584 

for scaling, 0.926807 for contrast adjustment, 0.926805 for 

intensity adjustment, 0.854739 for motion blur, 0.807974 for 

sharpening, and 0.392716 for flipping. In contrast, WT [42] 

produces significantly lower SSIM scores, ranging between 

0.215127 and 0.267802.  

Similarly, for COVID-19 images, BM3D outperforms 

WT [42] across all scenarios, with SSIM values of 0.249087 

for noisy images, 0.445325 for rotation, 0.747633 for scaling, 

0.747307 for contrast adjustment, 0.747305 for intensity 

adjustment, 0.743735 for motion blur, 0.557568 for 

sharpening, and 0.461381 for flipping. Meanwhile, WT [42] 

shows inferior SSIM results between 0.015612 and 0.099669. 

These outcomes demonstrate that BM3D substantially 

enhances image quality and structural similarity, making it 

more reliable under varied conditions. 

Table 9. SSIM performance analysis on CXR dataset 

Attack 

Non-COVID19 COVID-19 

WT 

[42] 
BM3D WT [42] BM3D 

Noisy 0.2628 0.4971 0.091431 0.249087 

Rotate 0.2151 0.2789 0.099669 0.445325 

Scaling 0.2642 0.9155 0.093201 0.747633 

Contrast 0.2302 0.9268 0.015612 0.747307 

Intensity 0.2610 0.9268 0.08236 0.747305 

Motion 

Blur 
0.2629 0.8547 0.09222 0.743735 

Sharpened 0.2678 0.8079 0.095065 0.557568 

Flipping 0.2519 0.3927 0.093258 0.461381 

 

Table 10 presents the MSE Performance Analysis on the 

CXR, comparing WT and BM3D techniques under various 

attack conditions. For non-COVID-19 images, BM3D 

significantly reduces the error across all scenarios, with MSE 

values of 1.431747 for noisy images, 8.030138 for rotation, 

1.548766 for scaling, 1.538056 for contrast adjustment, 

1.538066 for intensity adjustment, 1.563967 for motion blur, 

1.403715 for sharpening, and 3.911097 for flipping. In 

contrast, WT results in much higher MSE values ranging from 

10.71991 to 11.8946.  

Similarly, for COVID-19 images, BM3D demonstrates 

superior performance, with MSE values of 1.55337 for noisy 

images, 5.272009 for rotation, 1.800803 for scaling, 1.731137 

for contrast adjustment, 1.731148 for intensity adjustment, 

1.79976 for motion blur, 1.714271 for sharpening, and 

2.834481 for flipping. Meanwhile, WT yields higher MSE 

values between 15.11359 and 16.72875, indicating greater 

reconstruction errors. These results confirm that BM3D offers 

more effective noise suppression and better preserves image 

quality than WT for COVID-19 and non-COVID-19 CXR 

images under diverse conditions. 

Table 10. MSE performance analysis on CXR dataset 

Attack 

Non-COVID19 COVID-19 

WT 

[42] 
BM3D WT [42] BM3D 

Noisy 10.755 1.431747 15.12941 1.55337 

Rotate 11.164 8.030138 15.20299 5.272009 

Scaling 10.747 1.548766 15.11359 1.800803 

Contrast 11.894 1.538056 16.72875 1.731137 

Intensity 11.109 1.538066 15.56651 1.731148 

Motion 

Blur 
10.773 1.563967 15.11802 1.79976 

Sharpened 10.719 1.403715 15.11459 1.714271 

Flipping 10.891 3.911097 15.16738 2.834481 

 

4.3.2. Segmentation Results 

Figure 15 illustrates the segmentation outcomes on 

COVID-19 CXR images. The original image was shown in 

Figure 15 (a), and Figure 15 (b) represents the ground truth 

segmented mask for comparison. Figure 15 (c) displays the 

output from CAED [43], which shows visible segmentation 

inaccuracies, whereas Figure 15 (d) demonstrates the superior 

segmentation by the proposed OU-Net with MGWO, offering 

clear lung region boundaries and higher precision.  Figure 16 

demonstrates the segmentation results for non-COVID-19 

CXR images. The original input is presented in Figure 16 (a), 

with the segmented ground truth mask shown in Figure 16 (b). 

The segmentation by CAED [43] in Figure 16 (c) contains 

noticeable boundary irregularities, while the proposed OU-

Net with MGWO in Figure 16 (d) achieves highly accurate, 

smooth, and well-defined lung region extraction.  

 
Fig. 15 Segmentation Outcomes on COVID-19 CXR Images.                              

(a) Original Image, (b) Segmented Mask, (c) CAED [43], and                               

(d) Proposed OU-Net with MGWO. 
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Fig. 16 Segmentation Outcomes on Non-COVID-19 CXR Images. 

(a) Original Image, (b) Segmented Mask, (c) CAED [43], and (d) 

Proposed OU-Net with MGWO. 

Table 11. Segmentation performance analysis on CT dataset 

Metric 

Non-COVID19 COVID-19 

CAED 

[43] 

OU-Net 

with 

MGWO 

CAED 

[43] 

OU-Net 

with 

MGWO 

Accuracy 0.8761 0.9859 0.8761 0.9859 

Sensitivity 0.6205 0.9901 0.6205 0.9901 

Specificity 0.95807 0.9852 0.9580 0.9852 

Precision 0.9607 0.9867 0.9607 0.9867 

Recall 0.91325 0.9047 0.9132 0.9047 

F1-Score 0.9459 0.9830 0.9459 0.9830 

Jaccard 

Index 
0.91138 0.9955 0.9113 0.9955 

Dice Score 0.9288 0.9818 0.9288 0.981 

 

Table 11 presents the segmentation performance analysis 

on the CXR, comparing CAED [43] with the proposed OU-

Net optimized by MGWO. For non-COVID-19 images, the 

proposed OU-Net with MGWO achieved a remarkable 

accuracy of 0.985961851, significantly outperforming CAED 

[43], which achieved 0.876179932. Sensitivity improved from 

0.62057785 with CAED [43] to 0.990197178, reflecting better 

detection of lung regions. Specificity was 0.958072857 with 

CAED [43] and slightly decreased to 0.985264959 with OU-

Net, indicating reliable exclusion of non-lung regions. 

Precision increased from 0.960761906 to 0.986770854, while 

Recall remained high at 0.904722103. The F1-Score rose from 

0.945913308 to 0.983014536, demonstrating a balanced 

performance. The Jaccard Index improved from 0.911386396 

to 0.995570809, and the Dice Score increased from 

0.928866367 to 0.9818188, indicating excellent overlap 

between predicted and ground truth masks. Similar 

improvements were observed for COVID-19 images, with the 

same set of performance metrics showing consistent and 

substantial gains using the proposed OU-Net with MGWO 

compared to CAED [43], confirming the effectiveness of the 

proposed segmentation approach. 

4.3.3. Classification Results 

Table 12 presents the classification performance analysis 

on the CXR dataset, comparing the proposed CT-CXR-Net 

with existing models. The ResNet50 [13] model achieved 

97.2% accuracy, 96.7% precision, 96.5% recall, and 96.5% 

F1-score, showing consistent performance across all metrics. 

The InceptionV3 [25] model obtained the highest accuracy 

among existing methods at 98.0%, with 98.4% precision, but 

a lower 90.8% recall and 90.8% F1-score, indicating missed 

positive cases. The VGG16 [24] and VGG19 [15] models both 

reached 97.5% accuracy, with 98.3% and 97.5% precision, but 

lower recall values of 89.2%, leading to 89.2% F1-scores, 

highlighting limitations in detecting positive cases. The 

proposed CT-CXR-Net significantly outperformed all existing 

methods, achieving an impressive 99.3% accuracy, 99.6% 

precision, 100% recall, and 100% F1-score, confirming its 

high reliability, minimal misclassification, and superior 

detection capability for COVID-19 in CXR images. 

Table 12. Classification performance analysis on CXR dataset 

Method Acc. Pre. Recall 
F1-

score 

ResNet50 [13] 0.972 0.967 0.965 0.965 

InceptionV3 [25] 0.980 0.984 0.908 0.908 

VGG16 [24] 0.975 0.983 0.892 0.892 

VGG19 [15] 0.975 0.975 0.892 0.892 

Proposed CT-

CXR-Net 
0.993 0.996 1.000 1.000 

 

Table 13 illustrates the COVID-19 class-wise 

performance on the CXR data set of different deep learning 

models. The ResNet50 [13] had a detection sensitivity of 

97.0%, precision of 96.5%, recall of 96.3%, and F1-score of 

96.4 through balanced yet lower detection sensitivity. The 

InceptionV3 [25] model shows a better 97.5% accuracy with 

97.8% precision, yet poor in recall (89.5%) and F1-Score 

(93.5%), which shows that the model tends to overlook the 

positive COVID-19 cases. On the same note, VGG16 [24] 

yielded 97.0 accuracy and precision but had a lower recall of 

88.0 in addition to a 92.7 F1-score statistic, indicating the loss 

of Sensitivity. The VGG19 [15] model returned 97.2 accuracy, 

97.3 precision, 88.5 recall and 92.7 F1-score with similar 

detection limitations to those of the other models. 

Comparatively, the given CT-CXR-Net report shows an 

accuracy of 99.0 percent, precision of 99.5 percent, recall of 

100 percent and F1-score of 99.7 percent, which means high 

reliability of the COVID-19 cases and low rates of false 

negative specifications and the overall rates of classification 

with high values of 99.7 percent. 
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Table 14 represents a non-COVID-19 class performance 

analysis of the CXR dataset analysing various models. 

ResNet50 [13] scored 97.5 accuracy, 97.0 precision, 96.8 

recall, and 96.9 F1-score, which are seemingly constant but at 

a slightly moderate level of performance. InceptionV3 [25] 

achieved an accuracy of 98.5%, precision of 99.0%, recall of 

92.0%, and F1-Score of 95.4% percent, indicating a high 

precision but failing to capture all the negative cases. Equally, 

VGG16 [24] had an accuracy rate of 98.0%, precision of 

98.5%, recall of 90.5% and F1-score of 94.3%, and VGG19 

[15] had 97.8% accuracy, 97.8% precision, 90.0% recall and 

93.7% scores due to a recall and overall classification 

deficiency. The suggested CT-CXR-Net model was able to 

outperform current approaches leading to an accuracy of 99.5 

per cent, precision of 99.8 per cent, recall of 100 per cent, and 

F1-score of 99.9 per cent, guaranteeing a high level of 

performance in detecting non-COVID-19 sufficiently with 

few false positives and false negatives, thus, making it highly 

effective during clinical screening. 

Table 13. COVID-19 class performance analysis on CXR dataset 

Method Acc. Pre. Recall F1-score 

ResNet50 [13] 0.970 0.965 0.963 0.964 

InceptionV3 [25] 0.975 0.978 0.895 0.935 

VGG16 [24] 0.970 0.980 0.880 0.927 

VGG19 [15] 0.972 0.973 0.885 0.927 

Proposed CT-

CXR-Net 
0.990 0.995 1.000 0.997 

 
Table 14. Non-COVID-19 class performance analysis on CXR dataset 

Method Acc. Pre. Recall 
F1-

score 

ResNet50 [13] 0.975 0.970 0.968 0.969 

InceptionV3 [25] 0.985 0.990 0.920 0.954 

VGG16 [24] 0.980 0.985 0.905 0.943 

VGG19 [15] 0.978 0.978 0.900 0.937 

Proposed CT-CXR-

Net 
0.995 0.998 1.000 0.999 

 

Figure 17 illustrates the process of classifying a CXR as 

COVID-19 using CT-CXR-Net. The "Original Image" 

undergoes denoising to reduce noise, followed by 

segmentation to isolate the lung regions. The final "Classified 

Output" then indicates "Classified as: COVID" based on these 

processed images in CXR scans. Figure 18 demonstrates the 

classification of a CXR as non-COVID-19 by the Proposed 

CT-CXR-Net. Like the COVID-19 case, the "Original Image" 

is subjected to denoising and segmentation to highlight 

relevant areas. The "Classified Output" clearly displays 

"Classified as: Normal," signifying the model's capacity to 

identify non-COVID-19 cases and thus differentiate them 

from infected lungs on CXR images. 

 
Fig. 17 Predicted outcome on CXR as COVID-19 by proposed CT-

CXR-Net 

 

 
Fig. 18 Predicted outcome on CXR as non-COVID-19 by proposed CT-

CXR-Net 

5. Conclusion 
The proposed CT-CXR-Net method integrates BM3D 

denoising, OU-Net segmentation with MGWO optimization, 

ResNet50 feature extraction, IBBO feature selection, and 

Ridge classification to achieve highly accurate COVID-19 and 

non-COVID-19 diagnosis on both CT and CXR datasets.  The 

proposed CT-CXR-Net achieved an average improvement of 

9.54% in accuracy, 9.52% in precision, 9.57% in recall, and 

9.58% in F1-score over existing models on the CT dataset. The 

proposed CT-CXR-Net shows notable improvements over 

existing methods with an average increase of 2.37% in 

accuracy, 2.14% in precision, 6.75% in recall, and 5.25% in 

F1-score compared to the best-performing existing models on 

the CXR dataset. In the future, this framework was extended 

to real-time clinical environments, integrated with portable 

diagnostic devices, and adapted for early detection of other 

respiratory diseases such as pneumonia, lung cancer, or 

emerging viral infections, while exploring lightweight model 

compression and cross-hospital validation to enhance 

generalization and practical deployment. 
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