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Abstract - Over 295 million people in 53 countries experience acute food insecurity due to factors like famine, war, climate 

change, and conflict zones. Sustainable Development Goal 2: Zero Hunger aims to achieve food security, improve nutrition, 

end hunger, and promote sustainable agriculture. Balancing farming with environmental protection is crucial, especially in 

the face of climate change and globalization. Studying plant phenomics, which focuses on how plants grow and react to 

climate change, can help develop more productive and stronger crops. Advanced technology, such as High-throughput plant 

phenotyping, can provide detailed data for accurate predictions and better disease control. This article aims to explore the use 

of AI and machine learning in plant phenotyping, the integration of imaging technologies, IoT, and sensors, and the 

application of various technologies, including Brinjal, in vegetable phenotyping. Artificial Intelligence, IoT devices, edge 

computing, computer vision, and advanced sensor technologies are revolutionizing sustainable agriculture. These 

technologies provide real-time data, early detection of diseases, and improved nutrient, water, and pest management. Auto 

Machine Learning, Explainable AI, and Deep Learning enhance understanding and optimize breeding cycles. This 

combination of multi-omics data, machine learning, and smart tools is crucial for smart and sustainable agriculture, 

promoting farmer-based innovation and cross-sector collaboration. 

Keywords - Phenotype, Genotype, Internet of Things, Artificial Intelligence, Sustainable agriculture, Sensors. 

1. Introduction  
According to the 2024 report of the Food Security 

Information Network (FSIN), in 53 countries, over 295 

million people experience acute food insecurity. It could be 

due to multiple factors, such as famine, war, climate change, 

conflicting zones, etc The only constant is the escalating 

world hunger [1]. Sustainable Development Goal 2: Zero 

Hunger was introduced as it aims to achieve food security, 

improve nutrition, end hunger, and promote sustainable 

agriculture [2]. The Brundtland Report in 1987 introduced 

the concept of sustainable agriculture, although the definition 

is not explicit, which has hindered its implementation [3]. 

Modern farming requires sustainable practices, but it is not 

an oversimplified science. Low-tech or simple farming is not 

always the solution; balancing farming with environmental 

protection by mitigating the harmful effects of modern 

farming is a sustainable approach. As farming is affected by 

numerous issues, such as climate change and globalization 

[4], this approach is particularly relevant. Sustainable 

farming is about striking a balance between not damaging 

nature for future generations while also producing food that 

meets their needs. Adding the nutrients back into the soil 

after farming keeps the soil fertile, and establishing 

alternative methods like converting farmlands into forests 

instead of pastureland, to meet the increasing demand, 

growing livestock is not a viable solution [5]. Sustainability 

in farming needs to be defined in a practical, scientific, and 

clear way because sustainable farming as an approach means 

following sustainable ideas and practices, and as a property, 

means a farming system that helps in guiding how it should 

change over time; neither of them is a practical and realistic 

approach [6] Farming is very challenging and ever-changing, 

as it is affected by many factors, such as nature, climate 

change, the economy, etc. Modern farming and farming 

policies should be constructed in a way that helps poor 

people, which is equipped to deal with real-life challenges 

and changes in farming styles [7].  

The world’s population is increasing rapidly, and 

feeding it while maintaining sustainability may meet present 

demand, but it is not enough to meet future demands. Hence, 

studying plant phenomics on how the plants grow and react 

http://creativecommons.org/licenses/by-nc-nd/4.0/


Rahul Mahala et al. / IJECE, 12(9), 46-62, 2025 
 

47 

to climate change helps in growing more productive and 

stronger crops [8]. The observational trait or characteristic of 

an organism and how its genes interact with its environment 

is termed the Phenotype. Though traditionally, the study of 

phenotypes is just physical traits, modern science and its 

tools have allowed us to study phenotypes and their 

connection with genes at a deeper and more complex level 

[9]. Plant phenotyping is the least researched part, and to 

come up with better crops to meet the harsh climate change 

and demands in the future, a cheaper, faster, more automated, 

and accurate way is required to genetically produce a better 

crop [10].  

New technology allows scientists to study large amounts 

of data on plant phenotypes deeply and quickly. The High-

Throughput Plant Phenotyping (HTP) uses advanced 

technology and sensors such as RGB camera, Thermal 

Infrared/Long Wave Infrared (TIR/LWIR), Light Detection 

and Ranging (LIDAR), Fluorescence (FLUO) Infrared (IR), 

AI software for image analysis, and Hyperspectral (HIS) that 

helps in measuring various traits of many plants on a deeper, 

complex level and more accurately [11]. Plant growth and 

quality are easily affected by their ecosystem’s climate; a 

change in the climate affects their production. Even though 

we currently have strong tools to study plant phenotyping, 

models are less accurate on the ecosystem level due to a lack 

of detailed data on the species level; hence, we need better 

models to get detailed data to understand and make accurate 

predictions [12]. Traditional ways of studying plants are 

limited and cannot provide a deeper understanding of the 

plant, but with tools such as Artificial Intelligence (AI) and 

multi-omic data, i.e., proteomics, genomics, metabolomics, 

and transcriptomics, scientists can gain a wider picture and 

understanding that will lead to better disease control, smarter 

farming, stronger crops, and sustainable agriculture [13].  

 

The objectives of this article are: 

 To explore the use of AI and machine learning in plant 

phenotyping.  

 To study the fusion of imaging technologies, IoT, and 

sensors in plant phenotyping.  

 To examine the utilization of various technologies in 

vegetable phenotyping, including Brinjal.  

 

This review is novel in providing a focused synthesis of 

AI applications in Brinjal phenotyping, a crop that has 

received limited attention in phenomics research. It uniquely 

consolidates insights on the fusion of Imaging, IoT, and 

sensor technologies for vegetable trait characterization. By 

centering on Brinjal within the broader context of plant 

phenotyping, it fills a critical gap and guides future crop 

improvement studies. 

 

The manuscript organization of this article is as follows: 

Research Methodology is in Section 2, Overview of Plant 

Phenotype in Section 3, Role of Artificial Intelligence in 

Plant Phenotyping in Section 4, Computer vision-based plant 

phenotyping in Section 5, Role of IoT devices and sensors in 

plant phenotyping in Section 6, Recommendations are in 

Section 7, and Section 8 contains the Conclusion. 

2. Methodology 3. Overview of plant phenotype

      4. Role of AI in Plant Phenotyping
5. Computer vision based plant

phenotyping

7. Recommendation
8. Conclusion

1. Introduction

6. Role of IoT & Sensors in plant

phenotyping

  
Fig. 1 Manuscript organization 

 

2. Methodology 
At the initial stage, a total of 150 articles were reviewed 

for this article, and out of them, 61 articles that were most 

suitable for our article were considered, which fall under the 

related categories of Artificial Intelligence, Internet of 

Things, Sensors, Computer Vision, and Deep Learning in 

Plant Phenotyping. The selection was made with an emphasis 

on technical depth, recency, and advancements made towards 
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phenotyping. The articles primarily focused on the 

application of AI, conceptual framework, general 

phenotyping, sustainable farming, Computer Vision, IoT 

devices, and sensors from the reputed publishers like IEEE, 

Springer, Elsevier, MDPI, Taylore &Francis, Wiley and 

other specialized journals, which represent the balance of 

both foundational research and cutting-edge technological 

integration in plant phenotyping. 

3. Overview of Plant Phenotyping 
“The Green Revolution” in the 1960s helped combat 

Hunger and meet the needs of the growing population, but 

the population boom has only doubled since then; hence, a 

new revolution in the name of Sustainable Agriculture is 

needed [8]. The modern world has brought a lot of 

challenges to the ecosystem, such as population growth, heat, 

salinity, floods, climate change, etc, which affect the plant's 

ability to react to stress. To understand this and make sure 

plants can cope with this stress, accurate genome data and 

phenotyping are necessary [14]. To combat this stress and 

improve crop production, a climate-resilient crop can be 

developed using a combination of modern genetic techniques 

and traditional breeding. These crops could have adaptive or 

constitutive traits, which will either only come up when 

stressed or be always active, respectively. However, faster 

and more accurate phenotyping is required to select and 

identify the best plant [15]. It is easy to study how plants 

look, that is, morphology, and that has been the traditional 

way, but understanding how they work and function under 

stress, like in drought, is called “Physiolomics”. 

Physiolomics provides a deeper understanding by measuring 

the functioning of the plants, which helps select drought-

tolerant plants [16]. Plant phenotyping is often combined 

with genotyping, which uses DNA markers to aid breeders in 

detecting and mixing desirable traits that produce a stronger 

harvest. However, analyzing and evaluating the vast data 

remains a challenge. Tools such as The Hordeum Toolbox 

(THT), which was developed for barley, solve some of these 

challenges, but similar tools are required for different crops 

[17]. Having DNA data for the plant has not yielded the 

expected improvements due to the lack of phenotypic data. 

To accurately and quickly gather the phenotypic data, 

phenotypic tools such as computers, sensors, robots, 

cameras, and analytical algorithms were developed. These 

tools facilitate the connection between plant genes and their 

traits, thereby accelerating genomics-assisted breeding 

through Quantitative Trait Loci Mapping (QTL) mapping 

and Genome-Wide Association Study (GWAS) [18], as this 

can be visualised in Figure 2. 
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Fig. 2 Framework for plant phenotyping in climate-resilient agriculture 

4. Role of Artificial Intelligence in Plant 

Phenotyping 
The advancement in plant phenomics was achieved due 

to the rise of new technologies, Artificial Intelligence (AI), 

especially Deep Learning (DL), Machine Learning (ML), 

and Computer Vision. These new technologies are paired 

with non-invasive imaging sensors that collect and analyze 

plant data more accurately and efficiently. The creation of 

open-source tools and software for data sharing and 

collecting is made easier through AI [19].  Analyzing 

microscopic images with AI and DL has become accurate 

and faster, especially on a large scale. Utilising explainable 
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AI and automated imaging robots can now assist in 

identifying important biological traits [20]. To cope with the 

challenges provided by the traditional method, AI and 

advanced sensors are used to analyze and collect plant data 

more accurately. High-Throughput Phenotyping (HTP) is the 

process that uses tools like drones, Multispectral, 

Hyperspectral, and Thermal Infrared (TIR) cameras to track 

plant disease, health, stress, and growth [21].  
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Fig. 3 High-throughput plant phenomics via AI technologies 

 

Deep learning system, AlexNet, is adopted for crop 

health assessment and classification. These data are collected 

via IoT sensors for real-time data, drones (UAVs) for aerial 

crop monitoring, and computer vision for image analysis, 

creating a Smart Agri-Field Management System. This 

system yielded an F1-score of 0.98 in Growth monitoring, an 

F1-score of 1.0 in Health identification, and an F1-score of 

0.81 in crop detection [22].   
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Fig. 4. The technology tree of pheno-parenting & plant disease detection 

 

Achieving sustainable farming and food security is 

possible through crop improvement by adopting High-

Throughput Phenotyping (HTP) and Artificial Intelligence 

(AI), as it measures large amounts of data of crop traits 

accurately and quickly. Employing HTP technologies like 

drones, 3D Imaging, hyperspectral cameras, and imaging 

sensors combined with Computer vision and machine 

learning yields beneficial results [23], as demonstrated in 

Figure 3. Modern technology has brought forth Agriculture 

4.0, which analyzes and monitors a plant’s growth to 

improve yield. Pheno-parenting is a new concept in which 

plants are tracked throughout their lives using sensors and 

tools for better growth and collecting plant phenotypes. Deep 

Neural Networks (DNN) are used in a hydroponic setup with 

cameras to capture plant images from different angles, and 

image analysis tools are used to detect the phenotype data of 

the species from the photos [24]. The contribution of 

ResNet-20 (V2) based CNN architecture, working with 

imbalanced data, employed for Species Recognition (SR) and 

infection detection of plants, used advanced evaluation 

metrics, and applied data augmentation, showed 91.49% F1 

scores in SR and 83.19% F1 score in Infection Detection 

[25]. A smart tool, LEAFPROCESSOR, and Principal 

Component Analysis (PCA), an AI technique to compare and 

study leaf forms along with bending energy, without needing 

a fixed landmark, offers a better insight into plant genetics 

[26]. For accurately classifying and detecting diseases in 

corn leaves, a CNN-based deep learning system, Multi-

Model Fusion Network (MMF-Net), that uses images and 

real-life environmental data, which is collected via IoT 



Rahul Mahala et al. / IJECE, 12(9), 46-62, 2025 
 

50 

sensors, combines local and global image features to classify 

and detect corn leaf diseases. The accuracy of MMF-Net has 

reached 99.23% in detecting diseases [27]. Advancements in 

computer vision and sensor-based technology, paired with AI 

and Gen-AI, have enabled more accurate and faster analysis 

through image-based classifications and segmentations. To 

solve the challenges of data storage, unstructured images, 

high variations in plant species, and difficulty in labeling and 

capturing data, Generative Adversarial Networks (GANs) 

and deep learning models are used to generate synthetic plant 

images and reduce the collection of data by utilizing a digital 

camera and a computer vision tool to analyze them [28], as 

illustrated in Figure 4. A smart system built using 

EfficientNetB3 (a CNN model) with You Only Look Once 

(YOLO) architecture, a smart detector that detects each plant 

and its height, and another ML model, Light Gradient 

Boosting Machine (LightGBM), that uses data and photo 

info to predict how the plants will grow. This system's 

combination of photo and data showed improved accuracy 

and performance, and showed a 12% reduction in error and a 

0.4783 R² score for predicting plant growth rates [29]. 
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Fig. 5 AI features in plant phenotyping 

 

An advanced open-source tool, AutoKeras, is compared 

with two traditional CNN models, Xception and DenseNet-

201, for wheat lodging. It resulted in Autokera being up to 40 

times faster than traditional CNN models, as it is much faster 

and easier to use to design expert-level models [30]. Leaf 

diseases in Brinjal cause major crop loss; to solve this, AI, 

image processing, sensors, and ML can detect the diseases 

early, resulting in a reduction of up to 56% in crop loss [31]. 

An automated AI-driven robotic vision system for apple 

harvesting, which uses a Dual Attention Segmentation 

Network (DASNet) for fruit detection and segmentation, and 

has achieved a 0.862 score in Intersection over Union (IoU) 

that measures object detection by comparing overlapped 

objects and a 0.871 F1-score. To detect shapes, like lines or 

circles, in images, the Hough Transform is applied and 

achieves an accuracy of 0.955 and 0.923, respectively. 

Mapping the environment to avoid any obstacles, Octree-

based 3D modelling is used, and RGB-D camera sensors that 

support visual input [32]. Agriculture is a vital component of 

a country, and to protect its crops from diseases, heat-sensing 

cameras and AI are incorporated to spot disease more 

accurately. To protect crops like Brinjal, ML such as Multi-

Level Twin Support Vector Machine (MLSTSVM) for 

classification, Scale-Invariant Feature Transform (SIFT), and 

Bag of Features (BoF) for feature extraction on MATrix 

LABoratory (Release 2018b) (MATLAB 2018b) software 

paired with Infrared thermal Camera for capturing thermal 

images and RGB camera and Thermal Imaging for Imaging, 

referring to Figure 5. They resulted in 87% higher accuracy 

from thermal processing, but it was a little time-consuming 

to process, and the RGB image was faster but less accurate. 

Hence, thermal Imaging is used in remote farming areas 

where accuracy is more important than speed [33], as 

compiled in Table 1. 
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Table 1. Technologies used in plant phenomics 

Technology Application 

Artificial Intelligence (AI)  

[19, 21, 23, 31, 34] 

General plant data analysis, automation, Imaging, and 

modelling 

Deep Learning (DL) 

[19, 22, 24, 25, 27] 

Large-scale image analysis, trait detection, disease 

classification 

Machine Learning (ML) [19, 21, 31, 33, 34] 
Crop trait prediction, disease classification, and 

environmental response prediction 

Computer Vision [22, 24, 28, 32] 
Image-based trait detection, segmentation, and disease 

monitoring 

Explainable AI (XAI) [20, 34] 
Interpretation of model decisions, reducing bias, and 

improving reliability. 

Automated Imaging Robots [20] Identify biological traits from images. 

High-Throughput Phenotyping (HTP) [21, 23] Tracking plant stress, health, and growth 

Drones (UAVs) [21, 23] 
Aerial plant monitoring and data collection for 

phenotyping 

Multispectral Cameras [21] Tracking disease and stress in plants 

Hyperspectral Cameras [21, 23] Crop health and trait analysis 

Thermal Infrared Cameras [21] Detecting plant stress through heat patterns 

IoT Sensors [22, 27, 34] Real-time environmental and plant data 

Smart Agri-Field Management System [22] Integrated data + image + AI for precision agriculture 

3D Imaging [23] Structural phenotyping 

Pheno-Parenting [24] Lifelong plant monitoring and phenotype tracking 

Deep Neural Networks (DNN) [24] Analyzing plant traits from images 

Data Augmentation [25] Improving model performance 

LEAFPROCESSOR Tool [26] Leaf form analysis using bending energy 

Principal Component Analysis (PCA) [26] Leaf structure comparison 

Generative Adversarial Networks (GANs) [28] Generating synthetic plant images 

Digital Camera + Computer Vision (CV) [28] Image-based trait analysis 

EfficientNetB3 (CNN) [29] Plant detection and height estimation 

You Only Look Once (YOLO) [29] Object detection in phenotyping 

Xception, DenseNet-201[30] Traditional CNNs for phenotyping 

Sensors + ML [31] Disease detection in crops like Brinjal 

Octree-based 3D Modeling [32] Obstacle mapping 

RGB-D Camera [32] Visual-depth sensing 

Multi-Level Twin Support Vector Machine (MLSTSVM) 

[33] 
Classification of thermal images 

Scale-Invariant Feature Transform and Bag of Features (SIFT 

+ BoF) [33] 
Feature extraction from images 

(MATLAB 2018b) [33] Image processing environment 

ML + IoT + Sensors [34] Trait prediction and phenotyping 

 

Machine learning, paired with IoT and sensors, quickly 

and accurately measures plants' traits and features through 

images and predicts whether the plants are affected by their 

environment and genes. Although these AI models are like a 

“black box” because how they conclude is unknown, to 

combat that gap, Explainable AI (XAI) shows why the model 

made that prediction, which helps in reducing errors and 

bias, gives insight into plant biology, and makes the model 

more reliable [34], as evident in Table 2.  
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Table 2. Recorded results of the mentioned technologies 

Technology Application Performance matrix 

Smart Agri-Field Management 

System (AlexNet + IoT + CV) [22] 

Crop health monitoring and 

classification 

F1-Score: 0.98 (Growth monitoring), 1.0 

(Health identification), 0.81 (Crop 

detection) 

ResNet-20 (V2) CNN [25] 
Species and infection 

identification 

F1-Score: 91.49% (Species Recognition), 

83.19% (Infection Detection) 

MMF-Net (CNN-based System) [27] 

Corn leaf disease classification 

using image + environmental 

data 

Accuracy: 99.23% 

YOLO + EfficientNetB3 + 

LightGBM [29] 

Plant growth rate prediction 

using image and data 

R² Score: 0.4783, 12% reduction in 

prediction error 

AutoKeras vs. CNN (Xception, 

DenseNet-201 [30] 

High-throughput wheat lodging 

detection 
Up to 40x faster than traditional CNNs 

AI for Brinjal Disease Detection [31] 
Early detection of Brinjal leaf 

disease 
Up to 56% reduction in crop loss 

DASNet (Robotic Vision for Apple 

Harvesting) [32] 
Fruit detection and segmentation IoU: 0.862, F1-Score: 0.871 

Hough Transform (Shape Detection) 

[32] 

Shape detection in images for 

automated harvesting 
Accuracy: 0.955 (Lines), 0.923 (Circles) 

Thermal Imaging + MLSTSVM + 

SIFT + BoF [33] 

Disease detection in Brinjal 

using thermal and RGB Imaging 

87% accuracy (thermal); Faster but less 

accurate with RGB 

 

5. Computer Vision-Based Plant Phenotyping 
Plants' traits, appearance, behavior, and features are 

affected by their environment and genes. Traditionally, they 

were costlier and time-consuming, but due to technologies 

such as UAVs, 2D/3D Imaging, Volumetric Imaging, Image 

analysis algorithms, and cameras, tools such as Machine 

learning to recognize plant traits, Public benchmark datasets 

to compare results, computer vision to analyze plant images, 

template matching for leaf segmentation, and Computer 

Vision Problems in Plant Phenotyping (CVPPP), Image 

Analysis Methods for the Plant Sciences (IAMPS) 

workshops to share and improve research. These 

technologies together analyze roots and shoots, segment 

leaves, track plant growth, classify plant species, and 

improve food production and crop breeding [35].  

 

Replacing the older, manual, time-consuming, and 

costlier method with computer vision for plant phenotyping. 

Adopting AI and ML technology, combined with depth and 

optical sensors utilizing LiDAR, Thermal, Multispectral, 

Hyperspectral, and RGB cameras, enables more efficient 

measurement of plant features [36]. High-tech tools and AI 

are being used to study plant growth, environmental 

responses, and genetic relationships. These tools, including 

High-Throughput Phenotyping (HTP), thermal Imaging, 

software sensors, fluorescence imaging, and hyperspectral 

Imaging, are used to monitor plant environment and improve 

crop sustainability and yield. Supported by smart lighting 

systems and CRISPR, these methods aim to enhance plant 

growth, reduce chemical usage, and increase crop 

productivity, promoting sustainable and precise agriculture 

[37]. A combination of AI with smart technology that does 

precision agriculture by monitoring crops and improving 

yields in real-time. Plant phenotyping through AI, image 

analysis, and 2D/3D Imaging, which identifies top-

performing crops, growth issues, and yields. It combines it 

with high-throughput Imaging that performs robot 

harvesting, canopy monitoring, and root analysis, improving 

accuracy and yielding faster results. Smartphone-based 

phenotyping and time series data used in ML is the future of 

phenotyping [38]. A Gantry-robot with 3-D scanners that are 

powered by a computer vision algorithm that moves around 

the plants, capturing detailed scans over time from seedling 

to maturity, especially under controlled light/dark cycles 

[39], as illustrated in Figure 6.  

 

For a faster and more reliable crop analysis, and 

improving technicality and economy in farming, computer 

vision and deep learning, such as Visual Geometry Group 

(VGG), You Only Look Once (YOLO), and Faster Region-

based Convolutional Neural Network (Faster R-CNN) with 

an imaging system that helps detect stress, plant parts, 

diseases, pests, and sort weed [40].  

 

Computer vision and AI models, such as DANet (Dual 

Attention Network), Real-Time Multi-task Detection 

(RTMDet), and Real-Time Multi-person Pose Estimation 

(RTMPose), are used in technologies, DL, Cluster analysis, 

and Image processing. Also, the Mobile Segment Anything 

Model (MobileSAM) is a user-friendly, automated software 

that works on mobile/edge devices. These technologies and 

tools combined aimed to speed up and improve melon 

breeding and detect and measure physical traits like size, 

shape, and stem to select high-quality melon varieties [41]. 
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Fig. 6 Process of computer vision in a hydroponic system for plant phenotyping 

  

To detect plant diseases, especially in apple trees, 

multispectral Imaging, machine learning, and computer 

vision are used to scan the fields, analyze leaf health, and 

identify infected or stressed trees [42]. The images captured 

by the RGB camera used for plant phenotyping, mutant 

identification, and leaf segmentation contain both annotated 

and raw images, which enhance computer vision algorithms 

for plant analysis. It aims to fill the gap in methods across 

high-quality, standardized datasets for fair comparison [43]. 

Segmenting an individual leaf is challenging because of 

lighting issues, shape variations, and overlapping leaves. 

Leaf Segmentation Challenge (2014) tested 4 methods and 

showed high accuracy in separating plants from the 

background, but still had a long way to go in counting and 

separating overlapping or young leaves accurately [44], as 

reflected in Figure 7.  
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Fig. 7 Process of data capturing in plant phenotyping via cameras 

 

Brinjal harvesting is facing a labor shortage. To combat 

these difficulties, a computer vision-based algorithm that 

detects and identifies moderately mature KKM-1 brinjals 

suitable for harvesting is needed. These processes involve 

clustering (ML algorithm) that handles shading and segments 

the interested regions, followed by shape filtering and 

contour detection to isolate brinjals. This method resulted in 

79% precision and 85% F1-score in brinjal detection and 

96% in precision with 91% F1-score in maturity prediction 

[45], as detailed in Table 3. 

   
 

Table 3. Technology implemented in plant pheromonic 

Technologies Application 

Unmanned Aerial Vehicles (UAVs) [35] 
Remote sensing and monitoring plant traits from 

above 

Two-dimensional/Three-dimensional Imaging 

(2D/3D Imaging) [35, 38] 

Capturing structural traits like leaf shape, plant 

height, and canopy structure 

Volumetric Imaging [35] 
Captures 3D plant architecture for phenotypic 

analysis 

Image Analysis Algorithms [35] 
Automated extraction of features from plant images 

(e.g., shape, texture) 

Red-Green-Blue Cameras (RGB Cameras) 

 [35, 42, 43] 

Capturing visual plant data for phenotyping and 

segmentation 

Computer Vision Problems in Plant Phenotyping 

(CVPPP) Workshops [35] 

Collaborative events for advancing plant 

phenotyping using imaging techniques 

Template Matching [35] 
Identifying and segmenting plant parts (especially 

leaves) from images 

Image Analysis Methods for the Plant Sciences 

(IAMPS) Workshops [35] 

Workshops focused on developing and sharing 

image-based plant analysis methods 

Depth and Optical Sensors [36] 
Capturing plant depth information and optical traits 

(e.g., reflectance) 

Light Detection and Ranging (LiDAR) [36] 
Scanning plant height, volume, and architecture in 

3D 

Multispectral Imaging [36, 42] 
Measures plant stress, health, and nutrient levels via 

wavelength bands 

Thermal Imaging [37] 
Detects plant water stress and transpiration by 

measuring temperature 

Hyperspectral Imaging [37] 
Analyzes plant pigments and biochemical 

composition 
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High-Throughput Phenotyping (HTP) [37] 
Automated large-scale phenotyping using imaging 

and sensing systems 

Software Sensors [37] 
Monitor environmental variables like temperature, 

light, and humidity. 

Fluorescence Imaging [37] 
Measures photosynthesis efficiency by detecting 

fluorescence emissions 

Smart Lighting Systems [37] 
Optimized lighting in hydroponics for controlled 

plant growth 

Clustered Regularly Interspaced Short Palindromic 

Repeats (CRISPR) [37] 
Genetic editing for enhancing desired plant traits 

High-Throughput Imaging [38] 
Enables tasks like robot harvesting, canopy analysis, 

and root monitoring 

Smartphone-based Phenotyping [38, 46] 
Portable plant data collection for disease detection 

and classification 

Time-Series Data [38] Tracking plant growth and development over time 

Gantry-Robot with 3D Scanners [39] 
Moves around plants, capturing 3D scans from 

seedling to maturity 

Visual Geometry Group Network (VGG) [40] 
Deep learning model used for disease/stress detection 

in plants 

Faster Region-based Convolutional Neural Network 

(Faster R-CNN) [40] 
Detects plant diseases, pests, and weeds from images 

Dual Attention Network (DANet) [41] 
Measures melon size, shape, and other features for 

breeding 

Real-Time Multi-task Detection (RTMDet) [41] Identifies multiple traits of melon plants in real time 

Real-Time Multi-person Pose Estimation (RTMPose) 

[41] 

Adapted for estimating plant pose or orientation in 

images 

Mobile Segment Anything Model (MobileSAM) [41] 
Edge-device compatible tool for easy leaf/plant 

segmentation 

Public Benchmark Datasets [43] 
Standard datasets used to evaluate and compare 

phenotyping algorithms 

Annotated Image Datasets [43, 46] 
Provides labeled data for training phenotyping 

models 

 

4,098 labeled images across 6 categories, insect pest, 

leaf spot, mosaic virus, wilt, healthy, and white Mold, of 

brinjal leaves taken by smartphones in a natural and 

controlled environment to be used in computer vision-based 

disease detection, to learn to classify and detect leaf diseases 

[46], as represented in Table 4. 

  
Table 4. Performance metrics of the technologies used 

Technology Application Results 

Leaf Segmentation Challenge [44] 
Evaluated segmentation methods 

for leaf counting 

High background separation 

accuracy, limited by overlapping 

leaves 

Clustering Algorithm [45] 
Used to isolate regions of interest 

in brinjal detection 

79% Precision, 85% F1-Score 

(Detection); 96% Precision, 91% 

F1-Score (Maturity) 

Contour Detection [45] 
Used to isolate fruit shapes like 

Brinjal from the background 

79% Precision, 85% F1-Score 

(Detection); 96% Precision, 91% 

F1-Score (Maturity) 

Smartphone-based Phenotyping 

[46] 

Used for capturing brinjal leaf 

diseases in the field 

4,098 labeled images across 6 

categories for classification 



Rahul Mahala et al. / IJECE, 12(9), 46-62, 2025 
 

56 

6. Role of IoT Devices and Sensors in Plant 

Phenotyping 
Processing a large amount of data constantly without 

sharing it all on the cloud, which enhances privacy, saves 

bandwidth, extends battery life, and enhances response time, 

is possible with the use of IoT sensors creating Edge 

computing. Technologies like Edge Nodes/Gateways 

manage, filter, and process the data from IoT sensors, 

creating a collaborative edge where devices work together 

for faster and more efficient data handling [47]. To collect 

and analyze data from the plant without harming the plants, 

technologies need to be non-invasive and more accurate. The 

sensors, such as thermal cameras, multispectral sensors, 

LiDAR, which are non-evasive, handheld sensors, cameras 

that are for proximal sensing, and drones, satellites for 

remote sensing, these sensors identify traits like yield, 

quality, and stress resistance to help in plant breeding and 

precision farming [48]. Plant stress can be detected using a 

camera and environmental sensors to monitor humidity, 

temperature, etc., by capturing leaf images and processing 

them through the Support Vector Machine (SVM) algorithm, 

an AI model, to classify healthy and unhealthy leaves. 

Afterwards, the Grey Level Co-occurrence Matrix (GLCM) 

method extracts leaf features and sends them to the 

agriculture experts for review and suggestions [49]. Plant 

Phenotyping requires advanced technologies like LiDAR, 

Red Green Blue-Depth (RGB-D) cameras, structured light 

sensors, and multi-view stereo systems. These IoT-enabled 

sensors collect high-resolution leaf area, biomass, and height 

data, which are then processed through computer vision, 3D 

modelling Techniques, and AI. The processed images are 

then analyzed for improving crop breeding and management, 

and complex plant structure [50]. Thermal sensors for 

imaging have proved to be a powerful tool for detecting 

pests, water stress, diseases, freezing damage, assessing 

nutrient levels, and predicting crop and seed viability without 

harming the plant [51]. To protect the crops from pest and 

disease issues and maintain a favourable condition for the 

crops to get better yields, modern technologies and tools like 

Chlorophyll Fluorescence Imaging, Thermal Imaging, and 

Hyperspectral Imaging track plant humidity, temperature, 

health, etc, combined with AI. These technologies control 

and detect problems early [52], as represented in Figure 8.   
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Fig. 8 Smart agriculture via sensors and IoT devices 

 

Modern farming faces issues like environmental 

concerns, a labour shortage, and an increase in food demand. 

Therefore, 62 robot systems are used to overcome these 

challenges and perform agricultural tasks, where 80% are in 

the research stage, 32% use RGB cameras, 64% lack robotic 

arms, and 35% use computer vision algorithms. These 

robotic systems use a Multispectral sensor and an RGB 

camera for plant health, soil sensors, and GPS paired with 

IoT tech for communication and real-time monitoring. This 

robotic system has improved harvest success rates by 23% 
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and reduced harvesting time from 2014 to 2021 by 43% [53]. 

An AI technology combined with non-invasive imaging 

sensors, Multispectral, Hyperspectral imaging, Thermal 

Imaging, 3D Imaging, Chlorophyll fluorescence imaging 

(CFIM), Red Green Blue (RGB) camera (visible Imaging), 

and Environmental monitoring sensors (IoT) and statistical 

analysis enables precise analyses of plants' roots and leaves 

through feature extraction, classification, and segmentation 

[54]. A 3D plant canopy structure analysis includes imaging 

technologies, such as RGB cameras for visual sensors, 

sensors, Time-of-Flight (ToF) Cameras, Light Detection and 

Ranging (LiDAR), and Structured Light Cameras for depth, 

paired with Multi-View Stereo (MVS) and Structure from 

Motion (SfM) techniques that are supported by AI-based 

segmentation on the Center for Machine Perception Multi-

View Stereo (CMPMVS) software, which helps to extract 

traits like canopy shape and leaf area [55].  
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Collection

IoT-Based

Communication

Data Processing & AI

Analysis

Automated Action &

Control Systems

Sensor Integration Pipeline

WSN Backbone

Real-time data

transmission
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integration for spatial

mapping
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IR, UV)

Data

processing
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Use of

algorithms

Imaging analysis tools

Decision execution

Dual-arm robotic harvester

Automated greenhouse

control

UAVs (Drones) capturing

Field deployed sensors

Plant-specific sensing

Ground robots equipped

with sensors

Brinjal crop-specific

automation

 
Fig. 9 Smart farming workflow via IoT and sensor technologies 

 

Collecting accurate data on a large scale and fast High-

Throughput Phenotyping (HTP) using drones (UAVs) and 

AI-based image analysis is a strong solution. This solution 

uses Unmanned Aerial Vehicles (UAVs), Multispectral / 

Hyperspectral sensors, and RGB cameras to capture plant 

health data. Data Processing Pipelines that extract traits from 

images and Image Analytics Software to process drone 

images, ML, and DL AI models [56].  A mobile sensing 

platform that is equipped with various non-contact optical 

sensors, Near-infrared (700-1000 nm), Full-spectrum (350-

2500 nm), Ultraviolet (280-400 nm), Visible light (400-700 

nm), Chlorophyll fluorescence, and Thermal (infrared) 

enables consistent and quick monitoring of the plant growth 

[57]. For modernizing the farming of the vegetable brinjal, 

by using Long Range Wide Area Network (LoRaWAN)- 

based in an environment where devices like fans and heaters 
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are automatically adjusted to maintain optimal conditions for 

brinjal crop growth, and using a Wireless Sensor Network 

(WSN) to control and monitor brinjal growth. CupCarbon 

simulator is where this setup is being tested, as it enables 

remote automated climate control that is efficient in 

greenhouses [58]. Modernized farming has evolved to 

utilising robotics instead of manual labour, as a dual-arm 

robotic system designed to automatically harvest aubergines 

in complex farm environments has shown 91.67% success 

rates, and 26 seconds per fruit is its average picking time. 

This dual-arm robotic system uses an Occlusion algorithm 

for handling hidden fruits, a Dynamic planning algorithm for 

arm movement, and a Support Vector Machine (SVM) for 

image classification. The dual arm coordination is flexible 

for fruit picking, employing depth sensors for 3D mapping 

for point cloud generation and Vision sensors (cameras) for 

detecting fruit and obstacles [59], as shown in Figure 9. 

Technologies like IoT, sensors, AI, drones, Smart Irrigation 

Systems (SIS), remote sensing, and big data combined make 

up digital agriculture. In eggplant farming, key tools, sensors 

such as soil moisture, temperature, humidity, and optical 

sensors that collect real-time data on plant and soil health, 

UAVs, and yield monitors collect data, which is analyzed on 

AI and machine learning to optimize irrigation and 

fertilization, detect pests and diseases, and predict yields for 

better eggplant crop management [60], referring to Table 5.

Table 5. Sensors and IoT technologies used in plant pheromone 

Technology Application 

Edge computing, Edge nodes/gateways [47] 
Local processing for enhanced privacy, lower 

latency 

Thermal Cameras, Multispectral Sensors, Light Detection and Ranging 

(LiDAR), Red Green Blue Camera (RGB), Drones, Satellites [48] 
Non-invasive sensing for trait analysis 

Light Detection and Ranging (LiDAR), Red Green Blue-Depth Camera 

(RGB-D), Structured Light Sensors, Multi-View Stereo (MVS), Structure 

from Motion (SfM) [50] 

3D imaging and modelling for plant 

phenotyping 

Thermal Imaging Sensors [51] 
Detect water stress, disease, freezing, and 

nutrient levels. 

Chlorophyll Fluorescence Imaging (CFIM), Thermal Imaging, 

Hyperspectral Imaging, Artificial Intelligence (AI) [52] 

Track humidity, temperature, and plant health 

to detect early issues 

Multispectral Imaging, Hyperspectral Imaging, 3D Imaging, Chlorophyll 

Fluorescence Imaging (CFIM), Red Green Blue Camera (RGB), 

Environmental Monitoring Sensors, Artificial Intelligence (AI) [54] 

Extract and classify root and leaf features. 

Red Green Blue Camera (RGB), Time-of-Flight Camera (ToF), Light 

Detection and Ranging (LiDAR), Structured Light Camera, Multi-View 

Stereo (MVS), Structure from Motion (SfM) [55] 

Analyze canopy structure and extract traits. 

Unmanned Aerial Vehicles (UAVs), Multispectral Sensors, Hyperspectral 

Sensors, Red Green Blue Camera (RGB), Artificial Intelligence (AI) [56] 

High-Throughput Phenotyping (HTP) and 

image analytics 

Near-Infrared (NIR), Ultraviolet (UV), Visible Light, Full-Spectrum 

Sensors, Chlorophyll Fluorescence Imaging (CFIM), Thermal Imaging 

[57] 

Mobile sensing platform for fast, non-invasive 

monitoring 

Long Range Wide Area Network (LoRaWAN), Wireless Sensor Network 

(WSN), CupCarbon Simulator [58] 

IoT-based automated brinjal crop monitoring 

system 

Internet of Things (IoT), Soil Moisture Sensors, Temperature and 

Humidity Sensors, Smart Irrigation System (SIS), Red Green Blue 

Camera (RGB), Unmanned Aerial Vehicles (UAVs), Artificial 

Intelligence (AI), Machine Learning (ML) [60] 

Optimize irrigation, fertilization, pest 

detection, and yield prediction. 

 

Weed is also an enemy of healthy crops, and manual 

weed control is risky and time-consuming due to pesticide 

exposure. To save time, reduce pesticide exposure, and 

reduce labour in a brinjal farm, a U-Net with Inception-

ResNetV2, a deep learning AI model, paired with an RGB 

camera that captures images under ambient lighting with 

over 96% accuracy, as depicted in Table 6, easily detects and 

classifies weeds. This Semantic Segmentation method 

accurately identifies different species of weeds under natural 

light [61]. 
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Table 6. Performance results of the applied Sensors 

Technology Purpose Results 

Support Vector Machine (SVM), 

Grey Level Co-occurrence Matrix 

(GLCM) [49] 

Detect and classify plant stress from 

leaf images 

Classification performed by SVM; 

features extracted by GLCM; no 

specific accuracy provided 

Agricultural Robotics, Computer 

Vision (CV), Red Green Blue 

Camera (RGB), Internet of Things 

(IoT) [53] 

Perform tasks like harvesting, 

monitoring, and plant health analysis 

- 23% increase in harvest success 

- 43% reduction in harvest time (2014-

2021) 

- 32% use RGB cameras 

- 64% lack robotic arms 

- 35% use CV algorithms 

Dual-Arm Robotic System, Support 

Vector Machine (SVM), Occlusion 

Algorithm, Depth Sensors, Vision 

Sensors [59] 

Automate aubergine harvesting in 

complex environments 

- 91.67% picking success rate 

- 26 seconds per fruit 

U-Net with Inception-ResNetV2 

(Deep Learning), Red Green Blue 

Camera (RGB), Semantic 

Segmentation [61] 

Detect and classify weed species in 

brinjal fields 

Over 96% accuracy in weed detection 

under ambient/natural light 

 

7. Recommendation 
Advancement in plant phenotyping is achieved when we 

combine technology with knowledge. Artificial Intelligence, 

Computer vision, Internet of Things (IoT), and smart sensors 

have all made it very possible to understand the complexities 

of plant and their response to their surroundings and 

environment. Food demand has increased over the past 

decade, and to meet this demand, a strong and climate-

resistant crop is a must. Due to the population rise and the 

spread of urbanization, agriculture has been the least 

advanced industry among others. Advanced technology in 

farming is the solution for smart and sustainable farming, as 

by leveraging these advanced tools and technology, farmers 

can enhance productivity, resilience, and resource efficiency.  

 Aligning with SDG 2 - Zero Hunger calls for 

simultaneously addressing the food security challenges, 

minimizing environmental impact, and promoting 

sustainable agricultural practices combining IoT, AI, and 

Phenomics.  

 To accelerate crop improvement through linking 

genotypes to phenotypes by integrating AI-driven high-

throughput phenotyping, utilizing advanced computer 

vision and deep learning algorithms for automation to 

yield prediction, enhancing stress tolerance, detecting 

diseases, and leaf segmentation, accurately and 

efficiently, with reduced manual labour.  

 For a deeper understanding of plant traits, their stress 

responses, and for precision breeding by their stress 

response, a real-time, precise monitoring of plant health 

and the environmental surroundings is achieved by 

deploying IoT sensors and remote sensing technologies, 

and adopting multi-omics and explainable AI 

frameworks.  

 

 Especially high-value vegetables, like Brinjal, can 

implement robotic systems and autonomous harvesting 

technologies, improving crop production efficiency. 

 

8. Conclusion 
Integrating Artificial Intelligence with IoT devices, edge 

computing, computer vision, and advanced sensor 

technologies without harming the environment presents a 

promising future in sustainable agriculture. These advanced 

innovations provide real-time, precise data by non-evasively 

monitoring crops through thermal and 3D vision, and UAV 

imaging technologies detect diseases and stress early, saving 

the crops and increasing productivity.  
 

To gain field-level insight on optimising nutrients, 

water, and pest management, implementing IoT sensors and 

edge computing has proven to be successful. The 

advancement of Auto Machine Learning, Explainable AI, 

and Deep Learning has enhanced the understanding and 

overcoming of the complexities in accelerating breeding 

cycles, predicting diseases, and mapping Genotype-

Phenotype. Deploying the fusion of these innovations, even 

in a protected environment, by making it a smart agri-field 

system, optimizes disease control and yields. These advanced 

plant phenotype technologies, which are powered by high-

throughput Imaging, computer vision, AI, IoT, and sensors, 

together make it the most viable and crucial for smart and 

sustainable agriculture. The amalgamation of multi-omics 

data, machine learning, and smart tools and technologies 

provides a versatile path forward by prioritising and realizing 

their full potential, farmer-based innovation, inclusive 

access, and cross-sector collaboration. 
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