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Abstract - In the era of privacy-preserving Machine Learning (ML), Federated Learning (FL) presents a transformative example 

for collaborative model training across distributed data sources without exposing sensitive information. This paper investigates 

the application of FL in healthcare using the Pima Indians Diabetes dataset, with a strong emphasis on non-Independent and 

Identically Distributed (non-IID) data partitioning, local client updates, and model interpretability. Three fully connected layers 

in a neural network and ReLU activations, implemented in PyTorch, are trained across five simulated clients using the Flower 

(FLWR) framework. The dataset is standardized, and clients receive shards of label-sorted data to replicate real-world 

heterogeneity across healthcare providers. Each Client trains its model using the Adam optimizer and cross-entropy loss, with 

local training loss monitored over multiple epochs. Post-training, interpretability techniques-LIME (Local Interpretable Model-

agnostic Explanations)- were employed to explain distinct predictions and global feature influence. Experimental results 

demonstrate that while federated learning can achieve reasonable performance in non-IID settings, interpretability insights vary 

significantly across clients due to data distribution disparities. The findings highlight the need for client-aware personalization 

and future enhancements in federated optimization strategies, communication efficiency, and explainable AI in sensitive domains 

like healthcare. 

 

Keywords - Federated learning, Privacy-preserving machine learning, Flower framework, Pytorch, Pima Indians diabetes, 

Neural networks, Healthcare AI, Data privacy, Distributed learning, Model aggregation. 

1. Introduction 
The rapid digitization of healthcare systems worldwide 

has led to an unprecedented accumulation of Electronic Health 

Records (EHRs), which encapsulate valuable clinical, 

demographic, and biometric information. These datasets 

possess immense potential for powering predictive modelling 

applications aimed at early diagnosis, personalized treatment 

planning, and clinical decision support systems. However, 

leveraging this data at scale poses significant challenges due 

to strict regulatory frameworks and ethical constraints 

surrounding patient privacy. Legal mandates like the Health 

Insurance Portability and Accountability Act (HIPAA) in the 

United States [1] and the General Data Protection Regulation 

(GDPR) in the European Union [2] prohibit the unrestricted 

sharing of sensitive medical data across institutional or 

geographic boundaries. As a result, traditional centralized 

machine learning paradigms that require raw data aggregation 

are often infeasible in healthcare settings [3]. This critical 

bottleneck has catalysed the exploration of privacy-preserving 

machine learning paradigms, among which Federated 

Learning (FL) has appeared as a particularly promising 

approach [4].  

FL enables various decentralized clients-such as 

hospitals, clinics, or research centers-to collaboratively train a 

shared global model without transmitting any raw data to a 

central server. Instead, each Client computes updates (e.g., 

gradients or model weights) on its local data and 

communicates only these updates to a coordinating server, 

where they are aggregated (e.g., via Federated Averaging) [5]. 

This decentralized learning framework aligns well with the 

privacy-sensitive nature of healthcare data and facilitates 

knowledge sharing across institutions without violating legal 

or ethical constraints.  

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Moreover, FL accommodates the statistical heterogeneity 

that is characteristic of real-world healthcare datasets. Unlike 

conventional machine learning scenarios that assume 

Identically and Independently Distributed (IID) data, patient 

records are inherently non-IID across healthcare providers due 

to differences in demographics, medical practices, equipment, 

and regional disease prevalence [6]. These disparities 

introduce significant challenges for federated optimization 

algorithms, particularly in terms of model convergence, 

fairness, and generalization [7]. Yet, if addressed properly, 

such heterogeneity can also serve as a source of richness and 

diversity in model training, enhancing the robustness of 

predictive systems [8].  

This paper investigates the application of federated 

learning to diabetes prediction using the Pima Indians 

Diabetes dataset, with an explicit focus on modelling non-IID 

data distributions and improving model interpretability. The 

implementation leverages the Flower (FLWR) framework [9], 

an open-source platform for scalable and customizable 

federated learning experimentation. The federated 

environment was stimulated with five clients; each was 

assigned a label-skewed partition of the dataset to mimic 

heterogeneity encountered in clinical practice.  

A fully connected neural network with three hidden layers 

is trained locally at each Client using the PyTorch deep 

learning framework. Training is conducted using the Adam 

optimizer and cross-entropy loss, with model updates 

aggregated centrally via FedAvg [5]. Recognizing that black-

box models are insufficient for clinical deployment without 

transparency, a federated learning pipeline is complemented 

with post-hoc interpretability techniques. Specifically, the 

application of  Local Interpretable Model-agnostic 

Explanations (LIME) [10] and SHapley Additive exPlanations 

(SHAP) [11] to elucidate both local and global aspects of the 

model's decision-making process. These tools enable us to 

examine how feature contributions differ across clients and 

provide actionable insights into the model’s predictions. 

The key contributions are as follows: 

 Federated Implementation in Non-IID Context: Presented 

a practical, end-to-end federated learning pipeline using 

Flower and PyTorch, tailored to simulate realistic non-

IID data distributions commonly encountered in 

healthcare scenarios. 

 Empirical Analysis of Client-Specific Behavior: 

Visualizing and monitoring local training loss across 

clients provided an in-depth look at how data 

heterogeneity influences convergence dynamics and 

model behaviour. 

 Integrating Interpretability into FL: The demonstration of 

how LIME and SHAP can be used to interpret federated 

models, revealing both shared and client-specific feature 

importances, thus bridging the gap between black-box 

modelling and clinical interpretability requirements. 

 Discussion on Ethical and Technical Implications: 

Provided a critical analysis of the challenges and 

opportunities that arise at the intersection of federated 

learning, interpretability, and healthcare, including the 

implications for fairness, personalization, and regulatory 

compliance. 

 

2. Literature Survey 
The emergence of Federated Learning (FL) has unlocked 

new possibilities in machine learning where data privacy, 

decentralization, and secure computation are paramount-

especially in subtle domains such as healthcare. Traditional 

machine learning models often rely on centralized training 

data, raising legal and ethical issues under regulations like 

GDPR and HIPAA. McMahan et al. [5] introduced the 

Federated Averaging (FedAvg) algorithm, allowing 

decentralized clients without sharing raw data to train a global 

model collaboratively. This innovation paved the way for a 

new generation of learning paradigms. However, FedAvg is 

sensitive to statistical heterogeneity in client data 

distributions-a concern amplified in clinical environments 

where demographic and regional variations abound. 

Following this, Kairouz et al. [7] provided a comprehensive 

roadmap of open problems in FL, highlighting the critical 

importance of handling non-IID data and the lack of 

theoretical convergence guarantees in such settings. Zhao et 

al. [8] systematically investigated the performance 

degradation that occurs when client datasets are not identically 

distributed, showing that even slight imbalances can 

drastically reduce global model accuracy. 

In response to these foundational challenges, researchers 

have developed various strategies to ease the effects of non-

IID data. Li et al. [7] explored the personalization of federated 

models to align better with local client distributions, 

introducing solutions such as meta-learning and clustering-

based FL. Wang et al. [10] proposed a differentially private 

FL framework that balances client contribution using adaptive 

weight adjustments, thereby improving generalizability while 

preserving privacy. These approaches mark significant 

progress in making FL more robust and practical for real-

world applications. However, most solutions still focus 

predominantly on global performance, with limited attention 

to how individual clients learn from their local data-a crucial 

consideration in medical contexts where local model 

reliability is vital. 

The application of FL in healthcare has received 

considerable attention, especially after the COVID-19 

pandemic, which emphasized the importance of data 

collaboration without compromising patient confidentiality. 

Sheller et al. [20] demonstrated a landmark implementation of 

FL for brain tumour segmentation using data from multiple 

institutions without data sharing. Their study validated the 

feasibility of collaborative learning in real clinical workflows. 
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Dayan et al. [21] extended this by training FL models across 

20 hospitals for COVID-19 prognosis prediction, achieving 

state-of-the-art accuracy while respecting strict privacy 

protocols. Similarly, a patient-centric FL pipeline for privacy-

preserving medical image diagnosis was proposed. Their 

model integrated resource-efficient techniques to reduce 

communication overhead, making it suitable for real-world 

deployment. These contributions showcase FL's ability to 

bridge data silos in healthcare, but they often involve complex 

medical imaging data or large-scale infrastructures, limiting 

generalizability to simpler clinical datasets like tabular 

records. 

Despite these advances, one key limitation in FL research 

is the lack of model interpretability. Medical applications 

require transparency in decision-making, especially when AI 

models are used to support clinical decisions. Model-agnostic 

interpretability tools like LIME (Local Interpretable Model-

agnostic Explanations) introduced by Ribeiro et al. [10], and 

SHAP (SHapley Additive exPlanations) by Lundberg et al. 

[11], have proven effective in explaining black-box models. 

However, most studies applying LIME and SHAP operate in 

centralized settings. Previously an author attempted to bridge 

this gap by applying SHAP in federated environments to 

explain global model decisions. While this was a step forward, 

it did not address how explanations might vary at the client 

level. An interpretable FL framework for medical text 

classification using attention-based mechanisms, showing that 

local attention weights could reflect linguistic features learned 

by each Client. Still, their study was domain-specific and 

lacked generalizability to numerical or tabular datasets like 

those commonly found in EHRs. 

The need for client-level interpretability in federated 

settings has been emphasized in several recent works. An 

author investigated how non-IID training leads to divergent 

feature learning across clients, suggesting the necessity of 

localized explanation strategies.  

They highlighted that even under identical architectures 

and hyperparameters, the decision boundaries formed by 

client models can differ significantly based on their unique 

training distributions. A comparative analysis of LIME 

explanations across federated client models and found that 

inconsistencies in feature attribution could reveal model drift 

or overfitting. Their findings support the argument that 

federated interpretability is essential for transparency, 

debugging, and trust calibration. A multi-modal federated 

architecture incorporating interpretable layers, enabling 

clinicians to visualize and validate the influence of text and 

image data on diagnosis predictions. While these studies 

advance the field of federated interpretability, most focus 

either on visual or unstructured data and do not directly 

analyze how tabular, structured health data is learned under 

federated settings. 

In contrast to these approaches, the current work presents 

a lightweight, client-level interpretability pipeline using LIME 

on federated models trained under non-IID conditions using 

the Pima Indians Diabetes dataset. By assigning label-skewed 

data to clients and applying LIME explanations post-training, 

the study investigates how each model learns feature 

importance uniquely, depending on its local dataset 

characteristics. This approach offers a novel perspective on FL 

behavior under heterogeneity, providing a critical step toward 

explainable, privacy-preserving, and clinically relevant AI 

systems. 

2. Methodology 
In this study, designed and implemented a Federated 

Learning (FL) system was designed and implemented to 

evaluate the impact of non-independent and identically 

distributed (non-IID) data on model performance and 

interpretability in a healthcare prediction task.  

The system simulates a collaborative learning 

environment among five clients using the Flower (FLWR) 

framework [12] and PyTorch [13], with a focus on diabetes 

prediction using the Pima Indians Diabetes dataset [14]. 

2.1. Data Acquisition and Preprocessing 

The dataset was obtained from a public repository and 

contains 768 samples with 8 clinical features related to 

diabetes risk, laterally with a binary outcome label indicating 

the presence or absence of diabetes [16].  

To simulate real-world clinical heterogeneity, non-IID 

conditions were introduced by sorting the data by class labels 

and then partitioning it into shards as shown in Figure 1. Each 

of the five clients received two label-skewed shards, resulting 

in imbalanced class distributions per Client [17]. 

Standard preprocessing steps were applied. First, features 

were homogenised to zero mean and unit variance using z-

score normalization with StandardScaler [16] to improve 

training stability. The dataset was then converted to PyTorch 

tensors, and a validation set was created by randomly splitting 

20% of the data using train_test_split from Scikit-learn [17]. 

This validation set remained centralized for post-training 

model interpretation. 

The dataset features are standardized using z-score 

normalization, which helps stabilize and accelerate training as 

shown in Equation (1): 

                               𝑥 ′ =
𝑥−𝜇

𝜎
  (1) 

Where 

x - original feature value, 

μ - mean of the feature, 

σ - standard deviation. 
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Fig. 1 Non-IID data partitioning for federated clients 

 

This ensures all features have zero mean and unit 

variance, making gradient-based optimization more effective 

[18]. 

 

2.2. Flower (FLWR) Framework Architecture 

In Federated Learning (FL), a central server 

communicates with multiple clients that are part of a 

collaborative network, commonly referred to as a federation. 

The server’s primary function is to manage and 

orchestrate the training process, while each Client is 

responsible for executing the assigned tasks and sending the 

outcomes back to the server. 

This architecture is often described as a hub-and-spoke 

model, as illustrated in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Hub and Spoke topology in federated learning (one server, 

multiple clients) 

 

In real-world deployments, running multiple projects 

within a single federation is common. Each project may utilize 

distinct hyperparameters, model architectures, aggregation 

strategies, or even different machine learning frameworks 

such as PyTorch or TensorFlow. 

To accommodate this flexibility, Flower separates both 

the server and client components into two parts: one is 

persistent and handles network communication, while the 

other is temporary and runs task-specific logic. As illustrated 

in Figure 2, a Flower server is composed of the Super Link 

and the Server App. 

Super Link is a persistent process that transmits task 

instructions to clients (referred to as Super Nodes) and collects 

the corresponding results. 

Server App is a transient process containing project-

specific logic that defines all server-side components of a 

federated learning system, including client selection, 

configuration, and result aggregation. This component is 

typically developed by AI researchers and engineers when 

creating Flower-based applications. As depicted in Figure 3, a 

Flower client comprises two components: Super Node and 

Client App. 

Super Node is a long-running process that establishes a 

connection with the Super Link, requests a task, performs 

those tasks (such as training a model on local data), and returns 

the outcomes to Super Link. Client App is a short-lived 

component containing project-specific code that defines 

client-side operations such as local model training, evaluation, 

and any necessary pre- or post-processing. Like the Server 

App, this is implemented by AI researchers and engineers 

when building Flower applications. 

Within the framework of federated learning, clients play 

a central role-they possess the training data and carry out the 

actual training processes. This is why Flower refers to them as 

Super Nodes, while the Super Link serves as the coordinating 

element that bridges all the Super Nodes together [9].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 The basic flower architecture for federated learning 

 

2.3. Model Architecture 

Implementation of a compact, fully connected 

feedforward neural network designed for tabular binary 

classification. The architecture consists of three linear layers:  

 

The first hidden layer has 16 neurons with ReLU 

activation. The second layer contains 8 neurons with ReLU 

activation. The output layer contains 2 neurons corresponding 

to the binary classes, followed by a SoftMax function. 
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This architecture was selected for its expressiveness and 

computational efficiency balance, making it suitable for 

federated environments with limited compute resources [5]. 

 
Fig. 4 Fully connected neural network architecture for binary 

classification 

 

Let 𝑥 ∈ ℝ8 be the input feature vector. The model 

consists of the following layers, as shown in Equations (2), 

(3), and (4): 

First Hidden Layer 

ℎ1 = 𝑅𝑒 𝐿 𝑈(𝑊1𝑥 + 𝑏1), 𝑊1 ∈ ℝ16×8                   (2) 

 

Second Hidden Layer 

ℎ1 = 𝑅𝑒 𝐿 𝑈(𝑊2ℎ1 + 𝑏2), 𝑊2 ∈ ℝ8×16                 (3) 

 

Output Layer 

𝑦 = Softmax(𝑊3ℎ2 + 𝑏3), 𝑊3 ∈ ℝ2×8                (4) 

 

The final output 𝑦 ∈ ℝ2represents the predicted 

probability distribution over the two classes (diabetic or non-

diabetic). 

 

2.4. Federated Learning Setup 

The FL system was built using the Flower framework 

[12], which provides abstractions for simulating federated 

clients and server coordination. Each Client runs an instance 

of the Diabetes Client class, a subclass of fl. 

Client.NumPyClient, which encapsulates local training, 

evaluation, and parameter synchronization logic. 

Each client model was independently initialized [18] and 

trained on its local dataset using the Adam optimizer with a 

learning rate of 0.01. The loss function used was categorical 

cross-entropy, suitable for multi-class classification problems 

[10]. During training, the model was updated over 5 local 

epochs per round. After local training, each Client sent its 

updated parameters to the server, which performed weighted 

aggregation using the standard Federated Averaging 

(FedAvg) strategy [19].  

The simulation was initially performed manually for one 

Client to verify convergence and training dynamics. As shown 

in Figure 5, training loss per epoch was logged and plotted to 

visually assess optimization behavior in the non-IID setting. 

 
Fig. 5 Training loss per epoch 

 

2.5. Model Interpretability 

To provide transparency in model decision-making and 

highlight the effects of data heterogeneity on learned 

representations, we incorporated post-hoc interpretability 

techniques that explain how each federated Client’s model 

arrives at its predictions under non-IID data distributions. We 

employed Local Interpretable Model-Agnostic Explanations 

(LIME) [20] as a post-hoc interpretability technique. LIME 

provides feature-level attribution by approximating the 

model's complex, black-box decision boundary with a simpler, 

locally interpretable surrogate model. Specifically, analyzed 

the same fixed sample from the centralized validation dataset 

across all five client models to examine how differences in 

local training data affect the individual Client’s decision-

making processes. 

 

Mathematically, LIME seeks to learn an explanation 

model selected from a class of interpretable models G, by 

minimizing the following objective function as shown in 

Equation (5). 

𝑔
∧

= 𝑎𝑟𝑔𝑚𝑖𝑛 𝐿(𝑓, 𝑔, 𝜋𝑥) + 𝛺(𝑔)                   (5) 

 

Where, 

𝑓is the original complex model (e.g., neural network) trained 

on each Client. 

𝑔is the interpretable surrogate model, such as a sparse linear 

regressor. 

𝐿(𝑓, 𝑔, 𝜋𝑥) is a local fidelity loss function that measures how 

well 𝑔approximates 𝑓in th vicinity of the instance 𝑥, weighted 

by the locality kernel 𝜋𝑥. 

𝜋𝑥(𝑧) defines the proximity measure, often modeled using an 

exponential kernel: 
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                              𝜋𝑥 = 𝜋𝑟2                                        (5) 

 

Where is a distance metric (e.g., Euclidean or cosine 

distance) between the instance of interest and a perturbed 

sample z, and is a kernel width parameter controlling locality. 

 

Ω(𝑔) is a complexity penalty term that ensures it remains 

interpretable by enforcing sparsity or simplicity. 
 

By approximating the behaviour of each federated model 

locally around a specific input instance, LIME reveals the 

most influential features contributing to each prediction. This 

approach allows us to contrast how individual clients, trained 

on skewed local datasets, weigh feature importance 

differently. The resulting explanations are instrumental in 

interpreting client-specific model behaviour and assessing the 

impact of data heterogeneity on model logic. 

 

In the results section, the LIME-generated explanations 

were presented and analysed for each of the five clients, 

offering insights into how local data distributions shape the 

decision boundaries of federated models. 

 

3. Results and Discussion 
For Client 1, Figure 6 shows that the most influential 

feature was Pregnancies > 0.64, which contributed positively 

to the diabetes prediction with a weight of approximately 

+0.30. This was followed closely by Diabetes Pedigree 

Function > 0.42, contributing around +0.29, and BMI > 0.57 

at approximately +0.18. These values indicate that the model 

strongly associated these three features with an increased 

likelihood of diabetes, making them the primary drivers of its 

decision. Additionally, a moderate positive contribution came 

from 0.07 < Glucose <= 0.79 with a weight of +0.08.  

The only negative contributor was Insulin <= -0.69, 

which exerted a small suppressing influence of −0.04 on the 

diabetic classification. The remaining features-Age, Blood 

Pressure, and Skin Thickness-had negligible weights near 

zero, reflecting minimal involvement in the prediction. This 

behaviour suggests that the Client 1 model was trained on data 

where hereditary and lifestyle factors strongly aligned with 

diabetes diagnoses, guiding its classification logic.  

 

 
Fig. 6 Client 1 Feature impact on diabetes classification 

 
Fig. 7 Client 2 Feature impact on diabetes classification 
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DiabetesPedigreeFunction > 0.42

Local explanation for class Diabetes
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In contrast to Client 1, the model for Client exhibited a 

very different attribution profile. As shown in Figure 7, the top 

contributor was again Pregnancies > 0.64, but its influence 

was more moderate at approximately +0.012. BMI > 0.57 and 

Blood Pressure > 0.67 followed with contributions of around 

+0.010 and +0.008, respectively. However, a surprising 

deviation emerged: Diabetes Pedigree Function > 0.42 

contributed negatively with a weight of −0.018, indicating that 

this feature reduced the probability of predicting diabetes for 

this specific instance-opposite to the pattern seen in Client 1. 

Minor negative weights were also seen for Insulin <= −0.69 

(−0.004) and Age (−0.003) 

Glucose and Skin Thickness had almost no influence. 

These attributions imply that Client 2’s training data may have 

involved a nonstandard relationship between genetic markers 

and diabetes presence, prompting the model to downplay 

typical clinical risk indicators like pedigree. 

The LIME output for Client 3 reflected a more ambivalent 

model, as indicated by the relatively small contribution 

magnitudes across the board. As shown in Figure 8, the most 

positively weighted feature was Diabetes Pedigree Function > 

0.42, which contributed about +0.009, followed by Blood 

Pressure > 0.67 and BMI > 0.57, with contributions of +0.007 

and +0.006, respectively. Interestingly, Pregnancies > 0.64 

and Insulin <= −0.69 both contributed negatively, with 

weights of approximately −0.005 each. The remaining 

features had minimal impact, clustered around ±0.001. 

The low attribution values across all dimensions indicate 

that this model lacked dominant decision drivers, likely due to 

either a noisy local dataset or weak class separation in the 

training distribution. This could lead to more conservative or 

uncertain classifications compared to other clients. 

 
Fig. 8 Client 3 Feature impact on diabetes classification 

 
Fig. 9 Client 4 Feature impact on diabetes classification 
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Local explanation for class Diabetes
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Client 4’s explanation, shown in Figure 9, is a relatively 

confident model, with strong positive influence from Diabetes 

Pedigree Function > 0.42 and BMI > 0.57, contributing 

approximately +0.016 and +0.014, respectively. However, 

unlike Client 1, Pregnancies > 0.64 contributed negatively 

(−0.005), meaning this model viewed high pregnancy count as 

decreasing the likelihood of diabetes for this instance. This 

highlights a reversal in learned feature associations, likely 

caused by local population skew (e.g., a younger or healthier 

cohort with high pregnancy counts). Other positive 

contributors included Blood Pressure > 0.67 (+0.006), Insulin 

<= −0.69 (+0.004), and Age (+0.003), while Glucose and Skin 

Thickness again showed minor weights. 

This configuration indicates a model with stronger 

reliance on biological and metabolic markers, though with 

altered demographic interpretation relative to other clients. 

The most striking divergence occurred in Client 5’s 

explanation. Pregnancies > 0.64 had the strongest positive 

effect, contributing around +0.033, followed by Diabetes 

Pedigree Function > 0.42 at +0.018. However, several classic 

risk features showed negative contributions: BMI > 0.57 

(−0.011), Insulin <= −0.69 (−0.010), and Skin Thickness <= 

−1.29 (−0.009). These values suggest that, for this Client’s 

model, elevated BMI and insulin resistance were negatively 

correlated with diabetes prediction-a stark contrast to 

established clinical patterns and previous clients, as shown in 

Figure 10. 

 
Fig. 10 Client 5 Feature impact on diabetes classification 

The remaining features showed small influences: Blood 

Pressure was positive (+0.006), while Age and Glucose were 

weakly negative. This inverse attribution may result from a 

local dataset containing non-diabetic individuals with high 

BMI or Insulin, thus leading the model to internalize 

misleading associations. 

Table 1. LIME explanations  

Feature Client 1 Client 2 Client 3 Client 4 Client 5 

Pregnancies + Strong - Weak - - + Strong 

Diabetes Pedigree Function + Strong - Strong + + Strong + Moderate 

BMI + + + + Strong - 

Insulin - - - + - 

Blood Pressure ~ + + + + 

Age Minimal Minimal Minimal + - 

Skin Thickness Negligible Minimal - - - 

The LIME explanations in Table 1 reveal distinct patterns 

of feature importance across the five federated clients, 

highlighting how non‐IID training data shape each model’s 

decision logic. For instance, Pregnancies emerge as a strong 

positive predictor in Clients 1 and 5, but flip to a negative 

influence in Clients 3 and 4, suggesting that the label‐skewed 

partitions at those sites associate higher pregnancy counts with 

lower diabetes risk. The Diabetes Pedigree Function 

consistently contributes positively-most strongly in Clients 1, 

4, and moderately in Client 5-but is negatively weighted in 

Client 2, indicating local data differences that reverse its 

typical risk signal. BMI is uniformly positive except at Client 

5, where it becomes a weak negative, again underscoring local 

heterogeneity. 

-0.01 0 0.01 0.02 0.03 0.04

0.07 < Glucose <= 0.79

-0.40 < Age <= 0.75

BloodPressure > 0.67

SkinThickness <= -1.29

Insulin <= -0.69

BMI > 0.57

DiabetesPedigreeFunction > 0.42

Pregnancies > 0.64

Local explanation for class Diabetes
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Metabolic markers like Insulin are negative predictors in 

four out of five clients, yet Client 4 exhibits a strong positive 

weight, perhaps reflecting a different distribution of high‐

insulin cases at that site. Blood Pressure shows minimal or 

mixed effects in Client 1, but is positively associated with 

diabetes risk in all other clients.  

Demographic factors also vary: Age has only a negligible 

influence on Clients 1–3, turns positive at Client 4, and is 

slightly negative at Client 5. Finally, Skin Thickness is largely 

uninformative-negligible or minimal in Clients 1 and 2 and 

negatively weighted elsewhere-indicating that this feature 

carries little consistent signal across the heterogeneous 

datasets.  

Together, these client‐by‐client contrasts emphasize the 

necessity of interpretability in federated learning, as identical 

architectures can learn qualitatively different decision rules 

when trained on non‐IID data. 

4. Conclusion 
In this study, a federated learning pipeline for diabetes 

prediction using the Pima Indians Diabetes dataset under non-

IID conditions, leveraging the Flower framework and 

PyTorch. Through label-skewed data partitioning across five 

simulated clients, the experiments demonstrated that while 

federated averaging can produce a reasonably accurate global 

model, individual client models exhibit substantial variability 

in convergence behavior and decision logic. Post-hoc 

interpretability via LIME revealed pronounced differences in 

feature attributions-such as the reversal of Pregnancy and BMI 

weights in certain clients-underscoring that identical network 

architectures can internalize qualitatively different patterns 

when trained on heterogeneous data. These findings highlight 

two key implications: (1) interpretability is indispensable in 

federated healthcare applications to surface client-specific 

biases and ensure trust, and (2) statistical heterogeneity must 

be explicitly addressed to achieve both equitable performance 

and consistent model behavior across sites.
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