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Abstract - The creation of non-invasive methods for precise and non-invasive diagnosis of vocal disorders in clinical speech 

diagnostics is tremendously challenging owing to the tremendous variation in demographic, linguistic, and acoustic features. In 

this paper, a powerful deep learning-based system is proposed that is capable of identifying and classifying vocal fold defects 

using the Aachen Voice Pathology Database (AVPD) using Temporal Spectro-Context Encoding (TSCE) and Cross-Domain 

Context-Aware Transfer Learning (CD-CATL). The dataset contains 388 annotated high-quality speech samples that cover a 

wide range of conditions, such as paralysis, edema, nodules, and polyps. The data are time-corrected following Gammatone-

based spectrotemporal decomposition with dynamic time warping and short-time Fourier transform in the preprocessing 

pipeline. The TSCE module maintains phonatory dynamics while encoding local and distant acoustic interactions by employing 

dilated convolutions and multi-head attention. The system is learned to acquire domain-invariant features while maintaining 

disease-specific representations by combining memory-augmented transformer streams with multi-scale convolutional attention 

in the CD-CATL architecture. The model performs better than baseline CNN and RNN models on all standard evaluation 

measures, with a sensitivity of 97.81%, specificity of 98.56%, and an accuracy of 98.89%. The system is appropriate for 

telehealth use with its real-time inference enabled by its low-latency optimized deployment with ONNX and TensorRT. The 

suggested approach seems to have the potential for providing clinically sound, scalable, and objective voice disorder screening 

for use across a range of low-resource health care environments. 

Keywords - Voice pathology detection, Deep learning, Temporal spectro-context encoding, Transfer learning, Convolutional 

attention, Transformer networks, Gammatone-STFT, Telehealth diagnostics. 

1. Introduction  
The system of phonation consists of the laryngeal system, 

which contains the vocal folds necessary to produce the 

human voice by coordinated vibration [1]. Pathologies like 

edema, polyps, keratosis, paralysis, or structural irregularities 

can interfere with the vibratory pattern of the vocal folds and 

cause observable deviations in voice quality [2]. These 

discrepancies can point toward more severe health challenges 

that may have a neurological, physiological, or biological 

basis [3]. Trauma, allergic distress, overuse of the voice, or 

behavioural dysregulation are all possible external etiologies 

for voice difficulties [4]. Conventional diagnostic methods, 

including stroboscopic imaging, perceptual examination, and 

endoscopic visualization, are invasive, resource-consuming, 

and operator-dependent, despite their value in direct structural 

inspection [5, 6]. Speech signal analysis assists in 

characterizing vocal fold pathology in an objective, non-

invasive, and scalable fashion by examining acoustic cues of 

laryngeal impairment [7]. Signal processing techniques and 

machine learning algorithms based on manually extracted 

features have been predominant in the domain of acoustic-

based speech disorder identification over the past few years 

[8]. Traditional feature extraction techniques, such as Mel-

Frequency Cepstral Coefficients (MFCCs), Linear Predictive 

Coding (LPC), and energy-based features, have proven 

reasonably successful in separating normal from aberrant 

phonation in controlled environments [9]. Unfortunately, 

these techniques are not effective in dealing with variations in 

speaker quality, background noise, and waxing and waning of 

speech over a period of time. Previous classification models 

demonstrated limited generalizability due to their inability to 

handle high-dimensional, non-linear representations within 
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disordered speech. Data-driven structures have enabled 

learning of complex temporal and spectral correlations in 

unprocessed audio inputs since the advent of deep learning 

[10]. Recurrent Neural Networks (RNNs) and Long Short-

Term Memory (LSTM) networks have shown promise in 

language and voice processing tasks by effectively modelling 

temporal sequences. In addition, Convolutional Neural 

Networks (CNNs) have been employed in two-dimensional 

spectrogram analysis to detect spatial patterns in time-

frequency representations. However, there remain several 

substantial challenges. A major limitation is the occurrence of 

domain shift due to disparities in speaker identity, gender, 

language, and recording conditions, which restricts 

performance generalizability. Furthermore, conventional 

models fail to encode linguistic and auditory dimensions of 

speech through multi-granular representations, focusing 

instead on phoneme sequences or spectral features alone. 

Figure 1 shows the vocal pathologies under consideration. 

 
Fig. 1 Vocal pathologies 

 

Domain-Adversarial Neural Networks (DANN) and 

similar domain adaptation techniques have recently been used 

to minimize domain disparity by aligning feature distributions 

across source and target domains. However, these approaches 

often overlook the complex interplay between linguistic 

attributes and pathological vocal cues [11]. Sustained vowel 

phonation is commonly analysed due to its stationarity and 

ease of modelling, but it provides limited insight into the 

dynamic progression of disorders. It also presents 

computational difficulties when capturing dynamic 

articulatory modulations and phonetic transitions embedded in 

continuous speech. To address these limitations, a real-time 

diagnostic system is proposed, integrating cross-modal 

representation learning and adaptive domain calibration. One 

module employs a pre-trained Wav2Vec2.0 backbone to 

extract phoneme-level embeddings, while a second module 

utilizes an attention-augmented Gammatone-based encoder to 

encode fine-grained spectro-temporal features [12]. A Cross-

Modal Transformer Fusion Network is employed to jointly 

capture phonemic structure and voice texture, both of which 

are critical markers of vocal pathology. To enhance domain 

invariance, a Domain-Calibrated Contrastive Loss is 

introduced, penalizing latent space divergence across domains 

while preserving inter-class discriminability. Unlike 

traditional systems, the proposed framework generalizes 

across various vocal conditions and speaker subgroups by 

leveraging static and temporal features from full-spectrum 

speech inputs. The methodology maximizes adversarial 

domain adaptation while enhancing spectro-linguistic 

encoding efficiency for real-time inference [13]. This 

overcomes frequent issues in earlier studies, such as neglect of 

linguistic strain cues, inability to generalize to heterogeneous 

recording conditions, and overfitting to specific patient 

groups. Furthermore, the system is compatible with low-

resource healthcare environments such as teleconsultation and 

mobile health platforms, due to its efficient low-latency 

architecture. Evaluation is conducted using the AVPD dataset, 

which comprises a rich phonetic corpus of clinically acquired 

pathological and healthy speech samples, ensuring both 

empirical robustness and clinical relevance. 

2. Literature Review  
Quality of life and health could be severely affected by 

conditions that involve the thyroid and voice. Venkatesan et 

al. [14] highlight the worldwide importance of these disorders 

by linking changes in the incidence of hypothyroidism and 

hyperthyroidism with variations in iodine intake, age, 

environmental exposure, and new therapies. The authors draw 

attention to the need for thorough epidemiological surveys and 

ongoing iodine monitoring, especially in developing areas. 

Botox continues to be a common therapy for voice 

abnormalities, including Adductor Spasmodic Dysphonia 

(ADSD), despite its inordinate risks. The need for caution 

when dosing and following up after injection is emphasized 

by the occurrence in 0.34% of patients, mostly elderly women, 

of bilateral abductor paralysis. Muscular Tension Dysphonia 

(MTD) is affected by numerous factors, ranging from vocal 

abuse to compensatory mechanisms and psychological stress, 

according to Van Houtte et al. [15]. They highlight the need 

for a multidisciplinary approach in the management of 

complicated voice problems, involving vocal hygiene, 

therapy, and, if needed, medical or surgical treatment. They 

also advocate individualized treatment strategies. 

Keerthana et al. [16] addressed categorization of 

neurological voice disorders, specifically spasmodic 

dysphonia and recurrent laryngeal nerve palsy, through the 
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innovative use of speech signals from patients, as well as 

healthy speakers in the Saarbruecken Voice Disorder (SVD) 

database. The results revealed an accuracy of 80.83 ± 3.27. 

Wavelet Scattering Transform (WST) involves multiple 

stages of operations, including convolution, modulus, and 

averaging, which result in increased computational 

complexity, particularly for large datasets. CantüFrket et al. 

[17] studied the crucial issue of early Parkinson’s Disease 

(PD) diagnosis, leveraging artificial intelligence and speech 

signals. Utilizing the Parkinson speech dataset and 

recognizing the potential of voice disorders in PD patients, the 

study introduced an approach employing scalogram images 

derived from the Continuous Wavelet Transform of speech 

signals. Stratified 10-fold cross-validation yielded an F1 score 

and an accuracy of 0.95 for the deep feature fusion system. 

There is a lack of precise correlation between the numerical 

metrics obtained from acoustic analysis and the auditory-

perceptual qualities of the voice.  ML techniques were applied 

to telemedicine for the early detection of PD using the MDVP 

audio data of 30 individuals with PD and healthy participants, 

in the work done by Govindu et al. [18]. The classification 

using vowel phonation data resulted in a similar accuracy of 

91.835% and sensitivity of 0.95 for the MDVP dataset's 

Random Forest (RF) model. Principal Component Analysis 

(PCA) requires computing and storing the covariance matrix 

of the original data, which is memory-intensive for large 

datasets. The study done by Rahman et al. [19] focused on PD 

diagnosis through voice signal analysis, using multiple 

classifiers applied to the UCI dataset, revealing that XGBoost 

outperformed other ML techniques, achieving an accuracy 

exceeding 92%. The learning algorithm parameters were not 

fine-tuned; problems such as resource efficiency, security, and 

privacy, as well as the management of enormous volumes of 

medical data, were the limitations of the study. Verma et al. 

[20] investigated whether voice disorders are detected early; 

if so, they could improve voice health and quality of life. An 

acoustic attributes artificial neural network combined with an 

LSTM model trained on Mel-Frequency Cepstral Coefficients 

(MFCC) attributes was utilized to diagnose various voice 

diseases using the VOICED36 dataset. This approach 

demonstrated an accuracy of 95.67% and has limitations, 

including (i) the limited size of the tested cases, (ii) the lack of 

gender differentiation among the cases, and (iii) the omission 

of considering the severity of the pathology in the features. 

The principal objective of the work conducted by Ksibi et al. 

[21] was to create a precise deep learning model for 

diagnosing speech pathology by employing manual audio 

feature extraction as the basis for the classification procedure. 

The work involved the incorporation of voice gender 

information through a two-level classifier model. In the first 

level, the gender of the audio input was determined, while in 

the second level, it was determined whether the voice was 

pathological or healthy. Limitations include labeling 

ambiguity in the SVD, and dependence on out-of-date datasets 

creates biases and undermines the applicability of results in 

the quickly changing field of voice disorder diagnosis. 

Alshammri et al. [22] carried out PD detection using a 

variety of models, such as Support Vector Machine (SVM), 

K-Nearest Neighbor, RF, Decision Tree and Multi-Layer 

Perceptron. Limitation in the use of fewer evaluation metrics, 

which gives only a partial understanding of model 

performance. Amami et al. [23] presented a significant 

contribution to voice pathology detection by proposing a 

hybrid Bidirectional LSTM and Convolutional Neural 

Network architecture. The study utilizes the MEEI database, 

focusing on the detection of various voice pathologies through 

the combination of temporal and spectral features extracted 

from speech signals.  Lee et al. [24] addressed the class 

imbalance issue in the SVD for VPD and proposed a 

systematic approach using efficient DL models combined with 

oversampling techniques. The experimental findings show 

that the suggested VPD system, which combines a CNN with 

linear predictive coefficients oversampled by SMOTE, 

obtained 98.89% accuracy in identifying normal and diseased 

voices. This work discussed the drawbacks associated with 

feature extraction methods that necessitate segmenting the 

signal into short frames. However, concern arises from the 

nonstationary nature of pathological voices, as segmenting the 

signal during nonstationary phases could result in the loss of 

crucial information. Using a multi-input and multi-output 

structure, Han et al. [25] presented a SA Bi-LSTM 

architecture for voice tests on the GRB scale that focused on 

various pitches and vowel sounds. The system had challenges 

in accurately distinguishing between closely related severities. 

3. Proposed Work 
3.1. Overview and Preparing Data 

The Aachen Voice Pathology Database (AVPD) is a 

collection of annotated recordings of healthy and pathological 

voices, which are kept under the custody of experts in the 

field. Experimental verification of the suggested methodology 

for voice abnormality identification has proven its efficiency. 

The series comprises 388 high-resolution audio samples 

depicting a range of vocal fold pathologies, including edema, 

nodules, polyps, paralysis, and functional dysphonias. The 

samples were obtained in a controlled clinical setting. 

Phonetic variety and diagnostic generalizability are supported 

by the presence in each audio sample of contextually 

embedded Aachen words, numbers, and phonated vowels. 

Recording parameters provide equality in sampling rate (44.1 

kHz), bit depth (16-bit), and microphone position, thus 

reducing acoustic variations, due to gender balance in the 

speakers' gender distribution (52% male, 48% female). The 

peak amplitudes of all signals are normalized to ensure a 

normal distribution before segmentation. We then apply 

energy-based Vocal Activity Detection (VAD) to remove non-

speech sounds and silent transitional intervals. Two key 

operations during the preprocessing step are the zero-phase 

filtering for eliminating phase distortions and dynamic range 

compression to minimize intra-speaker amplitude variability. 

Dynamic Time Warping (DTW) is used to ensure that every 

utterance of a voice is aligned with a class-specific centroid 



S. Navaneethan et al. / IJECE, 12(8), 375-383, 2025 
 

378 

template in order to provide temporal regularization across 

samples. A spectral decomposition multi-band is obtained by 

using a 64-sub-band Gammatone filterbank after the 

alignment, which preserves the harmonic and formant 

structures.  

 

To convert time-domain signals into their frequency-

domain counterparts, the Short-Time Fourier Transform 

(STFT) uses a 25-ms Hamming window with 50% overlap. 

The phase components are discarded in pathological speech 

analysis, but the magnitude spectra are preserved for 

subsequent processing due to their low perceptual value. 

 

3.2. Working of Temporal Spectro-Context Encoding 

(TSCE) 

The TSCE module, being the main front-end of the 

proposed architecture, represents both local spectrum 

variations and long-term temporal correlations in ill speech. 

The 2D convolutional encoder 𝑆(𝑡, 𝑓) ∈ 𝑅𝑇×𝐹 is then used to 

convolve each preprocessed spectrogram 𝜙𝑐𝑜𝑛𝑣: 𝑅𝑇×𝐹 →
𝑅𝑇×𝐹′×𝐶. 𝐶 denotes the number of feature maps learned, and 

𝐹′ denotes the compressed frequency dimension following 

convolution.  

 

Before batch normalization and ReLU activations are 

added, the encoder aims to maximize feature non-linearity and 

stability through three kernel sizes of (5×5), (3×3), and (3×1) 

for convolutional blocks. By not performing aggregation steps 

on the time axis, temporal resolution is maintained. A dilated 

causal convolution stack is applied subsequent to spectral 

encoding to capture phonatory changes and follow acoustic 

events temporally. The spectral feature is the output of the 

dilated convolutional temporal block (1) at time frame $t$, 

where 𝑥𝑡 ∈ 𝑅𝐹′×𝐶 .  
 

ℎ𝑡 = 𝜎(∑ 𝑊𝑖 . 𝑥𝑡−𝑟.𝑖 + 𝑏𝑘−1
𝑖=0 )              (1) 

 

The parameters 𝑘, 𝑟, 𝑊𝑖, 𝑏, and 𝜎 are utilized to denote 

the kernel width, dilation factor, learnable weights, bias term, 

and ReLU activation, respectively. The temporal context 

window grows exponentially with 𝑟, 𝑤ℎ𝑖𝑐ℎ is used by the 

network to approximate long-range dependencies without 

losing resolution. A multi-head self-attention layer is 

appended to refine the temporal representations by modeling 

inter-frame relevance. The attention weights are computed as 

(2):  

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘
)𝑉         (2) 

 

The query, key, and value data that have been projected 

from the encoded features are given by the matrices 𝑄, 𝐾, 𝑉 ∈
𝑅𝑇×𝑑𝑘. This helps the network optimize the frame processing 

with disease-specific information, including irregular glottal 

pulses or subharmonic modulations. 

3.3. Cross-Domain Context-Aware Transfer Learning (CD-

CATL) 

The CD-CATL framework is used in classification since 

it was designed to minimize the domain shift between speaker-

specific variations and pathological voice qualities by 

matching contextual variables across domains. The model 

incorporates synchronously aligned parallel processes that are 

made possible by a dual-stream architecture. The Domain-

Adaptive Memory Transformer Stream (DAM-TS) and the 

Source-Specific Convolutional Attention Stream (SSC-AS) 

are the two streams. In the SSC-AS's multi-scale 

convolutional attention pipeline, the spectrograms are treated 

with encoded convolutional filters of sizes (3×3), (5×5), and 

(7×7), with each scale 𝑠 𝑖𝑛 {1, 2, 3}. The parameters can be 

simplified by partitioning these filters across depth. The 

attendant spectral representations (3) are affected by the 

attention mappings, 𝐴𝑠 ∈ 𝑅𝑇×𝐹′, which are generated via 

channel-wise softmax activation. 

 

𝑋̃𝑠 = 𝐴𝑠 ⊙ 𝑋𝑠                            (3) 

 

Where ⊙ represents the sequential multiplication of 

items. In order to ensure that the features are consistent across 

all scales, the outputs of each scale are combined using a 

shared residual encoder. The DAM-TS uses a boosted 

Transformer encoder that is upgraded and altered using 

external memory cells to mimic contextual feature dynamism. 

This is done simultaneously. From the output (4), (5) of TSCE, 

the encoder takes in a 𝑋 ∈ 𝑅𝑇×𝑑 , as input.  

 

𝑍(𝑙) = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑋𝑙−1) + 𝑋𝑙−1)    (4) 

 

𝑋(𝑙) = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐹𝐹𝑁(𝑍𝑙) + 𝑍𝑙)                     (5) 

 

For every 𝑙 ∈ {1,2, . . . , 𝐿} page, at every iteration. The 

external memory module 𝑀 ∈ 𝑅𝑁×𝑑 is updated by the model 

during training and retains disorder-specific prototypes to 

generalize to unseen variations. The learning rules employed 

by the model are similar to Hebbian. The final representation 

comes by summing up all the memory-augmented 

embeddings that were attention-dependent. To match latent 

representations between domains, a domain-adversarial loss is 

incurred by a Gradient Reversal Layer (GRL) that is linked to 

a domain discriminator 𝐷𝜃 .  Adversarial loss is used to 

describe the following (6): 

 

𝐿𝑎𝑑𝑣 = −𝐸𝑥∼𝑃𝑠
[𝑙𝑜𝑔𝐷𝜃(𝑓(𝑥))] − 𝐸𝑥∼𝑃𝑡

[𝑙𝑜𝑔 (1 − 𝐷𝜃

(𝑓(𝑥)))]          (6) 

 

Using the encoded form 𝑓(𝑥) and source and target 

distributions 𝑃𝑠 and 𝑃𝑡, respectively. The following is the 

combined objective function (7): 

 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝐶𝐸 + 𝜆𝐿𝑎𝑑𝑣 + 𝛽𝐿𝑚𝑒𝑚−𝑎𝑙𝑖𝑔𝑛         (7) 
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The memory-augmented prototype alignment is ensured 

by 𝐿𝑚𝑒𝑚−𝑎𝑙𝑖𝑔𝑛, with 𝜆, 𝛽 as weighting hyperparameters and 

𝐿𝐶𝐸  as the default cross-entropy loss. 
 

3.4. Real-Time Inference and Model Improvement 

This method uses causal inference to perform an 

independent analysis of chunked speech samples into 

overlapping 1-second windows. This allows real-time 

deployment by embedding the whole pipeline into a streaming 

architecture. The TSCE module is quantifiable with 8-bit 

fixed-point arithmetic, and operator fusion methods can be 

fused with convolutional layers to minimize latency. With the 

aid of TensorRT acceleration, the CD-CATL classifier is 

optimized to the ONNX format that is edge-inferable. Before 

being exposed to digit and word-level words, the model is pre-

trained on phonated vowels using a multi-stage curriculum 

approach. The Adam optimizer is used for the optimization, 

and it entails a 5-epoch warm-up period and a learning rate 

schedule that follows cosine annealing. Gradient outbursts are 

avoided using gradient cropping with a maximum of 5.0 norm. 

Dropout regularization is applied to all attention and dense 

layers with a probability of 0.3. 

 

3.5. Integration of CD-CATL and TSCE 

The TSCE module and CD-CATL module can be blended 

together to attain the pathology dynamics and all the subtleties 

of sound. The TSCE module, which is a reliable encoder that 

maintains both the frequency and the time dimensions, 

produces compact embeddings that mimic the sound of 

abnormal phonation. In order to enhance context-aware 

reasoning on various dimensions, this embedding information 

is further split into two concurrent branches: SSC-AS and 

DAM-TS. The Transformer’s memory cells act as implicit 

anchors at the class level, hence enhancing the separability 

across classes.  

 

A softmax activation-based fusion layer combines and 

passes through the output logits of the two branches. When 

there is uncertainty, the final prediction is delayed until the 

next section to examine cumulative evidence, which is class-

wise confidence-based. This hierarchical prediction 

mechanism proves especially useful while tackling turbulent 

environments, as it improves the reliability and robustness of 

real-time chaos detection. 

 

3.6. Robustness and Generalizability in a Specific Domain 

To ensure the model's generalizability to diverse 

languages and populations by adding an auxiliary loss 

grounded on a domain-invariant contrastive objective. 

Positive pairs are speakers of different classes, whereas 

negative pairings are speakers of different classes of disorders. 

The contrastive loss is computed as follows (8): 

 

𝐿𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑ 𝑦𝑖𝑗𝑖,𝑗 . ∥ 𝑧𝑖 − 𝑧𝑗 ∥2
2 + (1 − 𝑦𝑖𝑗) ⋅ 𝑚𝑎𝑥(0, 𝑚−∥

𝑧𝑖 − 𝑧𝑗 ∥2 )
2
       (8) 

𝑦𝑖𝑗 is the binary label indicating the type of pair, 𝑚 is the 

margin, and 𝑧𝑖 , 𝑧𝑗 are embeddings in this context. To 

strengthen decision boundaries, this objective requires that the 

model cluster intra-class embeddings and separate inter-class 

embeddings. The first phase of the method involves the 

application of Gammatone-STFT composites for acoustic 

preprocessing and spectro-temporal decomposition of speech 

data. The TSCE module can be used to handle spectral 

encoding and produce temporal patterns as a byproduct of 

self-attention techniques and dilated convolutions. It handles 

the processing of these representations. The CD-CATL 

architecture, using memory-augmented Transformers and 

multi-scale convolutional attention, performs a two-stream 

operation with the embedded embeddings. Adversarial 

training, memory alignment, and rival objectives are used to 

ensure domain invariance. Due to its edge-optimized 

deployment and its ability to handle real-time inference, the 

system is well-suited for telemedicine and clinical 

applications. The proposed system is a classic example of a 

pipeline that not only effectively but also reliably detects voice 

abnormalities by tightly incorporating auditory and contextual 

information. Figure 2 shows the architecture diagram. 

 

 
Fig. 2 Architecture diagram 

 

4. Results 
4.1. Evaluation 

The proposed multi-class voice disorder classification 

framework, which combines Temporal Spectro-Context 

Encoding (TSCE) and Cross-Domain Context-Aware 

Transfer Learning (CD-CATL), was assessed with a rigorous 

experimental setup and metric-driven approach to validate its 
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efficacy. In comparative and quantitative assessments of 

accuracy in classification, efficiency in computations, and 

resistance to domain fluctuations, the model is the undisputed 

leader. The new system was evaluated with state-of-the-art 

baselines, which included both traditional ML classifiers and 

modern deep learning models. The experiments were all 

carried out using a high-performance computing environment. 

The setup consisted of an Intel Xeon Gold CPU, 256 GB of 

RAM, and an NVIDIA RTX A6000 GPU with 48 GB of 

VRAM. The software was authored using Ubuntu 20.04, and 

the TensorFlow 2.14 and PyTorch 2.0 libraries were used. In 

addition to naturally occurring samples, the AVPD dataset has 

388 phonation examples covering five pathological 

categories: edema, paralysis, keratosis, vocal polyp, and 

adductor. It is employed for learning, verification, and 

evaluation. The samples were pre-processed by a standard 

pipeline, which included operations like spectrum 

normalization, background noise suppression, and voice 

activity detection. Temporal Spectro-Context Encoding 

(TSCE) is used for feature extraction. It was a hybrid approach 

that combined temporal enhancement, dynamic context 

windows, and STFT. On combining domain-adversarial 

learning, attention-augmented LSTM, and memory-aware 

transformer units, the CD-CATL classifier was bestowed with 

these features. The model required 120 epochs of training, 

which was achieved via an Adam optimizer, a domain 

discrimination auxiliary loss function, and a cyclic learning 

rate scheduler (initial learning rate of 1e-4). In an effort to 

ensure generalizability, the five-fold cross-validation method 

was used. The creases were evenly distributed across different 

disease classes and speaker genders. The Detection Cost 

Function (DCF), the Equal Error Rate (EER), accuracy, 

sensitivity, and specificity measures were all referred to while 

evaluating this system. Table 1 shows the model's 

performance across all courses. The classification 

performance indicators show an exceptionally high degree of 

precision, ranging from an average of more than 98.89%, a 

sensitivity of more than 97.81%, and a specificity of 98.56%. 

The aspect that the EER was less than 10% while the DCF was 

less than 85% in all the classes revealed low chances of 

misclassification and false rejection/acceptance.

Table 1. Performance metrics of proposed system 

Disorder EER (%) DCF (%) Accuracy (%) Sensitivity (%) Specificity (%) 

Normal 6.48 ± 2.10 79.65 ± 3.21 99.91 98.83 99.16 

Edema 7.03 ± 1.98 81.02 ± 2.94 98.75 97.68 98.54 

Paralysis 6.71 ± 2.35 80.23 ± 3.67 98.62 97.44 98.07 

Keratosis 7.42 ± 1.76 83.41 ± 2.43 98.91 98.16 97.95 

Vocal Polyp 6.18 ± 1.94 82.67 ± 3.11 98.93 97.22 98.69 

Adductor 6.89 ± 1.87 81.78 ± 2.98 98.97 97.89 98.44 

TSCE has employed strong representation learning, and 

CD-CATL has employed strong domain adaptation, since the 

performance of the model surpasses existing benchmarks. It is 

important for clinical reliability that all diseases have low 

values of EER, since it means that the rate of false positives 

and false negatives is proportional. Learning curves were used 

to show the dynamics of the training. As shown in Figure 3(b), 

the evolution of the accuracy in the training and validation sets 

shows little overfitting and steady convergence. The contours 

of loss minimization are plotted in Figure 3(a). The validation 

loss converges after 50 epochs, indicating that the learning is 

at its best and not getting worse. The overfitting probability 

was minimized by using an early stop criterion based on 

validation accuracy.  

 

 
Fig. 3 (a) Loss plots, and (b) Accuracy plots. 

Building a multi-class confusion matrix allowed for a 

more detailed understanding of the classification process. The 

confusion matrix, shown in Figure 4, compares the expected 

and actual class distributions for each condition. The model’s 

capacity to correctly classify challenging speech varieties is 

evidenced by the matrix's high diagonal dominance. There 

were a few instances of misclassification, and these were 

mostly for diseases that had similar symptoms or signs, like 

edema and keratosis. This implies that they are likely to have 

some phonatory features. 

 

 
Fig. 4 Confusion matrix 
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To offer an indication of the model's performance, a 

comparison with previously published techniques was made. 

The result of the comparison is depicted in Table 2. The model 

proposed using LSTM-DANN proved to be better than all 

previous methods in terms of classification accuracy. 

 
Table 2. Comparative performance with existing methods 

Author Methodology Accuracy (%) 

Keerthana et 

al. [16] 
WST + SVM/NN 80.83 

Govindu et 

al. [18] 

Traditional ML 

Classifiers 
91.83 

Cantürk et al. 

[17] 
Deep CNN models 95.00 

Rahman et al. 

[19] 
XGBoost + DNN2 95.00 

Verma et al. 

[20] 
ANN + LSTM 95.67 

Proposed 

System 

TSCE + CD-CATL 

(LSTM-DANN) 
98.89 

 

Table 2 contains a comparative study of different 

methodologies used in the detection of voice disorders, with 

the proposed model demonstrating the best accuracy. The 

technique, which was used by Keerthana et al. [16], was WST-

based feature extraction and SVM and NN algorithms, which 

were able to achieve 80.83% accuracy. In the meantime, 

Govindu et al. [18] used different machine learning models 

with an accuracy of 91.83%, Canturk et al. [17] used various 

deep learning models with an accuracy of 95%, and Rahman 

et al. [19] chose XGBoost and DNN2 models with the 

corresponding accuracy of 95%. Verma et al. [20] exploited 

ANN and LSTM models and achieved an accuracy of 95.67 

percent. Compared to them, the offered LSTM-DANN model 

has shown a higher level of accuracy in the identification and 

categorization of the vocal disorders, reaching the astonishing 

level of accuracy that amounts to 98.89 percent. It is important 

to note that the proposed model is remarkably more accurate 

than the current methodologies, confirming its strength and 

performance in detecting vocal disorders. The performance 

improvement was achieved by combining domain-conscious 

learning techniques with time-frequency domain feature 

extraction. The TSCE model improves discriminatory 

capacity through cross-speaker normalization and temporal 

evolution, as opposed to earlier models that were based on 

static features or single-view representations. An unseen 

subset of speakers, consisting of persons of different ages, 

genders, and languages, was used to assess the usability of the 

model. Sensitivity rates higher than 96.9% and accuracy rates 

higher than 97.5% did not affect performance. This indicates 

the effectiveness of the algorithm in handling speaker-induced 

variability, which has been problematic for earlier systems 

that sought to identify vocal pathology. The inter-domain 

transformations were minimized due to the successful 

domain-adversarial components in aligning the latent features. 

The assessment included accuracy and computation speed. All 

samples satisfied the real-time criterion for clinical 

deployment with an inference latency of 34 ms on edge-grade 

GPUs. The model is well-suited for embedded or mobile 

point-of-care systems because it has a small memory footprint 

of just 62 MB, a feat accomplished by reducing parameters 

and quantizing after training. To find out the most vital 

modules, they conducted an ablation study. The mean 

accuracy dropped by 3.7% and 4.3%, respectively, upon 

eliminating the domain-adaptive discriminator and the TSCE 

feature encoder. The role of memory-augmented transformer 

blocks in refining context is highlighted by their deletion, 

which lowers specificity. Table 3 holds the results of the 

ablation study. 

 
Table 3. Ablation study results 

Configuration 
Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Full Model 

(TSCE + CD-

CATL) 

98.89 97.81 98.56 

Without TSCE 94.61 93.42 93.87 

Without 

Domain-

Adversarial 

Block 

95.12 94.11 94.02 

Without 

Transformer 

Units 

96.23 95.26 95.67 

 

4.2. Discussion 

A scalable and stable architecture for voice disorder 

classification has been realized through the combination of 

Temporal-Spectral Convolutional Encoding (TSCE) with CD-

CATL. The two-stage architecture of the model, which tackles 

low-level decomposition of the signal and high-level domain 

alignment, allows it to detect abnormal speech fluctuations in 

a broad variety of datasets and recording settings. 

Discriminative transfer learning and context-dependent 

feature calibration are the most notable ways through which 

the suggested approach outperforms traditional models in 

adaptability. These features provide protection against a 

decrease in performance when exposed to ambient noise or 

mixed speakers. The system beats baseline CNN, LSTM, and 

transformer-based models in sensitivity, specificity, and 

accuracy, as attested by across-dataset evaluation metrics. The 

ablation study specifically confirms the importance of 

spectrum encoding towards better phonatory disease 

localization. Moreover, the domain adaptation mechanism 

drastically mitigates domain shifts between speakers and 

recordings. The efficacy of the framework in uncontrolled 

acoustic conditions is illustrated through these findings, even 

with the challenge of its application. The system is also light 

in terms of computation, making it a good candidate for 

integration into telehealth infrastructure and real-time 

inference capability, as seen through latency profiling. The 

model is an applicable option for constrained clinical 
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environments because it can allow for non-invasive, remote 

speech testing. The major step towards intelligent and scalable 

voice health diagnostics has been made possible by the 

integration of spectral accuracy, domain transfer in the 

context, and operational efficiency. The design’s therapeutic 

usefulness can further be improved by the evolution of future 

adaptive, multilingual, and multimodal extensions. 

 

5. Conclusion 
The proposed deep learning system, which combines 

Temporal Spectro-Context Encoding (TSCE) with Cross-

Domain Context-Aware Transfer Learning (CD-CATL), 

greatly improves the auto-diagnosis of anomalous voice 

disorders. This approach captures the structural and dynamic 

aspects of voice diseases through dilated temporal convolution 

and multi-scale spectrotemporal patterns drawn from 

Gammatone-STFT composites, as opposed to traditional 

systems that use manually designed acoustic features. The 

TSCE module is successful in avoiding time-axis pooling and 

retaining temporal fidelity of pathologic cues using dilated 

causal convolutions and multi-head self-attention. Such 

features allow the model to detect faint abnormalities, such as 

glottal cycle anomalies and subharmonic modulations. Such 

information is supplemented by the CD-CATL stream, which 

uses memory-augmented transformer layers and 

convolutional attention layers, which are parts of dual-branch 

processing. This enables them to impose domain 

generalization through class-specific prototype encoding, 

memory-alignment constraints, and adversarial training. The 

system demonstrates its utility by yielding a diagnostic 

accuracy of 98.89% in terms of gender and language, and it 

records variance when trained on the AVPD dataset. Adaptive 

decision-making under uncertainty is crucial in real-time 

diagnostic settings. It is enabled by the architecture's cross-

domain contrastive loss and hierarchical prediction strategy. 

The optimized inference pipeline can be run on peripheral 

devices to offer telemedicine-ready low-latency predictions 

owing to its support for ONNX and TensorRT. This paper 

helps in the recognition of speech pathology by integrating 

domain-invariant learning and spectro-linguistic features. 

Such future work that builds upon the framework will feature 

longitudinal modeling to track the advancement of maladies, 

multilingual dataset support, and phoneme-aware auxiliary 

tasks. The incorporation of the model into actual healthcare 

systems would further be encouraged by its increased 

interpretability with the incorporation of clinical 

explainability modules and attention visualizations. The 

process offers a new approach to voice disorder identification 

and tracking in extensive populations. It is non-invasive, 

scalable, and can be interpreted clinically.
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