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Abstract - The accuracy of Electroencephalogram (EEG) signal-based epileptic seizure identification is often compromised by 

poor feature selection and duplicate data. This research proposes a method that combines early feature fusion from many 

domains with Mutual Information (MI)-based feature selection to overcome these issues. Principal Component Analysis (PCA), 

Hilbert–Huang Transform (HHT), Reconstruction Independent Component Analysis (RICA), and Empirical Mode 

Decomposition (EMD) are used to extract features that capture time, frequency, and nonlinear information. The Extreme 

Gradient Boosting (XGBoost) algorithm is used to categorize the most relevant qualities once Mutual Information has been 

utilized to choose them. The suggested approach performs exceptionally well on all significant measures when using the Bonn 

EEG dataset. Its efficient design ensures both enhanced detection capability and suitability for real-time clinical use. 
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1. Introduction 
Epileptic seizures, a neurological disorder that affects 

over 65 million individuals globally, must be identified early 

and accurately to be effectively treated and managed [1]. 

Electroencephalography (EEG) is still an essential technique 

for tracking brain activity and detecting seizures. However, 

manual analysis is challenging and error-prone because EEG 

signals are complicated and non-stationary. As a result, the 

demand for sophisticated and automated seizure detection 

techniques has grown. While a number of previous studies 

have investigated seizure detection using individual 

techniques, such as Hilbert-Huang Transform (HHT), 

Multivariate EMD with neural networks, Empirical Mode 

Decomposition (EMD) [2-4], or even XGBoost with single-

domain features [5, 6], these methods frequently lack a 

comprehensive representation of the signal or are unable to 

optimize feature selection efficiently. Interestingly, none of 

these approaches have combined multi-domain features by 

using Mutual Information (MI)-based feature selection [7].  

 

This study suggests a unique framework that uses PCA, 

HHT, EMD, and RICA to extract various features, followed 

by early fusion to retain inter-domain interactions, to solve the 

performance gap in EEG seizure detection. Then, only the 

most pertinent characteristics are kept for classification using 

XGBoost by applying Mutual Information (MI)-based feature 

selection. When tested on the BONN EEG dataset, the 

approach outperforms current state-of-the-art methods in 

terms of accuracy and shows great promise for enhancing 

automated seizure detection systems. 

 

1.1. Paper Organization 

Section 2 examines current methods for extracting 

features from EEGs based on epilepsy. Section 3 describes the 

suggested approach, which combines XGBoost classification, 

MI-based feature selection, four feature extraction techniques 

with early fusion, and the BONN dataset. While Section 5 

summarizes the main conclusions and suggests future study 

topics, Section 4 displays and contrasts the experimental 

outcomes. 

 

2. Relevant Brief Description 
One important area of research aimed at facilitating early 

diagnosis and efficient monitoring is EEG-based epileptic 

seizure detection. Traditional analysis techniques are 

challenged by the complex, nonlinear, and non-stationary 

character of EEG signals, which leads to the creation of 

sophisticated frameworks for feature extraction, fusion, 

selection, and classification. 

 

2.1. Methods for Feature Extraction 

One of the first steps in seizure detection for the 

preprocessed signal is the feature extraction. Discrete Wavelet 

Transform and Welch's Power Spectral Density are two 

common frequency-domain methods for representing spectral 

energy patterns [8]. While nonlinear properties like fractal 
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dimension, sample entropy, and permutation entropy reflect 

the inherent complexity of brain dynamics [10], time-domain 

statistical measures like mean, variance, skewness, and 

kurtosis aid in capturing transient signal characteristics [9]. 

Additionally, adaptive, multi-resolution analysis using 

Intrinsic Mode Functions (IMFs) is made possible by data-

driven decompositions such as HHT and EMD [11-14]. 

2.2. Reducing Dimensionality and Choosing Features 

High-dimensional feature spaces may result in overfitting 

and redundancy. To maintain variance or independence across 

components, dimensionality reduction techniques such as 

PCA and ICA are frequently employed [15]. The feature space 

is further refined using optimization-based techniques, 

including Pearson correlation analysis, Grasshopper 

Optimization Algorithm (GOA), and Particle Swarm 

Optimization (PSO) [16, 17].  

Mutual Information (MI), which may capture both linear 

and nonlinear correlations between features and class labels, 

is a potent method for assessing feature significance, 

according to recent studies [8, 17, 18]. Even though MI can 

improve classifier performance and signal representation, it is 

currently used infrequently after multi-domain feature fusion. 

2.3. Methods of Feature Fusion 

To improve resilience and discriminative capacity, 

feature fusion algorithms combine complementary data from 

the temporal, frequency, and nonlinear domains. Studies like 

[5, 7] have shown that combining statistical and spectral data 

with XGBoost improves detection accuracy. Hybrid fusion in 

conjunction with MI-based feature selection lowers 

computational load and enhances generalizability, as shown 

by Subasi et al. [18, 19]. Like this, writers in [20-22] verified 

that early multi-domain feature fusion greatly improves 

classification performance when combined with efficient 

selection techniques. Many current methods, however, lack a 

structured pipeline for fusion and selection, which results in 

high computational demands, redundant features, and 

overfitting problems that are particularly significant in real-

time applications. 

2.4. Models of Classification  

Following the retrieval and selection of features, 

classifiers such as an ensemble tree-based approach called 

XGBoost have demonstrated better performance in managing 

high-dimensional fused features and preventing overfitting in 

more recent times [6, 25, 26]. It is perfect for real-time or 

embedded seizure detection applications due to its stability 

and scalability. 

Current Limitations in seizure detection methods are: 

 Single-domain feature dependence 

 Inadequate feature selection following fusion 

 Use of Mutual Information (MI) to improve feature 

relevance is limited. 

2.4.1. Proposed Methodology Suggests 

Early feature extraction and fusion from several domains 

enhances the representation using: 

 Principal Component Analysis (PCA) 

 Hilbert-Huang Transform (HHT) 

 Reconstructed Independent Component Analysis (RICA) 

 Empirical Mode Decomposition (EMD) 

 

2.4.2. Feature Selection 

 Choosing Features: MI is used to choose the most 

informative features, which increases classification 

performance and decreases redundancy.  

 

2.4.3. Classification 

 The features' robustness is also evaluated and compared 

on the BONN dataset using a classification technique, 

namely XGBoost. 

 

3. Methodology 
To guarantee precise and dependable epileptic seizure 

detection, a methodical experimental framework was created 

by combining sophisticated signal processing techniques with 

strong machine learning methodologies. The main goals are 

reducing feature redundancy, improving classification 

performance, and identifying significant patterns in EEG 

signals.  

 

The entire process is shown in Figure 1, which details the 

steps that must be followed to guarantee the best possible 

feature representation and increased detection accuracy: data 

preparation, feature extraction, feature selection, and 

classification. 

 

The suggested seizure detection framework was assessed 

using the preprocessed Bonn EEG dataset. This dataset 

includes five 23.6-second single-channel EEG sets (A-E): Sets 

A and B (healthy people, eyes open and closed, respectively); 

Set E (ictal/seizure activity); and Sets C and D 

(interictal/seizure-free from epileptic patients). Utilizing this 

preprocessed artifact-free and validated dataset (presented in 

27) guarantees the study's dependability. 

 

After preprocessing, four complementary approaches 

encompassing time, frequency, and nonlinear properties are 

used in feature extraction. 

 

 Adaptive time-frequency characteristics are extracted 

from non-stationary EEG signals using HHT and EMD.  

 PCA preserves important variance components while 

reducing noise.  

  Independent and sparse signal patterns are captured by 

RICA.  
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Fig. 1 Workflow of proposed methodology 

 

Mutual Information (MI) is applied for feature selection, 

minimizing dimensionality and preventing overfitting by 

identifying the most pertinent characteristics. The chosen 

characteristics are then categorized using XGBoost, an 

effective, scalable, and quick method that works well with 

high-dimensional data. Model performance is examined using 

established classification techniques to ensure dependability. 

The "Results and Discussion" section will examine how each 

feature type affects seizure detection accuracy, while the 

following sections will describe these methods and how they 

operate. This systematic approach aims to create a reliable and 

efficient system that will serve as a solid basis for further 

studies in EEG-based seizure identification. 

 

3.1. Methods of Feature Extraction and Early Fusion 

Using early feature fusion, the suggested approach 

combines features from four sophisticated signal processing 

methods, PCA, HHT, EMD, and RICA. This method produces 

a more robust and discriminative feature representation by 

capturing complementary information from EEG signals 

throughout the time, frequency, and time-frequency domains 

[7-9]. 

 

3.1.1. Reconstructed Independent Component Analysis 

(RICA) 

Given a multivariate EEG signal X=[x1,x2,...,xT]T∈R(T×N), 

where T is the number of time points and N is the number of 

channels (for the BONN dataset, N=1), RICA aims to find a 

de-mixing matrix W∈R(K×N) such that the source signals 

S=XWT∈R(T×K) are statistically independent [27]. Here, K is 

the number of Independent Components (ICs). The 

reconstruction of the signal  using a subset of P selected ICs 

(where P≤K) and a corresponding mixing matrix A∈R(N×P) can 

be represented as in Equation (1): 

  𝑥̂ = 𝑆𝑝𝐴T                          (1)  
 

Where SP contains the P selected ICs. After that, extract 

statistical features fRICA from each reconstructed component 

X, which is the ith column of 𝑥̂, such as mean, standard 

deviation, skewness and kurtosis, etc. The feature set from 

RICA is FRICA = [Mean (𝑥̂𝑖)…… Kurtosis(x>)].  
 

3.1.2. Hilbert-Huang Transform (HHT) 

EMD decomposes the signal x(t) into a sum of Intrinsic 

Mode Functions (IMFs) ci(t) and is mentioned in Equation (2):  
 

 x(t) = ∑ ci(t)n
i=1 + rn(t)     (2) 

 

Let the residue be represented by rn(t). Two requirements 

must be met by each Intrinsic Mode Function (IMF) ci(t):  

1. There must be no more than one difference between the 

number of extrema and zero crossings, or they must be equal. 

 2. The mean value of the envelopes that are defined by the 

local minima and maxima must always be zero. 

The Hilbert Transform H{ci(t)} of an IMF ci(t) is given in 

Equation (3):  

H{ci(t)} = 
1

𝛱
𝑃 ⋅ 𝑣 ∫

𝐶𝑖(𝑇)

𝑡−𝑇
⋅ ⅆ⊤

∞

−∞

  (3) 

Where P.V. denotes the Cauchy principal value. 

Epilepsy 

BONN 

pre-

processed 

dataset 

 

RICA 

 

HHT 

 

 

PCA 

EMD 

Feature Extraction 

stage 

 

Feature fusion  

Early 

feature 

fusion- 

concate

nation 

F1 to 

F100 

F100 

PC1 to 

PC79 

E1 to E18 

H1 to H18 

All 

Combined 

features 

MI 

selected 

features  

XG-Boost 

 

 

Feature Selection   

Classification  

 

 

Outputs evaluated 

through 

Performance 

parameters   

Accuracy, 

precision, 

recall, and F1-

score 

 

Performance 

Evaluation   

 

Features 



Mamatha G N & Hariprasad S A / IJECE, 12(8), 352-360, 2025 
 

355 

3.1.3. Empirical Mode Decomposition (EMD) 

As described above, EMD yields a set of IMFs Ci(t). 

Extracting statistical features fEMD from the first few IMFs, 

such as energy 𝐸𝑖 = ∑ |𝑐𝑖(𝑡)|2𝑇

𝑡=1
 And Shannon Entropy is 

the normalized energy at time t for the i-th IMF. The feature set 

is FEMD= [E1, ..., SM], where M is the number of considered 

IMFs represented in Equation (4).  

 

Si= -∑ 𝑃𝑖𝑡 𝑙𝑜𝑔(𝑃𝑖𝑡)𝑇
𝑡=1   where 𝑃𝑖𝑡 =

|𝐶𝑖(𝑡)|2

𝐸𝑖
                     (4) 

 

3.1.4. Principal Component Analysis (PCA) 

The goal of PCA is to find the Set of orthogonal principal 

components that best captures the variation in the EEG data 

matrix X. The covariance matrix C, which shows the variances 

and correlations between the EEG features, is mentioned in 

Equation (5). The following formula is used to determine the 

covariance matrix: 

C=
1

𝑇−1
(𝑋 − 𝑥̅)𝑇(𝑥 −𝑥̅)    (5)  

 

Where 𝑥̅ The mean vector of the columns of X and T is 

the number of observations.   

 

Through the identification of key patterns, PCA lowers 

the dimensionality of data. This is accomplished by 

calculating the covariance matrix's eigenvectors and 

eigenvalues. Equation (6) shows that the top Q eigenvectors, 

which correspond to the biggest eigenvalues, are chosen 

because they capture the greatest amount of variance. The data 

is subsequently transformed using these chosen eigenvectors. 

 

Y=XVQ                    (6) 

 

The selected eigenvectors found in V Q are then used to 

define this lower-dimensional space onto which the original 

data, X, is projected. The most important features of the data 

are retained in this projection, which produces a simpler 

representation [10, 18]. 

 

The key components of an EEG signal are captured by 

extracting essential features. Signal shape and intensity are 

summarized by statistical measures (mean, median, standard 

deviation, minimum, maximum, and energy). Signal strength, 

frequency content, and temporal change are reflected in the 

Hjorth parameters (activity, mobility, and complexity). The 

evolution of the signal is traced by cumulative features 

(cumulative mean, minimum, and maximum). Signal 

unpredictability is assessed using entropy measurements 

(Shannon, Rényi, Approximate, and Sample Entropy). Lastly, 

self-similarity and nonlinear complexity are quantified by 

fractal dimension features (Higuchi, Katz). 

 

3.1.5. Early Feature Fusion 

Concatenating the feature vectors derived from each 

technique is the first stage in feature fusion: Ffused = [FRICA, 

FHHT, FEMD, FPCA]. The product is a thorough feature 

vector incorporating data from various signal processing 

domains.  

  

3.1.6. Feature Selection Based on Mutual Information (MI) 

An information-theoretic metric called Mutual 

Information (MI) measures the statistical dependency between 

two random variables. The definition of the mutual 

information I(X, Y) for continuous variables X and Y is as 

follows [19, 28]: 

𝐼(𝑋; 𝑌) =
∫ ∫ ((𝑝𝑋,𝑌(𝑥,𝑦)𝑙𝑜𝑔(𝑝𝑋,𝑌(𝑥,𝑦)) 

(𝑝𝑋(𝑥)𝑝𝑌(𝑦)))𝑑𝑥.𝑑𝑦
                      (7)  

From Equation (7), where the combined probability 

density function of X and Y is represented by pXY(x,y), and 

the marginal distributions of X and Y are represented by pX(x) 

and pY(y).  

MI is computed between each feature in the fused feature 

set and the class label (seizure or non-seizure). Because it 

exhibits a stronger correlation with the class name, a feature 

with a higher MI value is more crucial for differentiating 

between the two classes.    

3.2. Classifier Stage 

XGBoost is a reliable and appropriate classifier for 

classifying EEG signals, especially in seizure detection. As a 

result, the following section will offer a thorough explanation 

and performance evaluation. To fully assess the effectiveness 

of the suggested framework, a comparison analysis carried out 

during the feature extraction step across four different settings 

will be summarized in the "Results and Discussion" section. 

  

Every scenario's performance metrics were evaluated and 

documented for the selected classifiers, such as Support 

Vector Machine (SVM), Random Forest (RF), K-Nearest 

Neighbour (KNN) and XG-boost. The impact of early feature 

fusion and MI-based feature selection on the XGBoost 

model's overall performance will be covered in this section. 

3.2.1. Extreme Gradient Boost Classifier 

In this study, the high-performance XGBoost algorithm is 

used to classify optimal features that were chosen using 

Mutual Information (MI). An ensemble of decision trees is 

constructed successively using XGBoost, each of which fixes 

the mistakes of the one before it. This method's speed, 

scalability, and integrated regularization make it perfect for 

handling complicated EEG data. Equation (8) [29] illustrates 

how XGBoost effectively detects seizures by spotting 

nonlinear patterns and reducing classification errors, which 

reduces the possibility of overfitting. 

yi=∑ 𝑓𝑘
(𝑥𝑖)

𝐾

𝑘=1
  (8) 
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3.2.2. XGBoost Algorithm Steps for EEG-Based Epilepsy 

Classification  

Input Data Preparation 

 Input: Preprocessed EEG signals (e.g., from the Bonn 

dataset). 

 Features: Extracted from time, frequency, time-

frequency, or nonlinear domains. 

 Apply feature selection (e.g., MI) to retain only the most 

relevant features. 

 

Data Splitting 

 Create distinct training and testing sets from the dataset 

(usually 70–30 or 80–20). 

 Optionally use k-fold cross-validation for better model 

generalization. 

 

Initialize Base Learners 

 Decision trees (usually Classification And Regression 

Trees, or CART) are used by XGBoost as base learners. 

  Set initial prediction (often the mean log odds or class 

prior probability). 

 

Train Trees Iteratively For each boosting round (iteration) 

 Compute Gradient and Hessian: 

For each data point, calculate the gradient (1st derivative) 

and hessian (2nd derivative) of the loss function (usually 

log loss for classification). 

 Construct Decision Tree: 

Build a tree that best splits the data based on the gradient 

and hessian, maximizing gain (reduction in loss). 

 Regularization: 

Apply penalties to tree depth, leaf weights, and number of 

leaves to avoid overfitting (controlled by parameters like 

lambda, alpha, and max_depth). 

 Update Predictions: 

Add the new tree's weighted predictions to the existing 

model. 
 

Stopping Criteria 

 Stop when the maximum number of trees (n_estimators) 

is reached, or if improvement in loss falls below a 

threshold (early stopping). 
 

Model Output 

 For classification: A probability score for each class is the 

end result. 

 To determine whether a person is epileptic or not, apply a 

threshold (such as 0.5). 

Evaluation 

 Metrics such as accuracy, precision, recall, and F1-score 

are used to evaluate performance. 

 

3.3. Performance Evaluation  

Four important metrics, accuracy, precision, recall, and 

F1-score, were used to evaluate the classification models' 

effectiveness [30]. By statistically assessing the model's 

capacity to discriminate between seizure and non-seizure 

events, these metrics demonstrate the model's overall efficacy, 

robustness, and dependability in epilepsy detection.  

 

3.3.1. Accuracy 

By calculating the percentage of all predictions that are 

correctly classified across all classes, accuracy provides 

insight into the model's overall correctness. 

 

Accuracy =
Tp+Tn

Tp+Tn+Fp+Fn
       (9)  

Where: 

True Positive (TP): The number of seizure episodes that the 

model properly classified as seizures. 

True Negative (TN): To what extent were non-seizures 

accurately anticipated to be non-seizures?  

False Positive (FP): The number of incidents incorrectly 

classified as seizures but not seizures. 

False Negative (FN): How many actual seizure events did the 

model miss because it assumed they were non-seizures?  

 

3.3.2. Recall (Sensitivity) (True Positive Rate) 

The model's recall gauges how well it can detect positive 

samples, or seizure occurrences. 

 

Recall =
Tp

Tp+Fn
                (10) 

 

3.3.3. Precision (Positive Predictive Value) 

A measure of precision is the proportion of accurately 

recognized seizure occurrences among all events predicted to 

be seizures (i.e., true positives / (true positives + false 

positives)). It demonstrates how the model reduces false 

alarms by successfully differentiating seizures from non-

seizures. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝

𝑇𝑝+𝐹𝑝
           (11) 

 

3.3.4. F1-Score 

The F1-score is the harmonic mean of recall and 

precision. A higher F1-score indicates a well-balanced 

sensitivity and precision of the model. 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃∗𝑅

𝑃+𝑅
    (12) 

 

Where: P= Precision, R = Recall 

Because it guarantees that both recall and accuracy are 

considered in the evaluation, the F1-score is particularly 

helpful when the dataset is unbalanced.  

 

3.3.5. Specificity 

The model's ability to identify non-seizure events is 

measured by its specificity, also known as the true negative 

rate.  

Specificity = TN / (TN + FP)   (13) 



Mamatha G N & Hariprasad S A / IJECE, 12(8), 352-360, 2025 
 

357 

4. Results and Discussion 
The four previously stated feature extraction and selection 

techniques were applied to the EEG data after hybrid EMD-

ICA preprocessing to assess the effectiveness of the suggested 

seizure detection system. Together, these complementary 

methods produced 215 distinguishing characteristics. MI was 

used to rank each feature's importance in relation to seizure 

classification to improve model performance and minimize 

feature redundancy. A refined set of 136 highly relevant 

characteristics was obtained by eliminating 79 less 

informative features and keeping those whose MI scores were 

higher than the 5% threshold. 

 

4.1. Experimental Results and Performance Assessment 

A well-known machine learning classifier called 

XGBoost was used to evaluate the effectiveness of the 

proposed approach. Its performance was assessed using the 

conventional metrics of F1-score, accuracy, precision, and 

recall under four different scenarios. 

1. Individual Feature Sets (HHT) without MI– Features 

obtained from the HHT extraction technique without 

applying Mutual Information. 

2. Individual Feature Sets (HHT) with MI – The same 

features were refined using MI for relevance and 

redundancy reduction. 

3. Combined Feature Set without MI – Early fused features 

from all extraction techniques (PCA, HHT, RICA, EMD) 

without selection. 

4. Combined Feature Set with MI – Fused multi-domain 

features followed by MI-based selection. 

 

4.1.1. HHT Feature Classification (Prior to MI) 

Figure 2 displays the 401 × 18 feature matrix created for 

the features taken from the selected epileptic EEG recordings 

using the HHT technique. The selected classifier performance 

results are summarized in Table 1 following their training with 

these extracted attributes. 

 

 
Fig. 2 HHT features Set Prior to MI-based Feature Selection. 

 

Table 1. Classification using HHT feature set (Before MI selection) 

1 Accuracy Recall Precision F1_score 

SVM 0.8925 0.9012 0.9142 0.9024 

DT 0.9650 0.9460 0.9722 0.9799 

KNN 0.3175 0.4142 0.3575 0.2087 

XGB 0.9750 0.9837 0.9710 0.9765 
 

As shown in Table 1, with an accuracy of 97.50% and an 

F1-score of 97.65%, the model demonstrated performance, 

suggesting that HHT can also effectively extract significant 

patterns from EEG signals to classify seizures.  

 

4.1.2. Classification Using HHT Features After MI Selection 

Before being utilized for classification, the HHT features 

were initially processed using MI to identify the most 

pertinent aspects, as represented in Figure 3. These features 

have been employed with the same XG-Boost classifier. Table 

2 displays the performance outcomes following MI-based 

feature selection. 

 

 
Fig. 3 HHT features set after MI-based feature selection 

 
Table 2. Classification using HHT feature set (After MI-based selection) 

2. Accuracy Recall Precision F1_score 

SVM 0.9025 0.9120 0.9142 0.9021 

DT 0.9550 0.9420 0.9622 0.9699 

KNN 0.3375 0.4242 0.3675 0.2187 

XGB 0.9805 0.9916 0.9805 0.9883 
 

The effects of using MI-based feature selection on the 

same HHT feature set are shown in Table 2. This resulted in a 

discernible increase, increasing the F1-score to 98.83% and 

the accuracy to 98.05%. This illustrates how MI improves the 

classifier's overall performance by eliminating redundancy 

and keeping the most important features. The confusion 

matrix for the classifier trained solely using HHT 

characteristics is displayed in Figure 4. According to the 

matrix, there was one misclassification in which a healthy 

EEG was mistakenly predicted to be interictal, even though 

the seizure and interictal classes were accurately identified.  

 
Fig. 4 Confusion matrix for the classifier trained on the HHT feature set 

for the XG boost classifier 
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4.1.3. Classification Analysis Using Combined Features:  

Early Feature Fusion without applying MI 

Early feature fusion was used to merge features from the 

four chosen feature extraction methods: RICA, PCA, EMD 

and HHT. Figure 5 represents the resulting subset of this 

extensive feature matrix, which has 401 × 215 features. The 

associated performance outcomes were noted and shown in 

Table 3 following classification using these fused features.  

 

 
Fig. 5 Combined feature set prior to MI -based feature selection 

 
Table 3. Classification using the combined feature set (Prior to MI-

based selection) 

3. Accuracy Recall Precision F1_score 

SVM 0.9125 0.9220 0.9242 0.9021 

DT 0.9550 0.9420 0.9522 0.9499 

KNN 0.3975 0.4342 0.3775 0.2387 

XGB 0.9875 0.9761 0.9815 0.9686 

 

The performance with this early feature fusion without 

MI-based selection is shown in Table 3. With an accuracy of 

98.75% and an F1-score of 96.86%, this setup produced better 

results. This result emphasizes the value of combining 

characteristics from different domains since complementary 

information from different extraction techniques produces a 

more robust data representation. 

 

4.1.4. Analysis of Combined Features for Classification: 

Early Feature Fusion with MI selection 

Figure 6 displays the most pertinent features that are highly 

correlated with seizure activity following MI-based selection. 

The equivalent performance outcomes were then recorded and 

shown in Table 4 after these MI-selected features were put into 

the XG-Boost classifiers. 

 

 
Fig. 6 Feature set after MI-based dimensionality reduction 

Table 4. Classification performance using the combined feature set 

(After MI-based selection) 

4. Accuracy Recall Precision F1_score 

SVM 0. 9425 0.9132 0.9242 0.9024 

DT 0.9650 0.9460 0.9722 0.9699 

KNN 0.3975 0.4542 0.3575 0.2487 

XGB 0.9985 0.9861 0.9914 0.9886 

 

The classifier trained on early fused features 

demonstrated perfect seizure EEG classification and an 

improved balance across classes after MI-based feature 

selection, with minimal healthy/interictal misclassifications 

(Figure 7). 

  

        This last scenario produced nearly flawless XGBoost 

classifier metrics (Accuracy, Recall, Precision, F1-score = 

99.85%) by combining early feature fusion with MI-based 

selection (Table 4). Although quite successful, it is important 

to recognize that results vary depending on the dataset. More 

testing on a variety of datasets is recommended to guarantee 

generalizability and reduce any biases or overfitting. 

 
Fig. 7 Confusion matrix for classifier using early fusion with MI-

selected features 

 

This study shows how important early feature fusion and 

MI-based feature selection are for improving all the classifiers' 

performance, especially for XGBoost. The classifier receives 

a more condensed and discriminative input by successfully 

combining several feature representations and removing 

unnecessary features, eventually increasing the prediction 

potential for seizure detection. 

 

5. Conclusion and Future Scope 
 This study examined four feature approaches in order to 

systematically evaluate an XGBoost classifier for epileptic 

episode diagnosis using EEG signals. By eliminating 

redundancy, MI-based selection greatly enhanced the 

performance of the first HHT features. Early feature fusion 

(RICA, PCA, EMD, and HHT) led to further developments, 

emphasizing the importance of combining dissimilar data. 
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Accuracy was consistently greatly increased by MI-based 

selection and early feature fusion. Combining these two 

methods eventually produced the highest accuracy, proving 

that a seizure detection system may be made extremely 

accurate and successful by combining a variety of variables 

and carefully choosing the most relevant ones. While 

acknowledging its current dataset-specific performance, 

future research will test this technique on bigger, more diverse 

EEG datasets to confirm its broad applicability and reduce any 

biases.
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