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Abstract - Land Use and Land Cover (LULC) are key indicators of global environmental change. As a result, the extensive 

effort was dedicated to creating larger-scale products of LULC from Remote Sensing (RS) data, allowing the technical group 

to utilize these products for a wide array of downstream applications. This phenomenon causes widespread anxiety about 

natural resources. Therefore, observing LULC changes was significant for natural resource management and evaluating the 

effects of environmental change. Machine Learning (ML) has recently gained significance for fast and accurate LULC 

mapping using RS data, driven by the growing requirement for ecological, environmental, and resource management. It is 

crucial to compute the performance of diverse ML models for reliable LULC mapping. This study proposes a novel Remote 

Sensing-Based Land Use and Land Cover Classification Using Deep Learning with Tuna Swarm Optimisation (RSLULCC-

DLTSO) methodology. The RSLULCC-DLTSO methodology aims to advance intelligent and automated LULC classification 

systems that assist in sustainable land management and environmental decision-making. In the pre-processing stage, the 

RSLULCC-DLTSO technique utilizes a Wiener Filtering (WF) model to eliminate noise and enhance the quality of satellite 

images. Furthermore, the DenseNet-121-based feature extraction captures hierarchical spatial patterns and textures from RSI. 

A Variational Autoencoder (VAE) model is also used for LULC classification. Finally, the Tuna Swarm Optimisation (TSO) 

model optimally adjusts the hyperparameter values of the VAE technique, resulting in improved classification performance. A 

wide range of simulation analyses of the RSLULCC-DLTSO approach is implemented under the EuroSat dataset. The 

comparative study of the RSLULCC-DLTSO approach illustrated a superior accuracy value of 98.57% compared to existing 

models. 
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1. Introduction 
LULC control is a dynamic process that is constantly 

evolving and changing due to various environmental and 

human impacts [1]. The continuous advancement of 

technology has led to significant transformations in the 

environment. Urban areas have diverse land uses, and these 

uses are evolving and changing rapidly worldwide. 

Consequently, recurrent change recognition analysis is 

significant for recognizing the negative and positive 

variations in land cover [2]. RS images are used in change 

detection models to detect land cover variations without the 

requirement for field investigation. Change detection and 

LULC classifications are related to the area of Geographic 

Information Systems (GIS) and RS [3]. It acquires the Earth's 

surface data, whereas the GIS process visualizes and analyses 

spatial data. Using RS imagery, LULC classification 

encompasses various types of land cover, including urban 

areas, agricultural land, and forests [4]. This serves as a 

primary data source for analyzing variance, intended to 

explore and identify changes. By comparing LULC maps 

from diverse periods, researchers can detect changes like 

urban growth, intensified agriculture, and deforestation [5]. 

These perceptions are vital for resource management, urban 

planning, and environmental monitoring, giving a clear 

understanding of how natural processes and human actions 

change the landscape [6]. 

 

Therefore, effective LULC classification is crucial for 

trustworthy change recognition. Conventional approaches, 

such as manual digitization of satellite imagery and visual 

interpretation, often lead to human error [7]. ML models can 

resolve classification problems, predict RS images, and 
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detect anomalies. Generally, ML models are employed to 

classify images using the most suitable classifiers, such as K-

Nearest Neighbour (KNN), Artificial Neural Network 

(ANN), Support Vector Machine (SVM), Markov Chain 

model, and others [8]. With the increasing amount of Earth 

data and the development of ML models, innovative 

modelling is introduced, which can manage vast amounts of 

data and improve predictive analysis of temporal and spatial 

features through Deep Learning (DL) [9]. The DL method 

has surpassed conventional methods in removing spatial 

multi-level extracted features from RS images, enabling 

better classification and image processing [10]. The aim is to 

incorporate DL models to produce reliable results for 

detecting LULC changes. Accurate LULC is significant for 

monitoring environmental variances, urban expansion, and 

resource administration. Conventional methods mostly lack 

scalability and precision, particularly in intrinsic terrains. The 

integration of DL with remote sensing presents an ideal 

solution for capturing detailed spatial patterns. Efficient 

tuning additionally improves the accuracy and adaptability 

across diverse landscapes. 

 

This study proposes a novel Remote Sensing-Based 

Land Use and Land Cover Classification Using Deep 

Learning with Tuna Swarm Optimisation (RSLULCC-

DLTSO) methodology. The RSLULCC-DLTSO 

methodology aims to advance intelligent and automated 

LULC classification systems that assist in sustainable land 

management and environmental decision-making. In the pre-

processing stage, the RSLULCC-DLTSO technique utilizes 

a Wiener Filtering (WF) model to eliminate noise and 

enhance the quality of satellite images. Furthermore, the 

DenseNet-121-based feature extraction captures hierarchical 

spatial patterns and textures from RSI. A Variational Auto 

Encoder (VAE) model is also utilized for the LULC 

classification process. Finally, the Tuna Swarm Optimisation 

(TSO) model optimally adjusts the hyperparameter values of 

the VAE technique, resulting in improved classification 

performance. A wide range of simulation analyses of the 

RSLULCC-DLTSO approach is implemented under the 

EuroSat dataset. The significant contribution of the 

RSLULCC-DLTSO approach is listed below. 

 The RSLULCC-DLTSO model effectively utilizes WF 

to mitigate noise in input data. Enhancing the image 

clarity contributes to improved feature extraction and 

classification accuracy. This step confirms cleaner input 

for DL components, strengthening the method's overall 

performance. 

 The RSLULCC-DLTSO approach utilizes the 

DenseNet-121 technique to extract deep, high-

dimensional features from input data, thereby enhancing 

its representational capacity. Its dense connectivity 

facilitates feature reuse and mitigates the risk of 

vanishing gradients, thereby improving the capacity to 

comprehend intrinsic spatial patterns crucial for accurate 

LULC classification. 

 The RSLULCC-DLTSO methodology implements the 

VAE model for effective and probabilistic classification 

by learning latent representations of input data. It models 

uncertainty in predictions, which enhances the model's 

robustness in intrinsic scenarios. This integration assists 

in more accurate and reliable detection of LULC 

changes. 

 The RSLULCC-DLTSO method utilizes the TSO model 

to fine-tune the model parameters, ensuring optimal 

convergence and performance. This bio-inspired 

algorithm improves the model's adaptability to varying 

data distributions. It enhances classification accuracy 

and computational efficiency in LULC detection. 

 The novelty of the RSLULCC-DLTSO model lies in its 

integration of WF, DenseNet-121, VAE, and TSO into a 

single, cohesive framework. This integration utilizes the 

merits of each method to address challenges in LULC 

change detection more effectively. The framework offers 

enhanced accuracy and adaptability across diverse 

environments by incorporating noise reduction, deep 

feature extraction, probabilistic classification, and 

optimization. 

2. Related Works 
In [11], the U-Net structure is improved by incorporating 

SK ResNeXt as the encoder for the LCC challenge, utilizing 

MSI. SK-ResNeXt presents the size of the adaptive kernel 

and cardinality, enabling the U-Net to take multiple-scale 

aspects and fine-tune more effectually to change spatial 

resolution. Rubab et al. [12] projected an innovative network-

level fusion deep structure depending on SIB-Net and 16-tiny 

ViT. At the primary level, data augmentation is employed to 

address concerns about data imbalance. A self-attention 

bottleneck-based Inception CNN model called SIB-Net is 

projected to a higher level. The blocks are designed to utilize 

the inception framework; bottleneck blocks are formed in 

every module. The 16-tiny Vision Transformer (ViT) is 

applied to RS images, integrated with SIBNet via network-

level fusion, and trained using Bayesian-optimised 

hyperparameters. Majidi et al. [13] developed a combination 

of dense point clouds and multiple-spectral imaging, utilizing 

a dual-stream deep convolution method that incorporates 

elevation data and vegetation into spectral data. Depending 

on the modality framework, a dual-stream Deep Neural 

Network (DNN), as specified in the Deeplabv3+ framework, 

is executed to fuse either modality feature. Moreover, the 

Xception method is deliberated as a feature extractor and 

backbone. In [14], remotely sensed data are employed to 

formulate an advanced DL method for wide-ranging Earth 

observation. The foundation of this method contains the 

advancement of the 3-layered CCM-CNN method. Initially, 

images are extracted before being fed into the 3-layered 

CCM-CNN framework. In [15], an innovative label 

refinement method is proposed, transforming noisy original 

LR labels into refined HR labels utilizing dual stages of noise 
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filtering. Primarily, the method selects moderately confident 

labels from the LR labels using spectral indices from the HR 

images, and then optimizes them over a Markov Random 

Field structure. Afterwards, a shallow classifier like RF is 

trained to utilize the selected pixels to supplement formerly 

unselected labels and refine lower-confidence labels with 

novel and higher-confidence labels. In [16], LULC change 

prediction and classification utilizing DCSNN and EESNN 

are presented. Additionally, the images are pre-processed 

using the FDCT-WRP model. For classification, the DCSNN 

is utilized in the post-classification method. 

 

In [17], an innovative SSM for LC change detection 

(LCCDMamba) is introduced to employ Siam-VMamba as a 

backbone. The MISF method is designed to integrate change 

information across different temporal periods. The presented 

model incorporates MSFA and uses strip convolution to 

integrate multi-scale local change data of residuals with 

SS2D (RSS) and bi-temporal land cover features. It utilizes a 

residual framework with SS2D to acquire global variances of 

bi-temporal land cover aspects. DTMS also intends to use 

two token modelling methods. Gowri et al. [18] presented a 

novel Convolutional Neural Network (CNN) technique, 

namely Hypergraph CNN (HGCNN), for classification. It 

extracts residual features and integrates them into hyper-

edges for enhanced classification accuracy. Alqadhi et al. 

[19] utilized advanced models and DNNs to quantify land 

cover changes, urban expansion, and ecological impacts. 

Bhatti et al. [20] presented a deep network-level fusion 

approach that integrates a stacked residual self-attention 

CNN (SRAN3) with a lightweight ViT, utilizing four 

encoders to improve performance while mitigating 

computational costs. The models are integrated using depth 

concatenation, and hyperparameters are optimized via the 

Bayesian Optimization (BO) model for enhanced learning 

and classification accuracy. Rega and Sivakumar [21] 

proposed the Automated RS Image Classification by 

employing the Horse Herd Optimisation with Deep Transfer 

Learning (ARSIC-HHODTL) technique. It utilizes Bilateral 

Filtering (BF) for noise removal, EfficientNet-B7 for 

extraction, and LSTM for classification, with the HHO model 

for improving the model's performance. Vaghela et al. [22] 

utilized the YOLO V8 approach to classify agricultural lands 

from RS images, computing diverse YOLO V8 versions and 

analyzing the impact of hyperparameters. Mangkhaseum et 

al. [23] developed flood susceptibility maps using DL 

techniques, namely ANN, LSTM, DNN and open-source 

datasets. Jayanth et al. [24] improved CNNs using 

metaheuristic approaches, specifically Artificial Bee Colony 

(ABC) and Grey Wolf Optimization (GWO), to detect and 

classify RS data. Fan et al. [25] introduced a framework that 

integrates denoising diffusion probabilistic models and ViT 

for an improved LULC segmentation approach (DDPM-

SegFormer). It generates refined semantic features and 

models global image context. 

 

Onojeghuo et al. [26] developed a DL methodology to 

analyze wetland dynamics in the Niger Delta utilizing multi-

temporal, multi-sensor satellite data. Lu et al. [27] introduced 

a CNN-BiGRU model improved with a novel GCBA 

attention mechanism for estimation utilizing multi-variable 

RS data. Shailaja et al. [28] developed a Land Cover 

Classification Network (LCC-Net) for accurate classification 

by utilizing the Enhanced Super-Resolution Generative 

Adversarial Network (ESRGAN) technique for image 

enhancement, and Swin transformer CNN (ST-CNN) with 

Adaptive Moment Estimation (AME) optimizer for 

classification. Sawant and Ghosh [29] trained five DL 

methods for accurate pixel-wise classification. Maashi et al. 

[30] evaluated the impacts of LULC changes on agriculture 

using Landsat satellite imagery and the Random Forest (RF) 

model. Chroni et al. [31] integrated multispectral imagery 

and airborne Light Detection and Ranging (LiDAR) data by 

utilizing a CNN-based U-Net semantic segmentation model. 

Tadesse et al. [32] proposed a data-centric framework by 

utilizing a teacher–student model for generating accurate 

local land-cover maps in Africa by employing high-

resolution (0.331 m/m/pixel) and low-resolution (10 

m/m/pixel) satellite images. Jhonnerie et al. [33] incorporated 

Microsoft Copilot for code generation and Google Earth 

Engine (GEE) for Sentinel-2 image processing and 

classification using the RF approach. Tang et al. [34] 

introduced a DL-based framework by utilizing remote 

sensing images by incorporating online and offline data 

augmentation, the EfficientNet_Large model for extraction, 

and an SVM classifier for classification. Baek, Lee, and Jung 

[35] proposed a Separated-Input-Based U-Net (SiU-Net) 

technique that processes Red-Green-Blue (RGB) and Near-

Infrared (NIR) bands separately. Ewunetu and Abebe [36] 

analyzed LULC changes in the Upper Tekeze Basin using 

Google Earth Engine (GEE) and the RF classifier. Arain et 

al. [37] improved LCLU classification of hyperspectral and 

RGB images utilizing DL models, comprising 2D and 3D 

CNN, Long Short-Term Memory (LSTM), Gated Recurrent 

Units (GRU), bidirectional LSTM, and pre-trained CNNs 

such as VGG16, VGG19, ResNet50, ResNet50 V2, and 

MobileNet. 

 

Despite various advancements in LULC classification by 

utilizing DL and hybrid models, diverse limitations still exist. 

Several methods face difficulty with imbalanced and limited 

training data, affecting model generalization and robustness. 

High computational costs and intrinsic architectures restrict 

scalability and real-time applications, specifically in 

resource-constrained settings. Furthermore, the accuracy is 

mitigated by spectral confusion and noise in multispectral 

and hyperspectral data. Most models concentrate on single-

modality data or lack effective fusion strategies for multi-

source inputs like LiDAR and MSI. The research gap is in 

developing lightweight, scalable frameworks that effectually 

handle multi-modal data, address data imbalance, and 

optimize hyperparameters dynamically while maintaining 



G. S. Sravanthi et al. / IJECE, 12(9), 32-45, 2025 
 

 

35 

high accuracy and generalization across diverse 

environments. 

3. Methodology  
This paper proposes the RSLULCC-DLTSO 

methodology. The methodology aims to advance intelligent 

and automated LULC classification systems that assist in 

sustainable land management and environmental decision-

making. Figure 1 illustrates the overall flow of the 

RSLULCC-DLTSO approach. 

3.1. Image Pre-processing: WF Model 

In the pre-processing stage, the RSLULCC-DLTSO 

technique utilizes WF to extract noise and to improve the 

quality of satellite images [38]. This technique is chosen for 

its efficiency in mitigating noise while conserving crucial 

features in the image. Unlike other noise reduction models, 

such as Gaussian smoothing or median filtering, WF adapts 

to local signal characteristics, enabling more precise noise 

suppression without compromising fine details.  

The model also performs by computing the original 

signal based on statistical properties, resulting in a clearer 

image for subsequent analysis. This adaptability makes WF 

suitable for intrinsic and noisy datasets, ensuring that the 

input data retains the maximum information for downstream 

tasks. Moreover, its computational efficiency and capability 

to handle diverse types of noise make it a superior choice to 

conventional methods. Hence, the model highlights a balance 

in noise reduction and feature preservation, which is crucial 

for effective LULC change detection. Figure 2 depicts the 

architecture of the WF method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Overall flow of the RSLULCC-DLTSO model 
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Fig. 2 Structure of the WF model 

 

WF is an adaptive noise reduction model employed in 

image pre-processing to classify LULC in RS. It efficiently 

eliminates Gaussian noise while upholding fine and edge 

details, improving the quality of satellite images. By 

assessing the local variance, WF enhances the extraction of 

features for superior classification accuracy. It helps improve 

spatial and spectral information, making land cover features 

more accurate and reliable. This pre-processing stage 

considerably increases the achievement of DL and ML 

techniques in LULC classification. 

3.2. Feature Extraction 

Furthermore, the DenseNet-121-based feature extraction 

captures hierarchical spatial patterns and textures from RSI 

[39]. This model is selected for its dense DL architecture, 

where each layer connects to all others. The model also 

emphasizes improved propagation and reuse, significantly 

mitigating the risk of vanishing gradients and improving 

model convergence.  
 

Unlike conventional CNNs, DenseNet-121 facilitates 

learning richer, more diverse features through dense 

connections, making it highly effective for intrinsic tasks 

such as LULC change detection. Its capability to capture fine-

grained spatial patterns while reducing the number of 

parameters enables high performance without overfitting. 

Moreover, the model's superior accuracy and computational 

efficiency make it an ideal choice for large-scale image 

analysis, giving both high feature extraction capability and 

robust generalization across diverse datasets. Figure 3 

specifies the structure of the DenseNet-121 approach. 

 
 
 

Fig. 3 DenseNet-121 framework 

DenseNet-121 comprises 121 layers and is known for its 

dense connectivity technique; every layer links to every other 

layer in a feed-forward manner for the highest data flow 

among layers. The dense convolutional network (DenseNet) 

structure connects feature mapping, learned by different 

layers, rather than summing them as in conventional CNNs. 

This enhances data flow in the network, inspires feature 

reuse, mitigates redundancy, and optimises parameters.  
 

DenseNets attain advanced accuracy with fewer 

parameters and calculations than ResNets. The DenseNet121 

structure consists of four dense blocks with a growth rate (𝑘) 
of 32. Before the main dense block, the model includes a 7×7 

convolutional layer with 64 channels (stride 2), followed by 

a 3×3 max pooling layer.  
 

The dense blocks attribute densely related convolutional 

layers, where every layer takes each prior feature map as 

input. In a dense block, layers contain ReLU activation, 

Batch Normalization (𝐵𝑁), a 1x1 convolution (a layer of 

bottleneck), and a 3x3 convolution.  
 

Transition layers among dense blocks do convolution, 

operate BN, and integrate a 1x1 convolutional layer, which is 

followed by 2x2 average pooling with a compression factor 

(𝜃) of 0.5. The concluding dense block yields feature maps 

of fluctuating dimensions, which leads to global average 

pooling over a Fully Connected (FC) Softmax layer.  
 

With 7 million parameters and 𝐿(𝐿 + 1)/2 direct links 

within every dense block, DenseNet-121 is highly effective 

due to its advanced connectivity and excellent efficacy in 

numerous Computer Vision (CV) tasks. Its compact 

architecture enables deep supervision and alleviates 

vanishing gradients, making it appropriate for real-time and 

resource-constrained applications. Additionally, it promotes 

efficient feature propagation and reusability, enhancing 

learning efficiency. 
 

3.3. LULC Classification: VAE 

In addition, the VAE model is utilized for the LULC 

classification process [40]. This model is selected because it 

can learn latent representations while modelling data 

uncertainty. Unlike conventional classifiers, VAE integrates 

a probabilistic approach, allowing it to handle noisy and 

ambiguous data more effectively, a common scenario in RS. 

It compresses high-dimensional features into a lower-

dimensional latent space, capturing the underlying structure 

of LULC patterns. This improves generalization and 

mitigates overfitting, particularly in scenarios with restricted 

labelled data. Compared to conventional AEs or deterministic 

classifiers, VAE presents improved robustness and 

adaptability to diverse land cover types. The model's 

generative behaviour also enables reconstruction-based 

anomaly detection, thereby improving classification 

reliability. Figure 4 illustrates the VAE structure. 
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Fig. 4 VAE architecture 

VAE is an excellent generative method. Although there 

are numerous models, VAE is used as it encrypts data into a 

probabilistic latent space, which enables a more refined 

perception of data distribution. It aids in taking into account 

the complexity and variability of standard functioning 

conditions, which makes it simpler to classify deviations. 

Compared to typical AEs and other techniques, VAEs ensure 

simplification by sampling from the discovered distribution 

of the latent space. VAEs efficiently reconstruct inputs by 

learning the underlying data distribution instead of 

memorizing cases. They compare original inputs with 

reconstructions from latent space, which helps highlight 

anomalies and is crucial in industries where normal operating 

conditions can vary. Due to this, the VAE technique is 

employed. The VAE structure comprises dual-core modules, 

including encoding and decoding. It is vital for the process 

and permits the method to acquire probabilistic input data 

symbols. 

 

In VAE, the encoder maps input data 𝐴 to a latent space 

by producing the parameters of a probability distribution, 

usually a Gaussian, defined by mean 𝜇 and variance. 𝜎2 

instead of generating a single deterministic output. The 

mathematical formulation is stated in Equation (1) as 

 

𝑞(𝑐𝑜|𝐴) = 𝒩(𝐶; 𝜇(𝐴), 𝜎
2(𝐴))                           (1) 

  
Here, 𝑞(𝑐|𝐴) denotes an approximate posterior 

distribution. The main objective of the encoder is to certify 

that this distribution thoroughly equals a previous 

distribution 𝑝(𝑐𝑜), which is frequently selected as a normal 

distribution 𝑁(0, 𝐼) 
 

The decoding process reverses the operation by 

transforming latent space representations back into the data 

space. The decoding outputs for a distribution over the 

reconstructed data are shown as, 

 

𝑝(𝐴|𝐶) = 𝒩(𝐴; 𝜇′(𝐶), 𝜎′2(𝐶))                        (2)  
 

While μ′ (𝐶) refers to the mean and 𝜎′2(𝐶) signifies the 

variance in the latent variable 𝑐. The objective of decoding is 

to exploit the probability of reconstructing the original data 

from the latent representation. 

 

The VAE loss function integrates reconstruction error 

for accurate input recovery and KL divergence to regularize 

the latent space, enhancing generalization and meaningful 

output generation. The mathematical formulation is provided 

below, 

 

𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐿𝑜𝑠𝑠 = 𝔼𝑞(𝐶|𝐴)[log 𝑝(𝐴|𝐶)]         (3)  

 

While 𝐴 signifies an original input, 𝑧 denotes the latent 

variable, and 𝑝(𝐴𝐶) emphasizes the probability of 

reconstructing 𝑥 given 𝑐. Gaussian distribution is mainly 

employed for more constant data, which leads to a 

reconstruction loss calculated through MSE. The BCE is used 

for the dual data that is computed below. 

𝐵𝐶𝐸 = −
1

𝑁
∑[𝐴𝑖log(𝐴𝑖) + (1 − 𝐴𝑖)log(1 − 𝐴̂𝑖)]  

𝑁

𝑖=1

  (4) 

 

The loss function ensures decoded outputs closely match 

the original inputs, enabling accurate reconstructions. KL 

divergence aligns the learned latent distribution with a prior 

distribution, promoting an organized latent space that 

supports generating diverse new samples. The mathematical 

formulation of the KL divergence is provided below, 

 

𝐷𝐾𝐿(𝑞(𝐶|𝐴)‖𝑝(𝐶))

= −
1

2
∑(1 +  log (𝜎𝑗

2) − 𝜇𝑗
2 − 𝜎𝑗

2)

𝑑

𝑗=1

  (5) 

 

Here, 𝑑 is signified as dimensionality; 𝜎𝑗 and 𝜇𝑗 

Represent the variance and mean of 𝑡ℎ𝑒 𝑗𝑡ℎ latent space, 

respectively. 

3.4. Parameter Tuning: TSO Approach 

Finally, the TSO method optimally adjusts the VAE 

model's hyperparameter values, leading to improved 

classification performance. This method is implemented for 

its robust search capabilities and adaptive exploration 

mechanisms. The model is motivated by the intellectual 

hunting characteristics of tuna fish. The model balances 

exploration and exploitation effectively, assisting in the 

avoidance of local minima —a common issue in optimization 

tasks. Unlike conventional models such as grid or random 

search, TSO dynamically adjusts parameters based on the 

search environment, resulting in faster convergence and 

improved outcomes. It is computationally efficient and 

scalable, making it appropriate for tuning intrinsic DL 

models. Moreover, its bio-inspired strategy gives flexibility 

and robustness across diverse datasets and problem settings. 

This makes TSO a highly effective tool for improving overall 

model performance in LULC classification tasks. Figure 5 

specifies the flow of the TSO model. 

 

The TSO technique depends on the foraging behaviour 

of the tuna swarms [41]. It employs two distinct foraging 

tactics, namely parabolic foraging and spiral foraging, to 
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create an effective meta-heuristic model. The mathematical 

process of the TSO model is given below: 

 

Initialization. Like other meta-heuristic techniques that 

rely on swarm intelligence, the TSO optimizer procedure 

begins by randomly and uniformly creating initial 

populations in the search space. 

 

𝑌𝑖
𝑖𝑛𝑡 = 𝑟𝑎𝑛𝑑. (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵                     (6) 

 

Here, 𝑌𝑖
𝑖𝑛𝑡  Represents an initial individual at index 𝑖, UB 

and 𝐿𝐵 specify the upper and lower limits, respectively. 

Correspondingly, 𝑃 denotes the population size of tuna, and 

𝑟𝑎𝑛𝑑 denotes a randomly generated vector value, which is 

evenly distributed between 0 and 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Workflow of the TSO technique 

3.4.1. Spiral Foraging 

When they encounter predators, a group of small fish, 

such as sardines and herring, forms a dense, constantly 

shifting formation that makes it difficult for the predators to 

select a specific target.  

 

However, tuna establish themselves in a tight spiral 

while chasing prey. While most fish lose direction, they 

jointly swim when a small set takes off from an assumed 

direction. Other fish modify their direction simultaneously to 

create a greater set with a similar hunting objective. To evade 

their predators, tuna schools broadcast data among 

themselves, allowing individual fish to follow one another. 

 

𝑌𝑖
𝑡+1 =

{
 

 
𝛽1(𝑌𝑏𝑒𝑠𝑡

𝑡 + 𝛼 ⋅ |𝑌𝑏𝑒𝑠𝑡
𝑡 − 𝑌𝑖

𝑡|) + 𝛽2 ⋅ 𝑌𝑖
𝑡

𝑖𝑓 𝑖 = 1

𝛽1 ⋅ (𝑌𝑏𝑒𝑠𝑡
𝑡 + 𝛼 ⋅ |𝑌𝑏𝑒𝑠𝑡

𝑡 − 𝑌𝑖
𝑡|) + 𝛽2 ⋅ 𝑌𝑖−1

𝑡

𝑖𝑓 𝑖 = 1,2, … , 𝑃

      (7) 

 

𝛽1 = 𝑏 + (1 − 𝑏) ⋅
𝐼

𝐼max
                                   (8) 

 

𝛽2 = (1 − 𝑏) − (1 − 𝑏) ⋅
𝐼

𝐼max
                           (9) 

 

𝛼 = 𝑒𝑐𝑘 ⋅ cos(2𝜋𝑐)                          (10) 
 

𝑘 = 𝑒3 ∙ 𝑐𝑜𝑠 (((
𝐼max + 1

𝐼
) − 1)𝜋)               (11) 

 

While 𝑌𝑖
𝑟+1 depicts the 𝑖𝑡ℎ individual in the subsequent 

iteration, 𝑌𝑏𝑒𝑠𝑡
𝑡  represents the present best individual; 𝛽1 and 

𝛽2 denote factors which influence how numerous individuals 

are drained near the optimum individual and their preceding 

location; 𝑏 means a constant that defines how many 

individuals follow an optimum individual and their preceding 

location at the beginning; 𝐼 denotes the present number of 

iterations. 𝐼 max  depicts the maximal iteration count, and 𝑏 

denotes an arbitrary number between 0 and 1. 

 
When a set of fish spins near the potential prey in a spiral 

form, it can efficiently hunt for food. However, if the most 

expert fish fail to discover food, it is impossible to feed as a 

group efficiently by following the foremost fish.  

 
A reference point for the spiral hunt was generated as a 

random position in the search region, enabling every fish to 

explore a broader search space and facilitating the search for 

the entire group. The complete mathematical method is 

formed below: 

 

𝑌𝑖
(𝑡+1)

=

{
 
 

 
 𝛽1 ∙ 𝑌𝑟𝑎𝑛𝑑

𝑡 + 𝛼 ∙ |𝑌𝑟𝑎𝑛𝑑
𝑡 − 𝑌𝑖

𝑡| + 𝛽2 ⋅ 𝑌𝑖
𝑡

𝑖𝑓 𝑖 = 1

𝛽1 ⋅ (𝑌𝑟𝑎𝑛𝑑
𝑡 + 𝛼 ⋅ |𝑌𝑟𝑎𝑛𝑑

𝑡 − 𝑌𝑖
𝑡|) + 𝛽2 ⋅ 𝑌(𝑖−1)

𝑡

𝑖𝑓 𝑖 = 1,2, … , 𝑃

   (12) 

 

Here, a randomly produced reference point, 𝑌𝑟𝑎𝑛𝑑
𝑡 It is 

recognized in the search space. 

 
Meta-heuristic calculations are initiated with dispersion 

in space, gradually converging on more effective areas over 

time. Numerous locally best-fitting points serve as novel 

references in the spiral search; therefore, the TSO continues 

to move them while repeating near-better fitness processes. 

This eventually leads to the below-mentioned mathematical 

formulation that signifies the strategy of spiral foraging: 

Start 

Stop 

Initialize Reflectance Component of TSO 

Evaluate Fitness Function by Calculating MSE 

Find the Best Current Solution 

Return the Best Optimal Solution 

Max  
Iteration? ? 
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𝑌𝑖
(𝑟+1)

=

{
 
 
 
 
 
 

 
 
 
 
 
 
𝛽1 ∙ (𝑌𝑟𝑎𝑛𝑑

𝑡 + 𝛼 ⋅ |𝑌𝑟𝑎𝑛𝑑
𝑡 − 𝑌𝑖

𝑡| + 𝛽2 ⋅ 𝑌𝑖
𝑡)

𝑖𝑓 𝑟𝑎𝑛𝑑 <
𝑡

𝑡𝑚𝑎𝑥
, 𝑖 = 1

𝛽1 ∙ (𝑌𝑟𝑎𝑛𝑑
𝑡 + 𝛼 ⋅ |𝑌𝑏𝑒𝑠𝑡

𝑡 − 𝑌𝑖
𝑡| + 𝛽2 ⋅ 𝑌(𝑖−1)

𝑡 )

𝑖𝑓 𝑟𝑎𝑛𝑑 <
𝑡

𝑡𝑚𝑎𝑥
, 𝑖 = 2,3, … , 𝑃

𝛽1 ∙ (𝑌𝑏𝑒𝑠𝑡
𝑡 + 𝜌 ⋅ |𝑌𝑟𝑎𝑛𝑑

𝑡 − 𝑌𝑖
𝑡| + 𝛽2 ⋅ 𝑌𝑖

𝑡)

𝑖𝑓 𝑟𝑎𝑛𝑑 ≥
𝑡

𝑡𝑚𝑎𝑥
, 𝑖 = 1

𝛽1 ∙ (𝑌𝑟𝑎𝑛𝑑
𝑡 + 𝜌 ⋅ |𝑌𝑏𝑒𝑠𝑡

𝑡 − 𝑌𝑖
𝑡| + 𝛽2 ⋅ 𝑌(𝑖−1)

𝑡 )

𝑖𝑓 𝑟𝑎𝑛𝑑 ≥
𝑡

𝑡𝑚𝑎𝑥
, 𝑖 = 2,3, … , 𝑃

 (13) 

 

3.4.2. Parabolic Foraging 

Tuna usually searches for food utilizing dual models. 

One strategy involves creating a coil‐shaped cluster to feed, 

while the other involves searching in an arc, utilizing food as 

a reference point. These dual hunting models emerge 

simultaneously, and each can be chosen independently. The 

following mathematical method expresses this behaviour: 

 

𝑌𝑖
(𝑡+1)

= {

𝑌𝑏𝑒𝑠𝑡
𝑡 + 𝑟𝑎𝑛𝑑 ⋅ (𝑌𝑏𝑒𝑠𝑡

𝑡 − 𝑌𝑖
𝑡) + 𝑅𝑁 ⋅ 𝑟2 ⋅ (𝑌𝑏𝑒𝑠𝑡

𝑡 − 𝑌𝑖
𝑡)

𝑖𝑓 𝑟𝑎𝑛𝑑 < 0.5

𝑅𝑁 ⋅ 𝑟2 ∙ 𝑌𝑖
𝑡 , 𝑖𝑓𝑟𝑎𝑛𝑑 ≥ 0.5

   (14)  

𝑒 = (1 −
𝐼

𝐼max
)
(
𝐼

𝐼max
)

                              (15)  

While 𝑅𝑁 is arbitrarily set to both 1 and -1. 

 

Fitness selection plays a substantial role in the 

performance of the TSO technique. It computes candidate 

solutions through an encoded system within a defined 

hyperparameter range. The TSO model prioritizes accuracy 

as the main criterion for designing its fitness function. The 

mathematical formulation is computed as follows: 
 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  max (𝑃)                                    (16) 

 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                          (17) 

 

Here, 𝑇𝑃 and 𝐹𝑃 denote the true and false positive 

values, respectively. 
 

4. Performance Validation 
The experimental evaluation of the RSLULCC-DLTSO 

methodology is examined by utilizing the EuroSat dataset 

[42].  
 

Table 1 illustrates the dataset comprising 5000 instances 

with 10 classes (AnnualCrop, Forest, Highway, Herbaceous 

Vegetation, Industrial, Pasture, Residential, Sea Lake, 

Permanent Crop, and River). Figure 6 specifies the sample 

images. 

Table 1. Dataset specification 

Class Sample Numbers 

C 1 500 

C 2 500 

C 3 500 

C 4 500 

C 5 500 

C 6 500 

C 7 500 

C 8 500 

C 9 500 

C 10 500 

Overall Samples 5000 

 

 

 
Fig. 6 Sample images 
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Figure 7 presents the classifier results of the RSLULCC-

DLTSO methodology on the TR dataset. Figures 7(a)-7(b) 

present the confusion matrices, highlighting accurate 

classification across all 10 classes using 70% TRAPA and 

30% TESPA. Figure 7(c)-7(d) illustrates high PR and ROC 

values, confirming effective performance for all class labels. 

 

Fig. 7 (a-b) Confusion matrix, and (c-d) PR and ROC curves. 

Table 2 and Figure 8 present the overall classification 

results of the RSLULCC-DLTSO approach for TRAPA 

values below 70% and TESPA values below 30%. The 

outcomes demonstrate that the RSLULCC-DLTSO approach 

accurately identified a variety of class labels. On 70% 

TRAPA, the RSLULCC-DLTSO technique provides an 

average 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 𝐹𝑠𝑐𝑜𝑟𝑒, and 𝐺𝑚𝑒𝑎𝑠𝑢𝑟𝑒  of 

98.57%, 92.85%, 92.82%, 92.82%, and 92.83%, 

correspondingly. Besides, on 30% TESPA, the RSLULCC-

DLTSO approach provides an average 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 

𝐹𝑠𝑐𝑜𝑟𝑒, and 𝐺𝑚𝑒𝑎𝑠𝑢𝑟𝑒 of 98.49%, 92.48%, 92.47%, 92.46%, 

and 92.47%, respectively. 

 

Table 2. Classification outcome of RSLULCC-DLTSO approach below 

70%TRAPA and 30%TESPA 

Classes 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝑺𝒄𝒐𝒓𝒆 𝑮𝑴𝒆𝒂𝒔𝒖𝒓𝒆 

TRAPA (70%) 

C1 98.80 95.55 92.26 93.88 93.89 

C2 98.49 91.32 93.68 92.48 92.49 

C3 98.31 92.15 90.83 91.49 91.49 

C4 98.54 92.09 93.41 92.75 92.75 

C5 98.37 92.35 91.01 91.68 91.68 
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C6 98.77 92.58 95.47 94.00 94.01 

C7 98.26 91.74 91.48 91.61 91.61 

C8 98.66 93.33 92.49 92.91 92.91 

C9 98.80 93.68 94.72 94.20 94.20 

C10 98.66 93.66 92.86 93.26 93.26 

Average 98.57 92.85 92.82 92.82 92.83 

TESPA (30%) 

C1 98.53 93.29 92.05 92.67 92.67 

C2 99.07 95.39 95.39 95.39 95.39 

C3 98.40 92.05 92.05 92.05 92.05 

C4 98.53 93.88 91.39 92.62 92.63 

C5 98.13 89.44 92.90 91.14 91.16 

C6 98.53 93.71 91.16 92.41 92.42 

C7 99.00 92.31 97.06 94.62 94.65 

C8 98.47 92.86 93.41 93.13 93.13 

C9 98.20 91.24 89.29 90.25 90.26 

C10 98.07 90.60 90.00 90.30 90.30 

Average 98.49 92.48 92.47 92.46 92.47 

 

 

Fig. 8 Average of RSLULCC-DLTSO approach below 70%TRAPA and 30%TESPA 

 

 

Fig. 9 𝑨𝒄𝒄𝒖𝒚 analysis of the RSLULCC-DLTSO methodology 
 

Fig. 10 Loss graph of the RSLULCC-DLTSO methodology 
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Figure 9 demonstrates the TRA 𝑎𝑐𝑐𝑢𝑦 (TRAAY) and 

validation 𝑎𝑐𝑐𝑢𝑦 (VLAAY) outcomes of the RSLULCC-

DLTSO methodology over 0-25 epochs. The figure shows 

increasing trends for TRAAY and VLAAY, illustrating 

growth with more iterations. The consistent TRAAY and 

VLAAY values indicate mitigated overfitting and reliable 

predictions on unseen data. Figure 10 illustrates the TRA loss 

(TRALO) and VLA loss (VLALO) curves of the RSLULCC-

DLTSO approach over 0-25 epochs. The decreasing TRALO 

and VLALO values indicate that the RSLULCC-DLTSO 

technique effectively balances data fitting and model 

simplification. This steady loss reduction confirms optimal 

tuning and enhanced prediction performance. To establish the 

proficiency of the RSLULCC-DLTSO approach, a thorough 

comparison analysis is illustrated in Table 3 and Figure 11 

[43]. This solution indicates that the Shallow CNN method 

has performed poorly. Simultaneously, the GeoSystemNet, 

GoogleNet, and ResNet50 techniques have somewhat 

increased outcomes. Following the DenseNetl21, Inception 

V3, VGGl6, and LULCC-RFDADL approaches, these have 

established closer outcomes. Nevertheless, the RSLULCC-

DLTSO method outperforms the other approaches with an 

increased 𝑎𝑐𝑐𝑢𝑦 of 98.57%, 𝑝𝑟𝑒𝑐𝑛 of 92.85%, 𝑟𝑒𝑐𝑎𝑙 of 

92.82%, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 92.82%. 

Table 3. Comparison analysis of the RSLULCC-DLTSO methodology 

with existing methods [43] 

Model 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝑺𝒄𝒐𝒓𝒆 

Shallow CNN 87.99 85.43 81.68 84.43 

GoogleNet 96.04 85.93 68.80 80.43 

DenseNetl21 96.68 71.14 55.24 77.75 

Inception V3 96.89 86.84 75.00 81.96 

ResNet50 96.46 82.91 56.88 82.97 

VGGl6 96.69 83.63 60.30 82.46 

GeoSystemNet 94.69 89.35 68.30 88.41 

LULCC-

RFDADL 
98.18 90.83 90.83 90.79 

RSLULCC-

DLTSO 
98.57 92.85 92.82 92.82 

 

 

 
Fig. 11 Comparison analysis of the RSLULCC-DLTSO methodology with existing methods 
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Table 4. COMT outcome of the RSLULCC-DLTSO method with 

existing techniques 

Model COMT (sec) 

Shallow CNN 2.10 

Google Net 3.23 

DenseNet-l21 3.16 

Inception-V3 2.22 

ResNet-50 2.07 

VGG-l6 2.26 

GeoSystemNet 2.24 

LULCC-RFDADL 0.97 

RSLULCC-DLTSO 0.41 

 

The Computation Time (COMT) outcomes of the 

RSLULCC-DLTSO methodology are compared with those 

of other models in Table 4 and Figure 12. The solutions 

indicate that the RSLULCC-DLTSO technique achieves a 

COMT of 0.97s.  

On the other hand, the Shallow CNN, DenseNet-l21, 

Google Net, InceptionV3, ResNet-50, VGG-l6, and 

GeoSystemNet techniques attain increased COMT values of 

2.10s, 3.23s, 3.16s, 2.22s, 2.07s, 2.26s, 2.24s, and 0.97s, 

respectively. Thus, the RSLULCC-DLTSO methodology is 

used to classify LULC. 

 

 
Fig. 12 COMT outcome of RSLULCC-DLTSO method with existing techniques 

5. Conclusion 
In this paper, a novel RSLULCC-DLTSO technique is 

proposed. The RSLULCC-DLTSO technique aims to 

advance intelligent and automated LULC classification 

systems that assist in sustainable land management and 

environmental decision-making. In the pre-processing stage, 

the RSLULCC-DLTSO technique utilizes WF to remove 

noise and enhance the quality of satellite images. 

Furthermore, the DenseNet-121-based feature extraction 

captures hierarchical spatial patterns and textures from RSI. 

In addition, the VAE model is utilized for LULC 

classification. Finally, the TSO model optimally tunes the 

hyperparameters of the VAE technique, resulting in 

improved classification. A wide range of simulation analyses 

of the RSLULCC-DLTSO approach is implemented under 

the EuroSat dataset. The comparative study of the 

RSLULCC-DLTSO approach illustrated a superior accuracy 

value of 98.57% compared to existing models. 
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