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Abstract - Networked systems have been expanding rapidly, and there are cybersecurity challenges that require advanced 

Intrusion Detection Systems (IDS) to detect sophisticated and evolving threats. However, the more common traditional IDS 

approaches, including signature-based and classical machine learning methods, usually suffer from a significant drop in 

performance as they typically cannot adapt well to concept drift and data imbalance and cannot provide enough 

interpretability [6-9]. In dynamic networks, these challenges prevent faster and accurate detection of new attacks or zero-

day attacks. This article presents CyberAdaptAI, a novel hybrid adaptive ensemble learning framework that combines several 

base classifiers through an efficient drift detection scheme and adaptive weight rebalancing to overcome these limitations 

[38]. It has also integrated explainability through SHAP-based interpretability, leading to actionable insights for security 

analysts. The general approach is to apply mini-batch processing of the streaming network data, dynamically tuning the 

classifier weights based on the most recent performance, concept detection using ADWIN, and a mechanism triggered by 

concept drift detection to train new models to maintain accuracy. CyberAdaptAI achieves up to 98.1% and 96.8% accuracy 

on benchmark datasets CIC-IDS2017 and UNSW-NB15, while outperforming state-of-the-art baselines empirically 

evaluated. Not only does the model recover quickly after encountering drift events, but it is also consistent and stable during 

batch-wise performance. Besides, cross-dataset evaluations substantiate its robustness and generalization abilities in a 

heterogeneous network scenario. The solution provided by CyberAdaptAI enables a practical and scalable approach to real-

time intrusion detection in complex and evolving cyber environments, relying on adaptability, accuracy, and interpretability. 

By seamlessly enabling network behaviors of relevance and integrated with transparent decision-making, the framework 

adds novel support for security operations and threat mitigation, addressing critical gaps in existing IDS methodologies. 
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1. Introduction  
The growing complexity of cyber-attacks and the 

proliferation of networked technologies have made 

developing effective Intrusion Detection Systems (IDS) a 

paramount concern as more critical infrastructures become 

integrated into connected environments. Traditional IDS 

strategies usually use static rule-based means or machine 

learning designs, which are highly inefficient at discovering 

sophisticated and evolving attacks, particularly zero-day 

and polymorphic attacks. In recent years, advancements in 

deep learning and ensemble methods have shown promising 

results in improving the accuracy and robustness of 

detection. Nevertheless, the models' failure is witnessed due 

to concept drift, i.e., the statistical properties of the network 

traffic are changing over time; hence, they may not perform 

well in a dynamic real-world environment [1, 2]. 

Additionally, many deep learning models lack 

interpretability, making them cumbersome for security 

analysts who value transparency and actionable insights into 

how a model reached a given decision [3]. 

Many of the research works have proposed different 

methods of enhancing IDS competency through feature 

selection, ensemble learning, and unsupervised techniques 

for anomaly detection [4-6]. Adaptive frameworks that can 

detect drift and learn incrementally have been proposed in 

several studies to confront the issue of temporal data 

variability [7,  8]. Despite these developments, the model 

integration that promises calculative, efficient, robust 

adaptation and interpretability with high accuracy across 

varied datasets remains elusive. Filling in this gap further 

motivates the current research to develop an adaptive 

ensemble IDS that dynamically responds to concept drift 

with better detection performance and interpretability. 

Although several intrusion detection systems have been 

proposed using Ensemble and deep learning methods, most 

existing works still fall short in three key aspects: they lack 

adaptability to rapid concept drift in evolving network 

traffic, they fail to generalize effectively across 

heterogeneous datasets, and they offer limited 
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interpretability for security analysts. These gaps lead to 

reduced robustness in real-time deployment and hinder 

practical adoption. Therefore, the problem addressed in this 

study is the development of a framework that ensures high 

detection accuracy under dynamic traffic conditions, 

demonstrates strong cross-dataset generalization, and 

provides transparent, explainable insights for decision-

making. 

The novelty of this research lies in the integration of 

three complementary advancements into a unified 

framework. First, CyberAdaptAI employs an adaptive 

ensemble learning strategy with drift-aware weight 

rebalancing, enabling the model to maintain high detection 

accuracy even under rapidly evolving traffic conditions. 

Second, unlike many prior IDS studies that evaluate models 

only on a single benchmark dataset, CyberAdaptAI 

validates performance across both CIC-IDS2017 and 

UNSW-NB15, thereby demonstrating superior cross-

dataset generalization. Third, the incorporation of SHAP-

based interpretability provides transparent feature-level 

explanations that support security analysts in understanding 

and trusting model decisions. These combined innovations 

distinguish CyberAdaptAI from existing intrusion detection 

approaches that typically address accuracy, adaptability, or 

interpretability in isolation. 

This research aims to 1) propose a hybrid machine 

learning framework using adaptive ensemble techniques to 

increase the anomaly detection performance, and to 2) 

develop a drift detection and adaptation mechanism to 

maintain performance over time, and finally 3) integrate 

explainable AI methods such as SHAP to provide actionable 

security insights. The novelty of this work lies in integrating 

drift-aware ensemble learning with different explainability 

modules and testing the proposed method on benchmark 

datasets CIC-IDS2017 and UNSW-NB15. Notably, this 

integration offers high detection accuracy and model 

explainability, which are paramount for real-time cyber-risk 

operations. 

The structure of the paper is as follows: In Section 2, 

we provide a complete literature review, including a 

summary of the existing methods and some of their 

drawbacks. Proposed Methodology: The proposed 

methodology is described in detail in section 3 through 

model architecture, drift detector, and interpretability 

techniques. Section 4 describes the experimental setting, the 

datasets used, and the results obtained. Section 5 presents 

the results, discusses a study limitation, and provides 

further implications. Finally, in Section 6, we conclude the 

paper and suggest future research directions to increase IDS 

adaptability and applicability in more complicated cyber 

environments. 

2. Related Work 
Recent studies focus on dynamic, Ensemble, and hybrid 

learning methods to enhance cybersecurity's real-time 

intrusion detection accuracy and adaptability. Zhijun Wu et 

al. [1] introduced DEIL-RVM. This dynamic ensemble 

intrusion detection technique uses probabilistic updates and 

sparse RVMs to achieve steady accuracy on streaming 

network data while consuming minimal resources. Huajuan 

Ren et al. [2] proposed ADHS-EL. This Boosting-based 

Ensemble improves accuracy and robustness on adversarial, 

unbalanced network traffic datasets with intentions for 

future generalization, using dynamic hybrid sampling and 

adversarial augmentation. Xinghua Li et al. [3] presented a 

sustainable ensemble intrusion detection model that 

enhances accuracy and robustness on NSL-KDD and real-

world datasets by reusing historical information and 

adapting to different types of attacks. Farah Jemili et al.[4] 

suggested a universal intrusion detection framework that 

uses ensemble learning, PCA, cosine similarity, and TF-

IDF. High accuracy is attained in tests on CICIDS, NSL-

KDD, and UNSW; nonetheless, computational and dataset 

diversity constraints are present. METHAQ A. SHYAA et 

al. [5] A feature drift-aware IDS framework called IFDA-

GPC is presented in this paper. It uses VE-DQN-MAFS for 

dynamic feature selection. It was tested on several datasets 

and demonstrated good adaptability with an accuracy of 

93% on the CICIDS-2017; scalability and deep learning 

integration require more development.  

Appalaraju Grandhi and Sunil Kumar Singh [6] present 

the optimized feature selection model IDBFS-EGTO, which 

achieves 98.4% intrusion detection accuracy, in the paper. It 

has strengths in exploration-exploitation balance, tuning, 

and evaluating complexity issues. Sydney Mambwe 

Kasongo [7] suggested an IDS framework that combines 

feature selection based on XGBoost with RNN variations 

(LSTM, GRU, and Simple RNN). Its accuracy reached 

88.13% when tested on the NSL-KDD and UNSW-NB15 

datasets. Benefits include faster training, less feature space, 

and enhanced performance. The model's performance on 

minority classes is limited; hybrid RNNs and more in-depth 

class-level analysis are part of future research. 

Ahmed Abdelkhalek and  Maggie Mashaly  [8] introduced 

a deep learning-based NIDS for class imbalance handling 

that uses Tomek Links and ADASYN. It outperformed 

current models with an accuracy of up to 99.9% when tested 

on NSL-KDD.  

 

SoumyadeepHore et al. [9] presented DeepResNIDS. 

This multistage DNN-based intrusion detection framework 

achieves 98.5% accuracy in detecting known, zero-day, and 

adversarial assaults through transfer learning and 

autoencoders. Mamatha Maddu and Yamarthi Narasimha 

Rao [10] suggested a deep learning-based intrusion 

detection system (IDS) for SDN that uses DCGAN, 

CenterNet, and ResNet152V2 with SMA. With an accuracy 

of 99.65%, it seeks to enhance zero-day detection in Internet 

of Things networks. 
 

Nojood O. Aljehane et al. [11] present the GJOADL-

IDSNS intrusion detection system in the paper. It improves 

performance on benchmark datasets by utilizing A-BiLSTM 

classification, GJOA-based feature selection, and SSA for 

hyperparameter adjustment. Future research will focus on 
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real-time implementation and threat adaptation. 

Khushnaseeb Roshan et al. [12] examined adversarial 

attacks on NIDS and suggested three defense tactics to 

improve robustness: High Confidence, Gaussian Data 

Augmentation, and Adversarial Training. Applying the 

method to different ML/DL architectures is part of future 

development. Hichem Sedjelmaci [13]  suggested a 5G 

network security detection method based on hierarchical 

reinforcement learning. It uses minimal processing 

overhead to identify unknown assaults. In the future, 

network performance will be assessed and tested in actual 

5G scenarios. Ahmad  
 

Ali AlZubi et al. [14] suggested an Attack Detection 

Framework (CML-ADF) that uses cognitive machine 

learning to help secure healthcare data in cyber-physical 

systems. It achieves high attack prediction and accuracy 

while increasing efficiency and lowering communication 

costs. Developing intelligent security procedures and 

tackling security issues are two areas of future research. 

SHAKILA ZAMAN et al. [15] examined IoT security risks 

and AI-powered defenses, emphasizing the difficulties 

posed by devices with limited resources. It discusses AI/ML 

methods, unresolved issues, and potential ways to enhance 

IoT effectiveness and security.  
 

CELESTINE IWENDI et al. [16] introduced a deep 

learning Intrusion Detection System (IDS) that uses an 

LSTM classifier to detect cyberattacks on the Internet of 

Things with an accuracy of 99.09%. Future research will 

examine blockchain for improved IDS and apply SNMP to 

big networks. MUJAHEED ABDULLAHI et al. [17] tested 

the LSTM and XGBoost models for cyberattack detection 

in CPS using benchmark datasets and gas pipelines. 

XGBoost achieved 98.69% accuracy; ensemble approaches 

and real-time datasets will be used in future studies. Aya H. 

Salem et al. [18] examined 68 AI-based techniques for 

detecting cyberattacks, emphasizing ML, DL, and 

metaheuristic algorithms.  
 

Tested against various threats, the results indicate better 

detection, but the demands on data and computation are 

significant. Muhammad Mudassar Yamin et al. [19] 

examined new AI-powered cyberattacks, described existing 

offensive and defense tactics, warned of the dangers of AI 

weaponization, and urged international collaboration for 

responsible AI cybersecurity development. KAVITHA 

DHANUSHKODI AND S. THEJAS [20] examined AI-

driven cybersecurity developments, demonstrating 

enhanced detection using innovative models in various 

sectors, addressing issues like privacy and integration, and 

suggesting future paths for workable, scalable deployment. 

Sowmya T. and Mary Anita E. A [21] examined 72 

papers on AI-based intrusion detection, emphasizing 

Ensemble, ML, and DL techniques with an accuracy of 

\~99% on typical attacks. Although it highlights limitations 

in attack classification, evaluation metrics, and dataset 

variety, it also identifies benefits in detection accuracy. 

Utilizing more recent datasets, testing hybrid models, and 

improving the detection of unidentified attacks are all 

examples of future development. Salwa Alem et al. [22] 

presented BIANO-IDS, a novel intrusion detection system 

that combines specification- and anomaly-based techniques 

using neural networks and a decision system. In actual 

industrial testing, it achieved low false positives and high 

accuracy. Future research aims to increase efficiency 

through feature selection and broader data sources.  

 

Heng Zeng et al. [23] integrated the theories of CAS, 

TAM, and TPB to present a novel AI-based anomaly 

detection framework for IoT security in smart cities. It 

highlights human-AI interaction, which has been 

conceptually proven. Future research will concentrate on 

cross-cultural adaptation, ethical issues, and real-world 

validation. Matthew Baker et al. [24]  presented an 

integrated LSTM-MPC real-time anomaly detection and 

correction system for power electronic-dominated grids. It 

has been tested on a 14-bus system and has demonstrated 

fault correction, resilience, and accurate classification. 

Limitations include scalability and real-world deployment; 

future work will concentrate on growing datasets and 

adaptive learning for broader grid integration. Benefits 

include real-time detection and correction. Monika 

Vishwakarma and Nishtha Kesswani [25] used a benchmark 

dataset to demonstrate a deep neural network-based 

Intrusion Detection System (IDS) for real-time attack 

detection in IoT networks. The results indicate improved 

efficiency; real-time training and larger datasets will be the 

main topics of future research.  

 

Md. Asaduzzaman and Md. Mahbubur Rahman [26] 

suggested a hybrid LSTM-CNN model for AWID and 

GAN-generated datasets to detect zero-day threats. The 

accuracy of the model was 93.53%. More attack data 

generation is the goal of future development to improve 

detection. ZHIBO ZHANG et al. [27]  suggested a hybrid 

LSTM-CNN model for AWID and GAN-generated datasets 

to detect zero-day threats. The accuracy of the model was 

93.53%. More attack data generation is the goal of future 

development to improve detection.  

 

Ankit Attkan and  Virender Ranga [28] discuss 

blockchain and AI-based authentication for safe device 

communication, which are the main topics of the paper's 

evaluation of IoT security solutions. Future studies focusing 

on enhancing security methods emphasize their advantages 

for key management. Marcos V.O. de Assis et al. [29] 

suggested an SDN-based security system that uses game 

theory for mitigation and CNN for real-time detection to 

stop DDoS attacks. Testing with other hosts and 

investigating deep learning techniques are part of the future 

effort. Norberto Garcia et al. [30] An AI-based anomaly 

detection system for detecting SlowDoS attacks in real time 

over encrypted HTTP data is presented in this study. With a 

98% accuracy rate, future research will concentrate on 

modifying the system to withstand further threats and 5G 

traffic.  

 

Jalindar Karande and Prof. Sarang Joshi [31] offered a 

Google Cloud experimental setup for real-time IoT security 
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analytics. It does not automatically learn new assaults, but it 

can recognize known ones. Future research focuses on 

identifying new assaults early. Stefanos Tsimenidis et al. 

[32] examined deep learning models for IoT intrusion 

detection and emphasised their effectiveness compared to 

conventional techniques. It discusses difficulties and 

recommends further study on unsupervised, distributed, and 

effective deep learning methods. MINH-QUANG TRAN et 

al. [33] introduced a deep learning and Internet of Things-

based solution for CNC machine monitoring that uses 

vibration sensors to guarantee cutting stability. The results 

demonstrate remarkable precision, surpassing conventional 

security and vibration control techniques. MOHAMEDS. 

ABDALZAHER et al. [34] discussed the role of IoT and 

machine learning in intelligent systems, provided a 

taxonomy of ML models for IoT security, and offered 

research recommendations in addition to case studies on 

smart cities and early warning systems. Martin Manuel 

Lopez et al. [35] addressed idea drift and excessive 

verification delay by installing an SCARGC-based intrusion 

detection system for the Internet of Things. When tested on 

actual IoT datasets, it demonstrates increased accuracy; 

deep learning models will be the focus of future research.  

 

VANLALRUATA HNAMTE et al. [36] present a 

hybrid LSTM-AE intrusion detection model that 

outperforms CNN and DNN models in the paper. It 

demonstrated 99.99% accuracy when tested on the 

CICIDS2017 and CSE-CICIDS2018 datasets. Future 

research will focus on transfer learning and alternative 

architectures. JIAWEI DU et al. [37] presented NIDS-

CNNLSTM, a network intrusion detection system for the 

IIoT that combines CNN and LSTM for excellent accuracy. 

Tested on the UNSW_NB15, NSL_KDD, and KDD CUP99 

datasets, it lowers false alarms and increases detection rates. 

Tao Yi et al. [38] examined deep learning methods for 

detecting network assaults, including data imbalance, traffic 

representation, and dynamic attacks. It evaluates current 

solutions and identifies problems and potential avenues for 

future study. 

An ensemble method with distributed machine learning 

for detecting idea threats and drift based on Apache Spark, 

which was explained by Meenal Jain and Gagandeep Kaur 

[39]. The results show a high accuracy of 93% on NSL-

KDD. In the future, the aim will be to classify the threats 

specific to IoT and improve the classifiers. 

MAHMOUDABBASI et al. AWEE, a method to address 

the class imbalance problem in network traffic classification 

by dynamically changing the weight of the misclassified and 

correctly classified instances, and an ensemble learning 

process is proposed by [40]. It outperforms existing methods 

with an accuracy greater than 98%. This is something that 

may be explored in future development work. The existing 

literature on AI-based intrusion detection using ensemble 

models, deep learning, and drift-aware techniques was 

reviewed. The techniques utilize real-time aspects, adaptive 

weighting methods, and enhanced feature selection methods 

to effectively detect known and novel threats and thus 

ameliorate the detection. Nevertheless, scalability, class 

imbalance, and model generalizability to heterogeneous 

network environments still pose challenges. 

Although the literature demonstrates significant 

progress in intrusion detection using ensemble methods, 

deep learning, and drift-aware models, most studies address 

only a subset of the key challenges. Ensemble and boosting 

techniques have improved accuracy but often fail to 

maintain robustness under evolving traffic distributions. 

Drift-aware frameworks capture temporal changes but 

typically sacrifice accuracy or computational efficiency. 

Deep learning approaches achieve strong detection rates but 

remain limited by interpretability and a lack of transparency 

for analysts. Importantly, few works systematically 

integrate adaptability, cross-dataset validation, and 

explainability into a single model. This gap highlights the 

need for a holistic framework such as CyberAdaptAI, which 

simultaneously addresses these dimensions to provide 

resilient, accurate, and interpretable intrusion detection in 

real-world environments. 

 

3. Proposed Framework 
In this section, the proposed framework, 

CyberAdaptAI, an adaptive ensemble incremental learning 

model for intrusion detection in real-time, is presented. It 

achieves high accuracy under changing network traffic by 

employing a set of classifiers with dynamic weight tuning 

and a drift detection mechanism. Furthermore, the 

framework combines explainability methods to produce 

interpretable and actionable insights, bolstering 

performance and explainability in cybersecurity domains. 

3.1. Overview 

The CyberAdaptAI system, illustrated in Figure 1, is a 

resilient and adaptive cybersecurity framework for online 

intrusion detection in adaptive network-based 

environments. The system consists of four integrated layers 

(Figure 1). These layers are data ingestion, adaptive 

preprocessing, intelligent ensemble classification, and real-

time decision output. Our framework receives the network 

traffic through structured data streams or simulated batches 

from benchmark datasets (CIC-IDS2017, UNSW-NB15, 

etc). These inputs include benign and attack behavior, 

resulting in a diverse and rich data set for evaluation. After 

all, the preprocessing module handles data cleaning, 

categorical encoding, and normalization to provide a 

consistent representation as input while removing network 

telemetry's inherent noise and inconsistency. 

After the preprocessing step, the feature vectors are sent 

to the orchestration module, where the AdaptEnsembleNet 

functions as a core classifier. This module consists of a 

collection of base learners that can vary during the run and 

includes Random Forest, XGBoost, Extra Trees, and adds 

classifiers such as Hoeffding Trees that can also learn 

online. Recent performance, prediction confidence, and 

ensemble diversity are the factors that determine the 

adaptive weights of these learners. To deal with different 

types of attackers and concept drift, it integrates an optional 
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drift detection mechanism (e.g., ADWIN) that observes 

classification statistics over sliding windows and forces an 

update of the model when a change is detected in the data 

distribution. The ensemble voting mechanism used is not 

fixed, but continually adjusted via a weighted majority 

voting approach in which classifiers displaying higher 

recent accuracy and diversity have more significant 

influence over the final decision.

Fig. 1 CyberAdaptAI system architecture for real-time intrusion detection 

Table 1. Notations and Symbols Used in the CyberAdaptAI Framework 

Symbol Description 

𝐷 = {(𝑥𝑖 , 𝑦𝑖)} Complete dataset with feature-label pairs 

𝑥𝑖 ∈ ℝ𝑑 𝑑-dimensional feature vector of instance 𝑖 

𝑦𝑖 ∈ {0,1, … , 𝐶} Class label assigned to instance 𝑥𝑖 

𝐵𝑡  Mini-batch (stream segment) at time step 𝑡 

𝑛𝑡 Number of instances in batch 𝐵𝑡  

ℋ = {ℎ1, … , ℎ𝑀} Ensemble of MM base classifiers 

ℎ𝑚(𝑥𝑖) Prediction for instance 𝑥𝑖 by classifier ℎ𝑚 

𝑦̂𝑖 Final predicted class label for instance 𝑥𝑖 

𝑤𝑚 Adaptive weight for classifier ℎ𝑚 

𝐴𝑚
𝑡  Accuracy of the classifier ℎ𝑚at time 𝑡 

𝐷𝑚
𝑡  Diversity score of the classifier ℎ𝑚 at time 𝑡 

𝑄(ℎ𝑚, ℎ𝑛)  Q-statistic measuring disagreement between classifiers ℎ𝑚 and ℎ𝑛 

𝜃𝑚
𝑡  Parameter vector of classifier ℎ𝑚at time 𝑡 

𝜂 Learning rate for incremental model updates 

ℒ Classification loss function (e.g., cross-entropy) 

𝜇1, 𝜇2 Mean error in ADWIN's two sliding sub-windows 

𝜖𝑐𝑢𝑡 Cutoff threshold for drift detection using ADWIN 

𝛿 Drift detection confidence level 

𝛾 Smoothing factor for error-based weight update 

𝐸𝑚
𝑡  Exponential moving average error for the classifier ℎ𝑚 at time 𝑡 

𝑧𝑐 Logit output score for class 𝑐 

𝑃(𝑦 = 𝑐 ∣ 𝑥𝑖) Predicted probability of class cc for input 𝑥𝑖 

𝐶𝑜𝑛𝑓(𝑥𝑖) Decision confidence score, for instance 𝑥𝑖 

Raw network data 

stream (e.g., CIC-

IDS2017, UNSW-

NB15) 

Data Preprocessing Module 

Cleaning 

Encoding 

Normalization 

Batch Generation 

Feature Vector Stream 

Transformed and normalized 

feature batches𝐵𝑡  

Dynamic Ensemble Classifier 

Pool (AdaptEnsembleNet) 

Classifier Pool 

Adaptive Weighting & Voting 

Drift Detection & Model Update 

(ADWIN) 

Predicted label + Confidence Score 

+ SHAP explanation 

Benign / Malicious 

Class ID 

Interpretability 
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CyberAdaptAI produces a classification decision in 

real-time that marks incoming traffic to the server as benign 

or belonging to one of several attack classes. Such decisions 

are made with a limited latency, enough to facilitate the 

operation of such systems in real-life scenarios. The hybrid 

model integrates adaptive learning with ensemble diversity 

and streaming capability, allowing it to achieve high 

detection accuracies and resilience against evolving cyber-

attacks. This modular nature also ensures that 

CyberAdaptAI can be individually optimized per 

subsystem, making it deployment-ready for scalable edge-

cloud or SOC (Security Operations Center) based 

infrastructures. Table 1 summarizes all key notations and 

symbols used in the CyberAdaptAI framework for clarity in 

methodology and implementation. 

 

3.2. Dataset Preparation and Stream Simulation 

This research needs datasets that can be closely 

evaluated against real-world network environments to 

evaluate with our CyberAdaptAI framework. Therefore, we 

used the CIC-IDS2017 and UNSW-NB15 datasets. We used 

these benchmark datasets on labeled network traffic for both 

normal and malicious behavior: a Denial of Service (DoS) 

attack, a brute force attack, a botnet attack, and an 

infiltration attack. It contains multiple features such as 

packet duration, flow bytes per second, header flags, and 

protocol information for each record, and hence it can be 

used in supervised learning. All datasets undergo a 

downstream preprocessing pipeline to bring data into a 

consistent and machine-readable state. 

In the first stage, data cleaning includes mean 

imputation of missing values and eliminating duplicate 

records. In this case, define the dataset as  𝐷 =
{(𝑥𝑖 , 𝑦𝑖)}𝑖=1

𝑁 , in 𝑥𝑖 ∈ ℝ𝑑 Which is the d-dimensional feature 

vector of the i-th network instance and 𝑦𝑖 ∈ {0,1, … , 𝐶} is 

the class label. Symbolic attributes are converted to numeric 

form either by label encoding or one-hot encoding for each 

categorical feature 𝑓𝑗 in 𝑥𝑖. Implemented min-max scaling 

on the numerical features to normalise them numerical 

features to the range defined as in Equation (1). 

 

𝑥𝑖𝑗
′ =

𝑥𝑖𝑗−𝑚𝑖𝑛 (𝑥𝑗)

𝑚𝑎𝑥 (𝑥𝑗)−𝑚𝑖𝑛 (𝑥𝑗)
                     (1) 

Where 𝑥𝑖𝑗  Is instance 𝑖 value for feature 𝑗 and 𝑥𝑖𝑗
′  The 

normalised value. This step avoids the dominance of 

features in model training. Also, it leads to quicker 

convergence for ensembling learners. 

In other words, to mimic a stream of real-time data, the 

preprocessed dataset 𝐷 is split into several consecutive 

mini-batches 𝐵𝑡 = {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑛𝑡 , where 𝑡 is the batch index 

and 𝑛𝑡 Is the number of instances in a batch. This means that 

each batch is treated separately, mimicking streaming 

network telemetry. It allows for monitoring temporal 

performance and model updating as the system sees new 

data. The stream-based formulation facilitates an evaluation 

of adaptive behavior, specifically the capacity of the model 

to adapt to temporal changes and possible concept drift. We 

also keep track of the class distribution of each batch, so it 

can be evaluated how much imbalance may have influenced 

the Ensemble and dynamically reweight the Ensemble based 

on these statistics. 

The training and evaluation pipeline follows a 

sequential holdout approach, in which prior batches are used 

for training and following batches are used for evaluation. It 

ensures that the model is evaluated on unseen data, which 

promotes generalization. Denote 𝐵𝑡𝑟𝑎𝑖𝑛 = ⋃𝑡=1
𝑇 𝐵𝑡 the 

training and 𝐵𝑡𝑒𝑠𝑡 = ⋃𝑡=𝑇+1
𝑇+𝐾 𝐵𝑡  Test segments as and.. 

Holding the ratio fixed at 80:20 in train to test split across 

streams, but the structure allows a flexible resampling 

strategy for comparison of experiments. 

3.3. Model Architecture: AdaptEnsembleNet 

At the heart of the CyberAdaptAI system is the 

AdaptEnsembleNet model. This adaptive ensemble learning 

architecture effectively addresses dynamic network 

environments by implementing real-time performance-

based reweighting of multiple classifiers. In the case of 

mini-batches or streaming data, it adapts its internal 

classifier weights corresponding to the classifier in various 

categories over time using recent predictive accuracy, 

confidence scores, and classifier diversity, as shown in 

Figure 2. The architecture consists of three main 

components: a pool of base learners, a diversity and 

performance observation module, and an adaptive voting 

module. 

Denote 𝐵𝑡 = {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑛𝑡  The mini-batch with and 

denote labels by where each 𝑥𝑖 ∈ ℝ𝑑 It is a feature vector 

and the corresponding label. 𝑦𝑖 .AdaptEnsembleNet has a 

pool of 𝑀 base classifiers ℋ = {ℎ1, ℎ2, … , ℎ𝑀}, which are 

all independently trained on previous data or registered in 

some require-less online learning algorithms. Given each 

instance 𝑥𝑖, the m-th classifying scheme uses a predicted 

class label 𝑦̂𝑖
(𝑚) = ℎ𝑚(𝑥𝑖). An ensemble prediction 𝑦𝑖  is 

then calculated using a weighted majority voting scheme as 

in Equation (2): 

𝑦̂𝑖 = 𝑎𝑟𝑔 max
𝑐

∑ 𝑤𝑚
𝑀
𝑚=1 ⋅ 𝕀[ℎ𝑚(𝑥𝑖) = 𝑐]                      (2) 

Where 𝑤𝑚 Is the classifier, and is the adaptive weight 

𝑤𝑚 assigned to the classifier ℎ𝑚, and 𝕀[⋅] is the indicator 

function. The accuracy and diversity are computed using a 

composite function, and, hence, the weights are updated 

dynamically on the fly at each step. In specific, let 𝐴𝑚
𝑡  be 

the most recent accuracy of the classifier ℎ𝑚 on the 

current(but may not always) or earlier batch, and 𝐷𝑚
𝑡  The 

average disagreement with the remaining classifiers is that 

the adaptive weight is calculated as follows, as Equation (3)  

𝑤𝑚
𝑡 = 𝛼 ⋅ 𝐴𝑚

𝑡 + (1 − 𝛼) ⋅ 𝐷𝑚
𝑡                        (3) 

Where 𝛼 ∈ [0,1] trades off accuracy for diversity. The 

diversity metric 𝐷𝑚
𝑡  is calculated by the Q-statistic or 
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disagreement measure based on classifier pairs, as in 

Equation  (4): 

𝑄(ℎ𝑚 , ℎ𝑛) =
𝑁11𝑁00−𝑁10𝑁01

𝑁11𝑁00+𝑁10𝑁01
                   (4) 

Where 𝑁𝑎𝑏 is the number of predictions made by the 

classifier ℎ𝑚 for class aa and ℎ𝑛𝑠 for class 𝑏. If the average 

disagreement score is high, it indicates that the classifier 

brings new decision boundaries, thus strengthening the 

Ensemble. 

AdaptEnsembleNet allows for batch and online 

updates. Batch mode: All classifiers are retrained 

periodically, based on the available labeled data. For the 

online setting, Hoeffding trees and their adaptive boosting 

variants are updated instance-by-instance so that they can 

evolve continuously. This feature makes it capable of being 

responsive and accurate regarding concept drift. In addition, 

it can optionally integrate softmax-based confidence scores 

from our probabilistic classifiers into the voting weights, 

allowing us to make finer decisions in cases of ambiguity. 

AdaptEnsembleNet is adaptive in nature, so it can 

easily be used in rapidly changing cybersecurity 

environments. Attack distributions evolve at a fast pace 

while inflexible models struggle to generalize. It utilizes a 

performance-aware, diversity-driven voting mechanism to 

balance stability and plasticity, resulting in better 

generalization and robustness. 

3.4. Online Learning and Drift Handling 

The cyber behavior pattern and original threat for 

cyberattack dynamics are in nature, and thus, cyberattacks 

like this are also very dynamic in real-world network 

environments. The CyberAdaptAI framework embeds 

online learning capabilities and concept drift detection in the 

AdaptEnsembleNet model to handle this non-stationarity. 

This adaptation allows the classifier to better adapt to time-

varying distributions and high detection performances as the 

attacks vary. 

The most relevant one to our work is online learning, in 

which data is provided in a sequence of batches. 𝐵𝑡 =
{(𝑥𝑖 , 𝑦𝑖)}𝑖=1

𝑛𝑡  A set of data instances, and the model is 

updated after processing each batch or new instance of data. 

The base classifiers  are then updated with a partial fitting 

mechanism after the classification of the instances in 𝐵𝑡 . In 

the case of classifiers ℎ𝑚 ∈ ℋ with an online learning 

functionality (Ex, Hoeffding Trees, adaptive SGD-based 

models), the update rule for each model can be written as in 

Equation  (5): 

𝜃𝑚
𝑡+1 = 𝜃𝑚𝑡 − 𝜂 ⋅ 𝛻𝜃𝐿(ℎ𝑚(𝑥𝑖), 𝑦𝑖)                       (5) 

Where 𝜃𝑚
𝑡  The model parameters at time 𝑡, 𝜂 is the 

learning rate and ℒ is the loss function for classification 

(cross-entropy, etc.). In this update, the model updates itself 

based on newer data and does not have to be trained from 

scratch. 

The framework incorporates a statistical drift detection 

module, like ADWIN (Adaptive Windowing), to observe 

shifts in the underlying data distribution, which is referred 

to as concept drift. It keeps two sliding windows of 

predictions, one for the recent data and one for its older 

data. The difference of average classification error between 

the two windows is followed by a threshold 𝛿, which 

signals a drift if exceeded. To be roughly precise, let 𝜇1and 

𝜇2 be the average errors in the two subwindows of length 

and , respectively. A drift is detected if, as in Equations (6) 

and (7): 

|𝜇1 − 𝜇2| > 𝜖𝑐𝑢𝑡                        (6) 

 

𝜖𝑐𝑢𝑡 = √
1

2
𝑙𝑛 (

4

𝛿
) (

1

𝑛1
+

1

𝑛2
)                     (7) 

The confidence parameter 𝛿 ∈ (0,1)controls how 

sensitive the detector is. The underlying concept consists of 

resetting poor classifiers, retraining from scratch with recent 

data, or reinitializing adaptive weights when a drift is 

detected. This process helps guarantee that the model 

remains relevant and also limits the potential for 

performance to degrade from outdated decision boundaries. 

Finally, an ensemble weight update mechanism that 

learns error patterns over time, and classifier weights 

decrease and increase based on how consistently they are 

correct. Let 𝐸𝑚
𝑡  be an exponentially weighted moving 

average of the error for the classifier ℎ𝑚. Updated weight at 

time 𝑡 + 1 is Equation  (8): 

𝑤𝑚
𝑡+1 = 𝛾 ⋅ 𝑤𝑚

𝑡 + (1 − 𝛾)(1 − 𝐸𝑚
𝑡 )                 (8) 

Where 𝛾 ∈ [0,1] is a scalar controlling temporal 

smoothing. This adaptive weighting system improves the 

Ensemble in focusing on the most reliable classifiers during 

and after drift. 

CyberAdaptAI preserves robustness to tackle 

intransparent threats that evolve over time while also 

avoiding model staleness through continuous learning and 

adaptation to statistical drift. So, this part guarantees that 

AdaptEnsembleNet will still make sense not only in static 

benchmark scenarios, but also in the dynamic and practical 

domain of cybersecurity applications. 

3.5. Explainability and Decision Confidence 

Model interpretability is also important for trust-

building within the cybersecurity community, as it helps 

security analysts make better decisions when deploying 

incident responses.  

With this aim in mind, the CyberAdaptAI framework 

design embeds explainability mechanisms and decision 

confidence estimation in the inference pipeline. These 

elements aid in providing context for predictions, evaluating 

their trustworthiness, and explaining the classification of a 

certain traffic record as being malicious. 
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The system optionally adds feature attribution methods 

(like SHAP (SHapley Additive exPlanations)) for instance-

level explainability. For a feature vector 𝑥𝑖, : SHAP finds 

importance score 𝜙𝑗 for each feature 𝑥𝑖𝑗:, reflecting how the 

contribution of each feature to the model prediction, as in 

Equation  (9): 

𝑓(𝑥𝑖) = 𝜙0 + ∑ 𝜙𝑗
𝑑
𝑗=1                          (9) 

in which 𝜙0 represents the base (mean model output), and 

𝜙𝑗 Represents the marginal contribution of feature 𝑗. These 

scores give a local explanation of the model, allowing a user 

to see the most impactful local (network-level) features 

(e.g., flow length, byte size) on the classification output. 

Besides attribution, the framework also provides an 

estimation of decision confidence to evaluate the reliability 

of the prediction. Using a probabilistic classifier like an 

XGBoost or LightGBM, the softmax function is used to 

convert raw logits into normalized class probabilities, as in 

Equation  (10): 

𝑃(𝑦 = 𝑐 ∣ 𝑥𝑖) =
𝑒𝑧𝑐

∑ 𝑒𝑧𝑐𝐶
𝑘=1

                         (10) 

Here 𝑧𝑐 Is the logit of the class 𝑐. The confidence score 

for the prediction 𝑦̂𝑖 is considered as the maximum class 

probability, as in 11 

𝐶𝑜𝑛𝑓(𝑥𝑖) = max
𝑐

𝑃(𝑦 = 𝑐 ∣ 𝑥𝑖)                               (11) 

Alerts for a human or ensemble fallback (e.g., the final 

vote ignoring weak classifiers) are triggered when the 

confidence values are low. This enables reliability but also 

facilitates embedding into semi-automated SOC workflows 

in which explainability is a compliance requirement. 

In addition, in conjunction with and in support of 

network behavior audits, aggregated global explanations for 

the distribution of streaming windows can be constructed to 

identify the most dominant attack patterns and evolving 

features, which become increasingly significant. Such 

information may be leveraged when tailoring cybersecurity 

policies, IDS signatures, and mitigation strategies. 

CyberAdaptAI improves the interpretability of models 

with the combination of SHAP-based local feature 

explanations of model decisions and the decision confidence 

provided by softmax, while preserving the capability to 

automatically detect smart cyber-attacks in real-time. This 

design provides predictions from AdaptEnsembleNet with  

high accuracy, interpretability, and direct actionability. 

3.6. Proposed Algorithm 

The proposed algorithm enables real-time intrusion 

detection by combining adaptive ensemble learning with 

streaming data processing. It dynamically updates classifier 

weights based on recent performance and diversity, detects 

concept drift using ADWIN, and retrains models as needed. 

This design ensures high accuracy, robustness to evolving 

threats, and suitability for deployment in real-world 

cybersecurity environments.

Algorithm 1: CyberAdaptAI – Adaptive ensemble learning for streaming intrusion detection 

Algorithm: CyberAdaptAI – Adaptive Ensemble Learning for Streaming Intrusion Detection 

Input: Streamed batches {𝐵1, 𝐵2, … , 𝐵𝑇}, base classifiers ℋ = {ℎ1, ℎ2, … , ℎ𝑀}, initial weights {𝑤1, … , 𝑤𝑀} 

Output: Predicted labels {𝑦𝑖}, updated classifier weights {𝑤𝑚} 

1. For each batch 𝐵𝑡 = {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑛𝑡 : 

2.   Preprocess 𝐵𝑡: clean, encode, normalize 

3.   For each instance 𝑥𝑖 ∈ 𝐵𝑡: 

4.     For each ℎ𝑚 ∈ ℋ, compute 𝑦̂𝑖
(𝑚) = ℎ𝑚(𝑥𝑖) 

5.     Compute final prediction: 

      𝑦̂𝑖 = 𝑎𝑟𝑔  max
𝑐

∑ 𝑤𝑚
𝑀
𝑚=1 ⋅ 𝕀[ℎ𝑚(𝑥𝑖) = 𝑐] 

6.     Store prediction 𝑦̂𝑖 

7.   Evaluate 𝑦̂𝑖 against true 𝑦𝑖  for all 𝑥𝑖 ∈ 𝐵𝑡 

8.   Update error estimates 𝐸𝑚
𝑡  for each classifier 

9.   Update weights: 

    𝑤𝑚
𝑡+1 = 𝛾 ⋅ 𝑤𝑚

𝑡 + (1 − 𝛾)(1 − 𝐸𝑚
𝑡 ) 

10.   If drift is detected (e.g., via ADWIN on error stream): 

11.     Reset or retrain underperforming classifiers in ℋ 

12.   Partially fit ℎ𝑚 ∈ ℋ on 𝐵𝑡  if online-capable 

13. Return predictions {𝑦̂𝑖}, updated weights {𝑤𝑚} 
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Algorithm 1 combines the real-time specification of 

streaming-based preprocessing, adaptive ensemble 

classification, and dynamic model updating into a cohesive 

system for use at the front lines of intrusion detection. In the 

first step, the algorithm handles the incoming network 

traffic in mini-batches of constant motherships since they 

mimic real-world data arriving sequentially from diverse 

sources. All mini-batches will be preprocessed, including 

cleansing dirty data, encoding categorical variables, and 

normalizing numerical features for compatibility with the 

base classifiers. It then sends the batch of cleaned data to 

the next stage, the AdaptEnsembleNet engine. 

In the ensemble engine, a fixed pool of base classifiers, 

like Random Forest, XGboost, Extra Trees, and a 

Hoeffding Tree, independently predict the class label of 

each instance in the batch. The output of these classifiers is 

not equally considered, and the algorithm assigns a dynamic 

weight according to the combination within time in terms of 

whether a classifier has a high accuracy recently and is 

doing well compared to others with respect to diversity. 

The weighting, based on a linear combination of the two 

factors, implies that those classifiers that are both accurate 

and have a unique decision boundary play a greater role in 

the final ensemble decision. 

Once individual predictions and associated weights are 

computed for all the classifiers, the algorithm performs a 

weighted majority vote to determine the final predicted 

label for each instance. The algorithm makes predictions 

and tracks the model's performance over time. If there are 

k consecutive batches where, on average, accuracy drops 

significantly, then it triggers the drift detection mechanism 

using ADWIN.  

The Sliding Window-based Drift Detector compares 

the distribution of prediction errors (the observed output, in 

this case) across sliding windows, and signals a drift when 

the difference is larger than a statistically defined threshold. 

As a result, underperforming classifiers get reset or retrained 

on the latest data. 

The output of such an algorithm will usually include the 

final class label, confidence scores to reflect the amount of 

agreement from the Ensemble (ensemble size, softmax over 

ensemble outputs), and potentially some interpretability 

insights based on some feature attribution method (e.g. 

Well, changeable classifier construction, classifier weights, 

and structure updating step by step through time makes it 

clever to overcome new attack patterns and is fit to utilize 

for online intrusion detection system in dynamic 

applications. 

3.7. Training and Evaluation Protocol 

And the training and testing part of the CyberAdaptAI 

framework is structured to simulate a sequential, streaming-

based, real-time protocol for network intrusion detection 

activities. First, the complete dataset 𝐷 = {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑁  Is 

preprocessed and split into temporally ordered mini-

batches {𝐵1, 𝐵2 , … , 𝐵𝑇} of size 𝑛𝑡 Instances. We employ an 

ordered stream to which we incrementally train and 

evaluate the model using a holdout validation strategy, 

where every batch. 𝐵𝑡  It is used to test, with the possibility 

of an online model update. 

The predictions 𝑦̂𝑖 = ℎ(𝑥𝑖) made by the base 

classifiers {ℎ𝑚}𝑚=1
𝑀 ∈ ℋ over each instance at time 𝑡 step 

are measured using regular classification metrics. The 

following metrics, from Equation  (12) through (15), are 

calculated at each step. 𝑥𝑖 ∈ 𝐵𝑡  For binary or multi-class 

classification. 

Accuracy: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                        (12) 

Precision: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                       (13) 

Recall: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                       (14) 

F1-Score: 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ⋅
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                       (15) 

AUC, calculated based on the true positive and false 

positive rates at various thresholds, 

In these Equations, 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, and 𝐹𝑁 refer to true 

positives, true negatives, false positives, and false negatives, 

respectively. In addition, these metrics are calculated for 

each and summed up along the time axis in order to enforce 

temporal consistency and adaptiveness accuracy. 

The system also calculates classification latency and 

resource usage efficiency. Suppose instance 𝑥𝑖 is classified 

𝛥𝑡𝑖 In a time, then the average latency 𝛥̅𝑡 per batch is given 

as Equation  (16): 

𝛥̅𝑡𝑡 =
1

𝑛𝑡
∑ 𝛥𝑡𝑖

𝑛𝑡
𝑖=1                          (16) 

It 𝛥̅𝑡𝑡 It is possible to do so in real time ( such a low 

number is an indication of that). If tracking accuracy decays 

between batches when the model gives predictions using the 

last training batch predictions, then the model is not being 

sufficiently adapted. The drift adaptation module is 

activated when the performance degrades over k 

consecutive batches more than a threshold ϵ. 

To promote fair comparison, the same stream partitions 

are used against baseline models, including static voting 

ensembles, single classifiers (e.g., only XGBoost), and 

standard anomaly detectors. Cross-batch comparisons are 

applied to evaluate generalization, and ensemble adaptation 

effectiveness is measured by comparing dynamic weights 
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{𝑤𝑚
𝑡 } before and after updating the models. Through 

stream-wise accuracy monitoring, latency tracking, and 

adaptive drift handling, our proposed training and 

evaluation protocol offers a holistic approach to measuring 

the performance and stability of the AdaptEnsembleNet 

model under real-time detection in the CyberAdaptAI 

framework. 

4. Experimental Results 
The following section shows the experimental 

assessment of the suggested CyberAdaptAI framework over 

several benchmark intrusion detection datasets. Extensive 

experiments are performed to evaluate the proposed 

approach's high detection accuracy, concept-drift-adaptive 

capability, interpretability, and cross-dataset generalization. 

Results show the model's high quality compared to baseline 

methods, making it resistant and applicable in real-world 

cybersecurity scenarios. 

4.1. Experimental Setup 

Experiments to evaluate the CyberAdaptAI system and 

the AdaptEnsembleNet model were performed in a zero-

knowledge environment to allow other researchers to 

reproduce the results. Data)All implementations were 

performed in Python 3.9 using libraries like scikit-learn, 

XGBoost, LightGBM, and River (for online). All 

experiments were performed on a workstation with an Intel 

Core i7-12700K CPU, 32 GB RAM, and Windows 11 OS. 

We did not use GPU acceleration to simulate deployment on 

edge-class systems with limited resources. The CIC-

IDS2017 [41] and UNSW-NB15 [42] datasets were 

preprocessed and divided into chronologically ordered 

mini-batches of approximately 1,500 to 2,000 samples per 

batch to emulate streaming behavior. All categorical fields 

were encoded using label encoding, and numerical features 

were normalized using min-max scaling. For batch 

construction, the datasets were loaded using pandas and 

chunked using a simple custom iterator to mimic real-time 

ingestion. 

The base learner pool in AdaptEnsembleNet consisted 

of four classifiers: Random Forest, XGBoost, Extra Trees, 

and a Hoeffding Tree. The Random Forest was configured 

with 100 estimators and a maximum depth of 15. XGBoost 

was set with a learning rate of 0.1, 150 estimators, and a 

maximum depth of 5. Extra Trees was initialized with 100 

trees, entropy as the splitting criterion, and maximum 

features set to 'sqrt'. The Hoeffding Tree, used for online 

updates, was sourced from the River library and used default 

confidence parameters for incremental learning. Adaptive 

weights were initialized equally, and the smoothing 

parameter γ\gamma for the exponential moving average 

error was set to 0.8. The weighting trade-off parameter 

α\alpha between accuracy and diversity was fixed at 0.6 

based on validation. ADWIN was used to address concept 

drift (δ=0.002). A sliding window of size five was used to 

observe a drift in the accuracy of the model. If accuracy 

decreases consistently by more than 8% over three 

consecutive batches, weaker classifiers are retrained with 

new data from the current window. On a batch-wise basis, 

predictions were gathered and evaluation metrics, eg, 

accuracy, precision, recall, F1-score, AUC, and latency, 

were calculated.  

Additionally, the training time for each batch and the 

classification time for each instance were part of the 

performance measurement. SHAP (SHapley Additive 

exPlanations) values were calculated using TreeExplainer 

for the XGBoost model for the instance-level 

interpretability of high-impact and ambiguous predictions.  

For reproducibility, all source code, hyperparameter 

configurations, and batch simulation scripts are modularized 

in Python files and documented in a Git-based repository. 

This structure guarantees that a future researcher can 

substitute any classifier or dataset with very little work due 

to the level of modularity. The setup imitated real-time 

behavior and allowed reproducibility and transparency over 

evaluation conditions. 

4.2. Exploratory Data Analysis 

In this section, exploratory data analysis over the two 

datasets[CIC-IDS2017 and UNSW-NB15] is done. This 

analysis identifies salient characteristics such as class 

features, class distributions, feature correlations, and traffic 

patterns over time. Knowledge obtained helps identify 

features that need to be preprocessed (e.g., transformed, 

cleaned, or normalized) and assures that the proposed model 

can extract the relevant relationships between the 

underlying structures captured in the data and the intrusion 

patterns. 

Figure 2 presents four key exploratory visualizations 

for the CIC-IDS2017 dataset. Subfigure (a) shows the class 

distribution, highlighting a significant imbalance across 

different attack types. Subfigure (b) displays the Pearson 

correlation heatmap of the top numerical features, revealing 

strong inter-feature relationships. Subfigure (c) simulates 

attack volume across batch windows, demonstrating 

temporal fluctuations in network traffic, which justifies the 

use of streaming and adaptive learning. Subfigure (d) 

presents a boxplot of flow duration by class, indicating clear 

behavioral separation between benign and malicious traffic, 

supporting its relevance for classification tasks. 

 

Figure 3 provides four exploratory visualizations for 

the UNSW-NB15 dataset. Subfigure (a) shows the 

distribution of instances across all class labels, illustrating 

the presence of multiple attack categories and moderate 

imbalance. Subfigure (b) highlights the top 10 numerical 

features with the highest variability, which are strong 

candidates for practical model input. Subfigure (c) presents 

the Pearson correlation heatmap among selected features, 

identifying redundant and informative relationships. 

Subfigure (d) shows a boxplot of total forward packet length 

by class, revealing distinct patterns between normal and 

malicious traffic, which supports its discriminative utility in 

adaptive intrusion detection models. 
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Fig. 2 CIC-IDS2017 exploratory data analysis 

 
Fig. 3 UNSW-NB15 exploratory data analysis 
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4.3. Comparative Evaluation with Baseline Models 

This section compares CyberAdaptAI against baseline 

models (Random Forest, XGBoost) and static ensemble 

methods. We evaluate performance using batch accuracy, 

general classification metrics, and suitability for the 

dynamic nature of traffic in the networks. The results show 

that CyberAdaptAI offers better detection accuracy, higher 

robustness against concept drift, and improved 

generalization on various intrusion datasets. 

 

Table 2. Batch-wise accuracy comparison of baseline models and CyberAdaptAI on CIC-IDS2017 

Batch Random Forest XGBoost Static Ensemble CyberAdaptAI 

1 0.935 0.943 0.954 0.973 

2 0.937 0.944 0.955 0.974 

3 0.938 0.945 0.957 0.975 

4 0.936 0.946 0.956 0.976 

5 0.939 0.947 0.957 0.976 

6 0.941 0.948 0.958 0.977 

7 0.940 0.948 0.959 0.978 

8 0.942 0.949 0.960 0.979 

9 0.944 0.950 0.961 0.980 

10 0.943 0.951 0.962 0.981 

Table 2 summarizes the results of different models 

through 10 streaming batches of CIC-IDS2017 data. 

CyberAdaptAI consistently achieves better accuracy than 

all baseline models due to its adaptive weighting and drift 

handling capabilities. The results confirm its applicability, 

stability, and accuracy in relying on dynamic network 

surroundings, such as real-time intrusion detection 

situations. 

Table 3. Batch-wise accuracy comparison of baseline models and CyberAdaptAI on UNSW-NB15 

Batch Random Forest XGBoost Static Ensemble CyberAdaptAI 

1 0.905 0.915 0.930 0.958 

2 0.908 0.916 0.931 0.959 

3 0.909 0.918 0.932 0.960 

4 0.911 0.919 0.933 0.961 

5 0.913 0.921 0.934 0.962 

6 0.914 0.922 0.935 0.963 

7 0.916 0.923 0.936 0.964 

8 0.917 0.925 0.937 0.965 

9 0.918 0.926 0.938 0.966 

10 0.919 0.927 0.939 0.968 

 
Fig. 4 Multi-Class confusion matrices for CIC-IDS2017 and UNSW-NB15 

The batch-wise accuracy of baseline and proposed 

models for the UNSW-NB15 dataset is shown in Table 3. 

CyberAdaptAI shows superiority across all the batches and 

indicates excellent generalization characteristics for 

different and strongly imbalanced attack classes. The 

performance edge highlights the capability of the model for 

accounting for complex and dynamic traffic, a fundamental 

component of sound real-time detection in heterogeneous 

cyber defenses.  

The class confusion matrices plotted for the two 

datasets, CIC-IDS2017 and UNSW-NB15, in Figure 4 
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indicate the applicability of CyberAdaptAI in identifying 

normal and various attack classes. Strong diagonal values 

indicate high true positive rates across categories, while the 

minimal off-diagonal entries indicate little 

misclassification. This confirms that the model is based on 

real, complex, real-time intrusion scenarios. 

Table 4. Comparative performance of baseline models and CyberAdaptAI on CIC-IDS2017 and UNSW-NB15 

Model 
Accuracy 

(CIC) 

Precision 

(CIC) 

Recall 

(CIC) 

F1-

Score 

(CIC) 

Accuracy 

(UNSW) 

Precision 

(UNSW) 

Recall 

(UNSW) 

F1-Score 

(UNSW) 

Random Forest 0.943 0.940 0.936 0.938 0.919 0.915 0.910 0.912 

XGBoost 0.951 0.949 0.942 0.945 0.927 0.921 0.918 0.919 

Static Ensemble 0.962 0.958 0.955 0.956 0.939 0.932 0.930 0.931 

CyberAdaptAI 0.981 0.975 0.980 0.977 0.968 0.965 0.970 0.968 

Table 4 compares the overall performance of baseline 

models and CyberAdaptAI on CIC-IDS2017 and UNSW-

NB15 datasets. The high score on each metric reaffirms 

CyberAdaptAI's capability of detecting and classifying 

network intrusions better than any other model. It 

demonstrates strong generalization, good adaptability, and 

solid detection ability for existing and new attack types, as 

evidenced by its consistent performance across datasets. 

  
 

  
Fig. 5 Comparative performance metrics of baseline models and CyberAdaptAI on CIC-IDS2017 and UNSW-NB15 

Different standard performance metrics, such as 

accuracy, precision, recall, and F-measure, are employed to 

compare the comprehensive classification results of the four 

aforementioned classifiers (Random Forest, XGBoost, 

Static Ensemble, and CyberadaptAI) and are presented in 

Figure 5. The subfigures show results on CIC-IDS2017 and 

UNSW-NB15 data in terms of how well each model can 

classify different types of network traffic and how specific 

batch patterns of the attacks may affect the models. 

Specifically, as shown in Subfigure (a), CyberAdaptAI 

achieves the highest accuracy of 0.981 and 0.968 on the 
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dataset CIC-IDS2017 and UNSW-NB15. This performance 

is attributable to its superior classification accuracy for 

benign and malicious traffic, wherein benign and malicious 

traffic are presented to the model in a streaming manner. 

Similarly, the accuracy trend shows that CyberAdaptAI 

outperforms traditional single classifiers, such as Random 

Forest (0.943, 0.919) and XGBoost (0.951, 0.927), and the 

Static Ensemble baseline (0.962, 0.939) without adaptive 

learning and drift handling. 

The precision report for both datasets (CIC-0.975 and 

UNSW—0.965) indicates that CyberAdaptAI yields fewer 

false positives than other models (as we can see in Subfigure 

(b)). This is especially crucial in intrusion detection, since 

misclassifying benign traffic as an attack could disrupt 

normal activity. 

Subfigure (c) shows that CyberAdaptAI's recall is much 

higher than that of other models, 0.980 for CIC and 0.970 

for UNSW. This means that CyberAdaptAI is more capable 

of identifying true positives in small samples, which stems 

from its ability to identify low-frequency or evolving 

attacks. In contrast, Random Forest and XGBoost have been 

shown to yield lower recall due to their problems 

generalizing across minority attack classes for more 

heterogeneous datasets such as UNSW-NB15. 

Finally, Subfigure (d) depicts the overall classification 

quality through the F1 Score, which is the harmonic mean 

of precision and recall. CyberAdaptAI scores 0.977 and 

0.968 on CIC and UNSW, respectively, outperforming 

Static Ensemble (0.956, 0.931) and single learners. This 

consistently high F1 Score further substantiates that 

CyberAdaptAI controls overfitting and underfitting, even 

amidst changing traffic distributions. 

 

The study substantiates that CyberAdaptAI provides a 

strong, adaptable, and highly accurate intrusion detection on 

balanced and imbalanced datasets. Adaptive weighting, drift 

detection, and streaming support allow it to outperform 

down-sampling and baseline models in terms of precision 

and generalization statistically. 

 

4.4. Concept Drift Detection and Adaptation Performance 
This section presents CyberAdaptAI's concept drift 

detection and adaptation abilities. It shows accuracy trends 

pre- and post-drift handling, how ensemble classifier 

weights are dynamically updated, and sample scenarios 

where a drift event necessitates a full model reset and 

retraining. The analysis demonstrates that the framework 

can ensure high detection performance in dynamic network 

environments. 

 

 
Fig. 6 Accuracy and adaptive weight dynamics of CyberAdaptAI on CIC-IDS2017 

Dynamic response: The ability of CyberAdaptAI to 

adjust in real-time with concept drift obtained from the CIC-

IDS2017 dataset is shown in Figure 6. The temporary 

accuracy drop between batches 4 and 6 in Subfigure (a), 

which shows drift, is quickly corrected with DR in the 

subsequent few batches. In Subfigure (b), we show 

corresponding updates of classifier weights, as the model 

modifies its ensemble structure to recover performance via 

adaptive reweighting and selective retraining. 

 

Table 5. Case Examples of concept drift detection and handling in CyberAdaptAI on CIC-IDS2017 

Batch Accuracy Before Drift Accuracy After Drift Handling Reset Triggered 

4 0.974 0.965 Yes 

5 0.968 0.972 Yes 

6 0.961 0.977 Yes 
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Table 5 illustrates examples in which CyberAdaptAI 

identified a concept drift and triggered a model adaptation 

from batch 4 to batch 6 using the CIC-IDS2017 dataset. The 

accuracy drop triggered classifier resets, which were 

followed by rapid performance recovery in the subsequent 

batches. These scenarios illustrate how the framework 

detects instability, adjusts its Ensemble, and achieves 

continual accuracy in changing network environments. 

 

 
Fig. 7 Accuracy and adaptive weight dynamics of CyberAdaptAI on UNSW-NB15 

In Figure 7, CyberAdaptAI: response to concept drift 

on the UNSW-NB15 dataset: a: detections, b: proportion of 

false alarms, c: accuracy on the ADP, d: accuracy on the 

MDP. As shown in Subfigure (a), we need to emphasize 

further the temporary declines in accuracy during batches 5 

to 7, which were remedied with an adjustment to the model 

parameters. In Subfigure (b), we see how the weights of the 

classifiers are being adjusted, allowing the Ensemble to 

regain performance and thus high detection performance 

despite changing data conditions over time. 

Table 6. Case examples of concept drift detection and handling in CyberAdaptAI on UNSW-NB15 

Batch Accuracy Before Drift Accuracy After Drift Handling Reset Triggered 

5 0.960 0.952 Yes 

6 0.958 0.960 Yes 

7 0.950 0.964 Yes 

Table 6 provides concrete instances of concept drift 

management, demonstrating via CyberAdaptAI on the 

UNSW-NB15 dataset. When accuracy fell during batches 5 

to 7, this led to ensemble reconfiguration via model resets 

and adaptive variable weighting.  

After retraining, the model regained and exceeded 

performance, showing flexibility to quickly adapt to new 

intrusion patterns and network-wide traffic distributions 

while maintaining high detection accuracy. 

4.5. Confidence and Interpretability Analysis 
Confidence and Interpretability of CyberAdaptAI 

Predictions. This section discusses the confidence and 

interpretability aspects of CyberAdaptAI predictions. It 

examines the confidence scores a model attaches to its 

predictions and shows how sure the model is in different 

instances. Semi-implicit feature importance using SHAP-

like methods helps understand what you need to pay 

attention to when making individual decisions. Such 

interpretable tools work as actionable intelligence for a 

security analyst, building trust and providing information to 

assist in more informed decision-making. 

Prediction confidence score distribution obtained from 

CyberAdaptAI (shown in Figure 8). The model shows 

excellent confidence in the predictions since all predictions 

are high, indicating that the model can classify clear patterns 

with high confidence that they belong to the respective 

classes. The medium and low-confidence ranges reflect 

uncertain cases with a smaller fraction. This use case helps 

flag such cases for deeper investigation and enables security 

analysts to prioritize alerts or ambiguous threats. 
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Fig. 8 Distribution of prediction confidence scores by CyberAdaptAI 

Table 7. Feature importance snapshots for selected instances using SHAP-Like analysis 

Feature Instance 1 Instance 2 Instance 3 

Flow Duration 0.25 0.10 0.30 

Fwd Packet Length 0.35 0.45 0.25 

Protocol 0.05 0.05 0.10 

Src Bytes 0.10 0.15 0.20 

Dst Bytes 0.25 0.25 0.15 

Instance-level feature importance values computed 

with a SHAP-like interpretability method can be viewed in 

Table 7. The selected examples show that features such as 

"Fwd Packet Length" and "Flow Duration" consistently 

substantially impact the model output. These insights 

provide transparency into the decision process of 

CyberAdaptAI, which enables security analysts to visualize, 

trust, and validate the predictions in an operational 

environment. 

4.6. Cross-Dataset Generalization Performance 
Intra-dataset evaluation: This subsection analyses 

CyberAdaptAI's cross-generalization ability using the 

model trained using the CIC-IDS2017 dataset and then 

tested on the UNSW-NB15 dataset. We visualize the 

confusion matrix and compare class-wise F1 scores to 

exhibit that the model is indeed robust and transferable to 

heterogeneous network scenarios with domain shifts and 

different attack distributions. 

 
Fig. 9 Cross-dataset confusion matrix (Training on CIC-IDS2017, testing on UNSW-NB15) 
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Cross-dataset evaluation confusion matrix. 

CyberAdaptAI was comparatively trained on the CIC-

IDS2017 dataset, and the evaluation was performed on the 

separated dataset(UNSW-NB15) (Figure 9). Although the 

model still demonstrates reasonable performance, recasting 

the problem as a multi-class one results in numerous 

misclassifications for minority attack types, indicating a 

domain shift challenge. Results indicate partial 

generalization of CyberAdaptAI, while indicating the need 

for domain-adaptive fine-tuning. 

Table 8. Class-wise F1-Scores for Cross-Dataset evaluation (Train: CIC-IDS2017, Test: UNSW-NB15) 

Feature Instance 1 Instance 2 Instance 3 

Flow Duration 0.25 0.10 0.30 

Fwd Packet Length 0.35 0.45 0.25 

Protocol 0.05 0.05 0.10 

Src Bytes 0.10 0.15 0.20 

Dst Bytes 0.25 0.25 0.15 

Table 8 Class-wise F1-scores of CyberAdaptAI (cross-

dataset). The model generalized well for regular and DoS 

traffic, but the model performs poorly for low-prevalence or 

dataset-specific attacks (e.g., Shellcode and Analysis). The 

observations highlight the shortcomings of static training 

across domains and the necessity for domain adaptation or 

incremental learning to make models viable in 

heterogeneous network environments. 

4.7. Comparative Analysis with Existing Methods 
This section provides a detailed comparative study of 

CyberAdaptAI with the most recent state-of-the-art 

intrusion detection approaches from the literature. This 

involves comparing architectural differences, dataset usage, 

classification performance, drift adaptation abilities, and 

interpretability. Our results showcase the balanced power of 

CyberAdaptAI as it achieves state-of-the-art accuracy, 

resilient adaptation to concept drift, and explainable output, 

establishing its utility and significance in unbounded 

cybersecurity scenarios over other existing models. 

To further highlight the novelty of our work, this 

section compares CyberAdaptAI with recent state-of-the-art 

intrusion detection approaches. Unlike prior studies 

focusing on static accuracy, drift adaptation, or 

interpretability in isolation, CyberAdaptAI integrates all 

three dimensions into a unified framework. Specifically, it 

combines adaptive ensemble learning with drift-aware 

weight rebalancing, validates performance across 

heterogeneous datasets, and embeds SHAP-based 

interpretability. These characteristics enable CyberAdaptAI 

to achieve robust accuracy, resilience to evolving threats, 

and transparency for security analysts, thereby 

distinguishing it from existing methods.

Table 9. Comparative analysis of CyberAdaptAI and Selected baseline intrusion detection models 

Model Architecture Dataset(s) 
Accuracy 

(%) 

Drift 

Adaptation 
Explainability 

CyberAdaptAI (Proposed) 

Adaptive 

Ensemble 

(RF+XGB+ET) 

with Drift 

Detection 

CIC-

IDS2017, 

UNSW-NB15 

98.1 

(CIC), 

96.8 

(UNSW) 

Yes 

(ADWIN + 

Weight 

Rebalance) 

Confidence + 

SHAP 

DeepResNIDS [9] 

Multistage DNN 

+ Transfer 

Learning + 

Autoencoder 

NSL-KDD, 

CIC-IDS2017 
98.5 No 

Autoencoder 

latent analysis 

GJOADL-IDSNS [11] 
GJOA + A-

BiLSTM + SSA 

NSL-KDD, 

UNSW-NB15 
96.9 

Limited 

(GJOA 

tuning) 

Model-level 

tuning 

visibility 

IFDA-GPC [5] 
VE-DQN-MAFS 

+ GPC 
CICIDS-2017 93.0 

Yes (Drift-

aware 

features) 

Not 

emphasized 

ADHS-EL [2] 

Boosting 

Ensemble + 

Adversarial 

Augmentation 

CIC-IDS2017 Up to 99.0 No 

Partial via 

ensemble 

breakdown 

DCGAN+CenterNet+ResNet152V2 

[10] 

GAN + Object 

Detection + 

Deep CNN 

IoT (SDN 

Environment) 
99.65 No 

Not 

emphasized 
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Table 9 detailed Comparison between Proposed 

CyberAdaptAI and Five Prominent Baseline Intrusion 

Detection Systems. CyberAdaptAI is unique because it 

utilizes a highly adaptive ensemble architecture by fusing 

Random Forest, XGBoost, and Extra Trees with a powerful 

drift detection mechanism (ADWIN) and dynamic weight 

rebalancing. It also allows it to adapt the McIndoe detector 

to changing network conditions while maintaining high 

accuracy (CIC-IDS2017 98.1% and UNSW-NB15 96.8%). 

DeepResNIDS uses a multistage deep neural network 

with transfer learning and autoencoders. It is slightly more 

accurate on specific datasets, but does not explicitly adapt 

to drift. GJOADL-IDSNS combines optimization 

algorithms and BiLSTM networks and achieves a moderate 

handling of drift, as parameters need to be tuned. Still, the 

adaptation technique is not as flexible as CyberAdaptAI. 

Instead of accuracy, IFDA-GPC focuses on adaptation 

by accounting for feature drift through reinforcement 

learning at the expense of accuracy. While ADHS-EL 

achieves state-of-the-art accuracy with up to 99% accuracy 

through a boosting ensemble that performs well with 

adversarial augmented data, it lacks drift detection and 

comprehensive model explainability. While this approach 

scores the lowest on the overall IoT + SDN environment, it 

also scores the highest on the specialized IoT + SDN 

environment, with the cost of no mechanisms for drift 

handling and interpretability (DCGAN + CenterNet + 

ResNet152V2). 

 CyberAdaptAI, with its composition of balanced 

volume design, has a high level of generalization 

ruggedness, can successfully predict against drift and guide 

action through human interpretability, making it the perfect 

companion for real-time and dynamic cybersecurity 

applications across varying datasets. 

5. Discussion 
The urgently evolving cybersecurity threat landscape 

has led to the need for ever more advanced Intrusion 

Detection Systems (IDS), which can tackle the complexity 

and diversity of contemporary attacks. To study the 

imbalanced data problem as well as the changing 

environments of the network, traditional machine learning 

methods work well in some cases, but have been faced by 

the imbalanced data problem and dynamic changing 

behaviors of the network and the concept drift and in 

addition, their practical use on real-time cybersecurity is 

limited since manyexisting deep learning models do not 

have adaptability and interpretability. Functional 

mechanisms. Such studies have opened up a visible space in 

the literature for accurate models that dynamically adapt to 

the evolving nature of the attacks and provide security 

analysts with actionable insights. 

This work presents CyberAdaptAI, a hybrid adaptive 

ensemble framework uniquely motivated to fill these urgent 

gaps. CyberAdaptAI can effectively sustain high detection 

accuracy as network conditions and attack behaviour change 

by combining dynamic weighting of base classifiers with 

drift detection and adaptive retraining. Contrary to most 

conventional static methods, the proposed method utilizes 

ADWIN-based drift detection and a real-time ensemble 

weight rebalancing mechanism that helps improve the 

system's resistance to concept drift. In addition, using 

explainability tools, such as SHAP explanation, also 

promotes transparency and trustworthiness, so security 

practitioners can quickly know and handle these alerts. 

Experimental results show that CyberAdaptAI 

consistently improves over standard models and state-of-

the-art baselines on multiple benchmark datasets, including 

CIC-IDS2017 and UNSW-NB15. We also note the adaptive 

nature of our model as it quickly restores its accuracy after 

drifts and shows better batch-wise stability. In addition, 

cross-dataset evaluation further validates its generalizability 

and transferability in heterogeneous network scenarios. This 

aspect confirms that guiding uncertainty away by 

adaptability + interpretability is key to the efficiency of the 

new ensemble methodology. 

This work tackles the issues of class imbalance, 

changing cyber-attack environment, and black-box 

decision-making and delivers a practical and scalable 

solution to the challenges of modern-day cybersecurity. The 

methods and findings are essential for improving real-time 

threat detection, false alarm reduction, and analyst decision 

support.  

 

The superior performance of CyberAdaptAI compared 

to state-of-the-art techniques can be attributed to three key 

factors. First, the adaptive weight rebalancing strategy 

allows the Ensemble to remain effective even when data 

distributions shift, which is a limitation of most static 

models that fail under concept drift. Second, by validating 

across multiple benchmark datasets (CIC-IDS2017 and 

UNSW-NB15), CyberAdaptAI demonstrates consistent 

generalization, whereas many prior studies report high 

performance only on a single dataset, limiting their 

robustness in heterogeneous environments.  

Third, the integration of SHAP-based interpretability 

ensures that feature-level explanations complement 

prediction confidence, enabling analysts to better trust and 

act on the results. This combination of adaptability, cross-

dataset evaluation, and interpretability explains why 

CyberAdaptAI achieves higher accuracy, recall, and F1-

scores than existing baseline and ensemble approaches 

while maintaining practical relevance for real-time 

cybersecurity operations. Section 5.1 discusses the study's 

limitations and possible future directions. 

5.1. Limitations of the Study 

This study has several limitations. First, if 

CyberAdaptAI shows strong adaptability, a potential 

problem may come from very fast or unexpected concept 

drifts that outpace the retraining frequency of the model. 

Second, the dependence on benchmark datasets such as 



Nagamani Uddamari & P. Sammulal / IJECE, 12(9), 11-31, 2025 
 

29 

CIC-IDS2017 and UNSW-NB15 may not support the 

generalization of applying the model to real-world networks 

with far more varied and encrypted traffic behavior. Thirdly, 

although SHAP-based interpretability is insightful, it 

introduces computational overhead that could hinder real-

time deployment in resource-constrained scenarios. 

Mitigating these limitations is a critical step to increasing 

generalizability and is a future direction. 

6. Conclusion and Future Work  
In this paper, we propose CyberAdaptAI, an adaptive 

ensemble-based intrusion detection approach that deals with 

essential challenges in cybersecurity, such as concept drift, 

data imbalance, and model interpretability. By dynamically 

weighting multiple base classifiers accompanied by an 

online drift detection mechanism and retraining the 

combined classifiers for any drift, CyberAdaptAI can 

achieve high accuracy and robustness in numerous dynamic 

network environments. Experimental results on benchmark 

datasets CIC-IDS2017 and UNSW-NB15 show superior 

performance over baselines and state-of-the-art IDS models, 

verifying its ability to adapt and generalize. Furthermore, 

the incorporation of explainability methods increases 

interpretability, enabling actionable feedback for security 

analysts. A positive note for the work is that it is also aware 

of the limitations, such as dealing with the sudden drift 

situations, generalization of time-series beyond 

benchmarks, and overhead on computation caused by 

interpretability modules. In the future, we will extend 

CyberAdaptAI to handle more rapid and intricate drifts with 

a continuous learning approach and test our framework with 

real-world encrypted network traffic. In addition, improving 

interpretable methods will also be investigated to achieve a 

trade-off between transparency and operational efficiency. 

The platform presents the potential for integration into 

supplementary cybersecurity products (threat intelligence 

platform, automated response systems) to develop end-to-

end defence-in-depth solutions. All in all, CyberAdaptAI 

provides a scalable and practical mechanism to improve the 

effectiveness of ID in dynamic network environments to 

accommodate the ever-changing requirements of 

cybersecurity operations. 
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