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Abstract - Dynamic Time Division Duplex (D-TDD) is an important feature in 5G and future 6G networks. It allows flexible 

allocation of Uplink (UL) and Downlink (DL) slots. This helps to manage traffic demands dynamically. However, two key 

challenges exist. First, the system determines the best TDD pattern to match user traffic. Second, cross-link interference occurs 

when different cells use different TDD configurations. This interference degrades network performance. The 3GPP standard 

does not provide an optimal method for TDD configuration. It does not solve cross-link interference issues. To address these 

gaps, we proposed a Multi-Agent Deep Reinforcement Learning (MADRL) approach. This approach models the TDD problem 

as a linear programming problem.  Introduced the Multi-Agent Deep Reinforcement Learning-based 5G RAN TDD Pattern 

(MADRP) framework. This method is decentralized. Each cell has an independent agent that learns the best TDD 

configuration. The system reduces control latency and signaling overhead. The MADRP model monitors the buffer states of 

uplink and downlink data. It exchanges messages with neighboring cells to minimize cross-link interference. Each agent uses 

reinforcement learning to determine the best TDD allocation. The model adapts to traffic variations and prevents buffer 

overflows. It highlights the limitations of MADRP. Performance is degraded in high-interference environments. Future work 

will focus on implementing MADRP in real-world 5G systems. This aimed to integrate the model with OpenAirInterface (OAI) 

to demonstrate real-time adaptability. This will provide insights into practical deployment challenges. This research 

introduces a novel DRL-based TDD adaptation approach. It efficiently manages UL and DL allocation while minimizing cross-

link interference. The method enhances performance in multi-cell 5G environments. It provides a scalable and effective 

alternative to static TDD configurations. 

Keywords - Deep, Multi-agent, Multi-cell, TDD, Reinforcement, Resource allocation.

1. Introduction 
The rapid advancements in wireless communication 

have led to the emergence of 5G and future 6G networks [1]. 

These networks aim to provide Ultra-Reliable Low-Latency 

Communication (URLLC), massive Machine-Type 

Communications (mMTC) and enhanced Mobile Broadband 

(eMBB). The demand for high-speed data transfer is 

increasing [2]. Seamless connectivity is essential. Real-time 

applications like immersive holographic communication 

require Efficiency. The Internet of Skills and smart 

transportation need reliable networks [3]. These trends drive 

the need for adaptive resource allocation. One of the 

fundamental aspects of 5G New Radio (NR) is Time Division 

Duplex (TDD). It allows dynamic switching between UL and 

DL transmissions [4]. Traditional fixed TDD configurations 

are inefficient in handling dynamic and asymmetric traffic 

patterns observed in real-world networks. Video streaming 

generates more DL traffic [5]. Cloud-based Augmented 

Reality (AR) needs more UL bandwidth. Conventional TDD 

systems use static UL/DL slot allocation. This causes 

inefficient resource utilization. It leads to higher latency and 

increased packet loss [6]. Network performance becomes 

suboptimal. 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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D-TDD proposed to overcome these inefficiencies by 

dynamically adjusting the UL and DL slot allocation based 

on real-time traffic demands [7]. D-TDD allows base stations 

(gNBs) to allocate resources flexibly. It improves overall 

spectral Efficiency and Quality of Service (QoS) [8]. 

However, the implementation of D-TDD comes with 

significant challenges. One of the main issues is cross-link 

interference. It occurs when neighboring cells operate with 

different UL and DL patterns. This interference lowers signal 

quality [9]. It reduces achievable data rates. The impact is 

higher in dense urban areas. Multiple base stations coexist in 

these environments [10]. To address these challenges, a 

decentralized and intelligent approach is needed. The 

proposed MADRP framework introduces a fully distributed 

solution to optimize dynamic TDD configurations. Each gNB 

is equipped with an independent learning agent that 

continuously monitors network conditions and adjusts TDD 

slot allocation accordingly [11]. Unlike centralized 

approaches, the MADRP framework operates locally at the 

gNB level, reducing latency and computational overhead. 

 

The MADRP framework forces MADRL to enable real-

time learning and decision-making. Each agent observes UL 

and DL buffer states, traffic demands and interference levels 

from neighboring cells [12]. Each gNB exchanges 

information with neighboring agents. This helps align its 

TDD configuration with surrounding cells. It minimizes 

cross-link interference. The network adapts to changing 

traffic loads [13]. This approach optimizes resource 

allocation. Moreover, the proposed solution is scalable and 

generalizable across different network scenarios.  

 

The effectiveness of MADRP is demonstrated through 

extensive simulations [14]. It is compared against static TDD 

configurations and optimal centralized solutions. The 

decentralized learning mechanism allows gNBs to quickly 

adapt to traffic fluctuations [15]. It maintains low latency and 

high throughput even in dynamic network conditions. 

Reinforcement learning models are lightweight, which helps 

keep computational complexity manageable. This makes 

them suitable for real-time deployment [16]. Additionally, 

the use of distributed learning reduces the burden on network 

controllers, allowing for more efficient resource 

management. The major contributions of this research are: 

 

 A novel MADRL-based framework for dynamic TDD 

configuration in 5G networks. 

 A decentralized learning approach that reduces signaling 

overhead and control latency. 

 A method for real-time traffic adaptation without prior 

knowledge of traffic patterns. 

 An interference mitigation strategy that aligns TDD 

patterns among neighboring cells. 

 Extensive simulations comparing MADRP with static 

TDD configurations and optimal solutions. 

The increasing demand for high-speed and low-latency 

communication necessitates innovative approaches to 

dynamic resource allocation in 5G and beyond. Dynamic 

TDD is a promising solution. However, deployment faces 

challenges in interference management. Real-time decision-

making is difficult. The MADRP framework solves these 

issues. It uses multi-agent reinforcement learning. It 

dynamically adjusts TDD patterns in a decentralized way. 

This research lays the foundation for future advancements in 

intelligent network management. It paves the way for more 

efficient and adaptive wireless communication systems. 

 

2. Background Work 
The evolution of wireless networks has led to the 

development of 5G NR. It introduces new features to improve 

network efficiency and adaptability. One such feature is D-

TDD, which enables flexible allocation of UL and DL slots 

based on real-time traffic demands. This capability is crucial 

in modern networks, where asymmetric traffic patterns are 

common. However, the implementation of D-TDD presents 

several challenges, including interference management and 

real-time slot allocation. 5G NR supports both Frequency 

Division Duplex (FDD) and TDD operations. The 5G NR 

standard introduces multiple numerologies, each 

characterized by different subcarrier spacings and slot 

durations [17]. These variations allow for finer adaptation to 

different deployment scenarios, ranging from dense urban 

areas to large rural regions. The UL/DL slot configuration is 

typically broadcast to User Equipment (UE) via Radio 

Resource Control (RRC) messages. The frame structure 

consists of dedicated UL slots, dedicated DL slots and 

flexible slots that dynamically adjust based on network 

requirements [18]. While this approach significantly 

improves adaptability. It introduces complexity in managing 

inter-cell interference. One of the major challenges in D-TDD 

implementation is cross-link interference. It occurs when 

neighboring cells operate with different UL/DL patterns. In 

scenarios with one cell transmitting in DL and another in UL, 

severe interference degrades performance, particularly for 

edge users.  

 

Advanced receiver architectures, coordinated scheduling 

and power control strategies help reduce interference impact 

[19].  

 

Another critical issue is the optimal allocation of UL/DL 

slots in real-time. Traditional approaches rely on static 

configurations or predefined traffic models, which do not 

adapt well to dynamic traffic variations. Machine learning 

and reinforcement learning techniques have emerged as 

promising solutions for real-time slot allocation. These are 

learnt from past traffic patterns and optimize resource 

allocation accordingly. However, these approaches require 

extensive training data and computational resources, and are 

limited in practicality in real-world deployments. MADRL 

allows distributed learning agents to make independent 
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decisions while collaborating to achieve global network 

objectives. In the context of D-TDD, MADRL enables base 

stations to dynamically adjust UL/DL configurations based 

on local traffic conditions and interference levels. By 

exchanging information with neighboring agents, the system 

maintains alignment of TDD configurations. It minimizes 

cross-link interference while maximizing network 

throughput. Compared to traditional centralized optimization 

approaches, MADRL offers several advantages. It reduces 

the need for extensive signaling, enabling low-latency 

decision-making at the network edge. Additionally, the 

decentralized nature of MADRL enhances network resilience 

as decisions are made locally without relying on a central 

controller. This makes MADRL a highly scalable solution for 

dynamic TDD management in large-scale 5G networks. 

 

Another technique is power control, which adjusts 

transmission power levels to reduce interference impact 

while maintaining communication quality. Beamforming and 

massive MIMO (Multiple-Input Multiple-Output) 

technology play a crucial role in interference management. 

Furthermore, spectrum sensing and cognitive radio 

technologies allow networks to dynamically identify and 

avoid interference-prone frequency bands. The integration of 

reinforcement learning with emerging AI-driven network 

management frameworks is an area of ongoing research. 

Real-world deployment of MADRL systems requires 

efficient training mechanisms that enable fast convergence 

and adaptability to changing network conditions. 
 

3. System Model 

In this section, we describe the network model for D-

TDD in a multi-cell environment. The objective is to 

optimize the allocation of UL and DL slots while minimizing 

interference. Here, a multi-cell 5G NR network is considered 

in which gNBs operate under a dynamic TDD framework. 
 

The network consists of a set of cells, denoted as C; each 

cell c C  serves multiple UEs. Each UE generates UL and 

DL traffic, denoted as U,c  and D,c , respectively. Each cell 

has a fixed time-division duplex period   that consists of 

cT
 slots.  

 

Each slot is dynamically allocated to either UL or DL 

transmission. The objective is to optimize the allocation of 

these slots based on real-time traffic demands. Let cX  and 

cY  represent the proportion of slots assigned to UL and DL 

in cell c: 

 

c cX + Y = 1, c C                                        (1) 

The main challenge in dynamic TDD is to allocate 

UL/DL slots efficiently while minimizing cross-link 

interference. Cross-link interference occurs when 

neighboring cells operate in different UL/DL configurations. 

This is formulated as follows: 

 

  
1 2 1 2

2

c ,c c c 1 2 1 2F ×(X -X ) = 0, (c ,c ) C ,c c       (2) 

 

Here 
1 2c ,cF  is a binary variable that indicates whether 

interference exists between cells 1c  2c . Each UE maintains 

separate buffers for UL and DL data. The buffer occupancy 

for UL and DL traffic in cell c is denoted as U,c  and D,c

, respectively. The buffer state at time t evolves as follows: 

 

  
(t+1) (t)

U,c U,c U,c U,c c c= + - ×X ×T                             (3) 

 

   
(t+1) (t)

D,c D,c D,c D,c c c= + - ×Y ×T                            (4) 

 

Here, U,c  the UL and DL transmission capacity per slot 

in cell c is represented. The optimization objective is to 

prevent buffer overflow while promoting efficient utilization 

of available resources. 

  

 
max max

U,c U,c D,c D,c, , c C                       (5) 

 

The goal is to minimize the total buffer occupancy across 

all cells while maintaining fairness in slot allocation. The 

optimization problem is formulated as: 

 

 
U,c D,c

max max
c C U,c D,c

min + (1- ) 


  
 

   
                               (6) 

 

It is subjected to: 

 

1 2 1 2

c c

c c

2

c ,c c c 1 2 1 2

max max

U,c U,c D,c D,c

0 X 1, 0 Y 1, C

X + Y = 1, c C

F ×(X - X ) = 0, (c ,c ) C ,c c

, , c C

c     

 

  

       

     (7) 

 

Here  is a weighting factor that prioritizes UL or DL 

traffic based on network conditions. To solve this 

optimization problem, we use an MADRL approach. Each 

gNB acts as an independent learning agent. The agents 

observe local traffic demands and interference levels and take 

actions to adjust UL/DL slot allocation. The reinforcement 

learning framework enables intelligent decision-making. 

Each agent observes its buffer state, which includes uplink 

and downlink occupancy. It monitors interference levels from 

neighboring cells.  
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These observations help the agent understand network 

conditions in real-time. Based on observations, the agent 

selects the UL/DL slot allocation. The reward function 

promotes efficient resource management by minimizing 

buffer overflow and interference. Agents improve decisions 

by continuously interacting with the environment. Through 

training, they learn optimal policies. This iterative process 

improves network performance. It allows dynamic adaptation 

to traffic changes. The framework enables efficient and stable 

TDD slot allocation. Using deep reinforcement learning, the 

agents gradually improve decision-making strategies. 

Simulation results show that this approach significantly 

outperforms static TDD configurations by dynamically 

adapting to traffic fluctuations. This section formulated the 

problem of dynamic TDD slot allocation in a multi-cell 5G 

network. The goal is to minimize buffer overflow while 

reducing cross-link interference. We presented a 

mathematical optimization model and introduced a 

reinforcement learning-based solution. The next sections 

provide simulation results and performance evaluations. 

 

4. MADRP: Multi-Agent DRL-based 5G RAN 

TDD Pattern 
The MADRP is a decentralized framework designed to 

optimize dynamic TDD configurations in a multi-cell 

environment. This method uses reinforcement learning to 

enable intelligent slot allocation while minimizing cross-link 

interference. DRL is widely used in optimizing resource 

allocation in wireless networks. MADRL applies DRL to a 

multi-agent scenario, where several learning agents 

collaborate to achieve network-wide Efficiency.  Each gNB 

in the network functions as an independent learning agent, 

making distributed decisions on UL/DL slot allocations. 

Figure 1 represents a multi-agent DDPG-based system for 

managing TDD patterns in a wireless communication 

network. The system consists of three DDPG agents 

operating in the control plane. These agents coordinate and 

exchange information to optimize network performance. The 

user plane consists of three network cells containing base 

stations and mobile devices. Each base station manages 

uplink and downlink buffers for efficient data transmission. 

The interference region highlights overlapping coverage 

areas in which data transmissions from different cells 

interfere with each other. The figure highlights three key 

functions. First, the agents collect metrics from the base 

stations (gNBs). Second,  exchange buffer fullness ratios. 

Third, push optimized TDD patterns to the base stations. This 

system enables dynamic adaptation of TDD patterns based on 

real-time network conditions. The information flow between 

agents leads to better coordination and reduced interference. 

By adjusting buffer levels and optimizing uplink and 

downlink allocations, the network improves Efficiency and 

minimizes delays in communication. 

  

The framework is modelled as an MDP defined by the 

tuple (S, A, P, R). Here, S is the state space representing 

network conditions. A is the action space, where each agent 

selects cX  and cY  (UL and DL slot fractions) for its cell. P 

represents the state transition probabilities. R is the reward 

function based on network performance. 

 

  
Fig. 1 MADRP architecture 
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Each agent selects an action c c ca = (X ,Y )  to 

maximize its expected long-term reward: 
T

t t

c c

t=0

G = R                                                               (8) 

 

Here   is a discount factor prioritizing immediate 

rewards. The optimization objective is formulated as: 

 

  c c c c cmaxE G , X + Y =1, 0 X ,Y 1            (9) 

 

A Deep Q-Network (DQN) is employed to approximate 

the optimal policy. The Q-function Q(s,a)  represents the 

expected reward for taking action in states: 

 

 aQ(s,a) = E R+ max Q(s ,a ) | s,a 
                       (10) 

 

The DQN updates its parameters by minimizing the loss 

function: 

 
2L( ) = E (y- Q(s,a; ))                                            (11) 

 

Here, y is the target Q-value given by: 

 

ay = R+ max Q(s ,a ; ) 
                                           (12) 

The training process uses experience replay to break 

correlation in sequential data, improving stability. Another 

approach used in MADRP is the policy gradient method, 

where the policy is directly parameterized (a | s)  and 

optimized using gradient ascent: 

 

𝛻𝜃 𝐽( 𝜃) = 𝐸[𝛻𝜃 𝑙𝑜𝑔 𝜋𝜃 (𝑎 | 𝑠) 𝑄( 𝑠, 𝑎)]                      (13) 

 

The policy is updated iteratively using: 

J( )                                                     (14) 

 

Here   is the learning rate. This enables dynamic 

adaptation of the TDD configuration based on real-time 

observations. Each agent's state cS  includes local and 

neighboring network conditions: 

 

 
1 2c U,c D,c c ,c U,c D,cS = , ,F , ,                               (15) 

 

Here   D,c  are the UL and DL buffer occupancies. 

1 2c ,cF  Represents cross-link interference factors. U,c  And 

D,c  denote UL and DL traffic arrival rates. The agent selects 

an action based on the policy c(S )  , dynamically 

determining UL/DL slot allocations. The reward function is 

critical in guiding agents to optimal decisions. It balances 

multiple objectives, includes minimizing buffer overflow and 

reducing interference: 

 

c

U,c D,c

c 1 2 3 c,cmax max
c NU,c D,c

R = - w w w F 



  
     

          (16) 

 

Here 1 2 3w , w , w  are weights that prioritize different 

aspects of performance. The MADRP training process 

involves repeated agent-environment interactions. Each 

agent updates its policy using: 

 
N

t+1 t

i i i

i=1

= + log (a | s )R                            (17) 

 

Here, N is the number of agents and   is the step size. 

Convergence is achieved when: 

 

| Q(s,a) - Q(s,a ) |

Q(s,a)


 ò                                               (18) 

 

Here ò is a small threshold that maintains stability in 

learning. MADRP employs MADRL to enable distributed 

and intelligent TDD allocation in 5G networks. By 

optimizing policies through reinforcement learning, the 

system achieves efficient spectrum utilization and minimizes 

interference.  
 

5. Simulation Results 
This section evaluates the performance of the proposed 

MADRP. The evaluation considers key performance metrics: 

spectral Efficiency, buffer utilization, latency and 

interference mitigation.  
 

We compare MADRP with traditional static TDD 

configurations and an optimal traditional solution. The 

simulations are conducted in a multi-cell 5G NR environment 

with multiple gNBs. The key simulation parameters are 

presented in Table 1. 
 

The evaluation compares three different TDD 

approaches. MADRP uses multi-agent deep reinforcement 

learning. It dynamically adjusts UL/DL slots based on real-

time traffic. This method improves network efficiency and 

reduces interference.  
 

Static TDD follows a fixed UL/DL slot allocation. It 

does not adapt to changing traffic demands. This leads to 

inefficient resource use. Optimal TDD represents the best 

possible slot allocation. 
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Table 1. Simulation parameters 

Parameter Value 

Number of cells 7 

Number of UEs per cell 10 

TDD frame duration 10 ms 

Subcarrier spacing 30 kHz 

Slot duration 0.5 ms 

Transmission power 23 dBm 

Carrier frequency 3.5 GHz 

Bandwidth 100 MHz 

Path loss model 3GPP Urban Macro 

Mobility model Random Walk 

Traffic model Poisson arrival 

 

It is computed using offline optimization. However, 

prior knowledge of traffic patterns is required. MADRP 

balances adaptability and Efficiency. It performs better than 

Static TDD. It approaches the performance of Optimal TDD 

in real-time scenarios. Spectral Efficiency is a key metric that 

measures how effectively the network utilizes the available 

spectrum. It is defined as the total data rate divided by the 

bandwidth: 

c

c C

R

SE =
B




                                                          (19) 

Here cR  is the data rate achieved in cell C, and B is the 

total bandwidth. Table 2 presents the spectral efficiency 

results for different schemes. 

 
Table 2. Spectral efficiency comparison 

TDD Scheme 
Spectral Efficiency 

(bps/Hz) 

MADRP 7.2 

Static TDD 5.5 

Optimal TDD 7.8 

 

The results indicate that MADRP achieves 30.9% higher 

spectral Efficiency compared to static TDD. Although the 

optimal TDD achieves the highest Efficiency. MADRP is 

closely followed, with only a small gap. Latency is a critical 

factor in 5G networks for URLLC. The latency performance 

is evaluated using the average packet delay. It is defined as: 

 
N

rx,i tx,i

i=1

1
D = (t - t )

N
                                              (20) 

 

Here   tx,it  are the reception and transmission times of 

packet i, respectively. Results indicate that MADRP reduces 

average latency by dynamically adjusting UL/DL slots to 

match traffic demands. It prevents buffer overflow and 

queuing delays. Cross-link interference is a significant issue 

in dynamic TDD networks. The interference level is 

measured in terms of the SINR, which is given by: 

s

i

P
SINR =

P + N
                                                     (21) 

Here, sP  R is the received signal power, iP  I is the 

interference power, and N is the noise power. MADRP 

actively reduces interference by coordinating TDD slot 

allocations among neighbouring cells. Efficient buffer 

utilization prevents system congestion and reduces the 

likelihood of packet drops. The average buffer occupancy for 

UL and DL is measured as: 

 
T

(t)

U,c U,c

t=1

1
B =

T
                                                     (22) 

 
T

(t)

D,c D,c

t=1

1
B =

T
                                                     (23) 

 

Simulation results demonstrate that MADRP maintains 

lower buffer occupancy levels compared to static TDD, 

reducing the probability of packet loss. This section presents 

the performance evaluation of MADRP, comparing it against 

static and optimal TDD configurations. The results show that 

MADRP achieves significant gains in spectral Efficiency, 

latency reduction, interference mitigation and buffer 

utilization efficiency. These improvements validate the 

effectiveness of multi-agent reinforcement learning in 

dynamic TDD slot allocation for 5G networks. 

 

 
Fig. 2 Spectral efficiency versus Number of cells 

 

  Figure 2 shows the relationship between the number of 

cells and spectral efficiency in bps/Hz for three different 

TDD schemes: MADRP, Static TDD and Optimal TDD. 

Three different lines show the performance of each TDD 

scheme. As the number of cells increases, spectral Efficiency 
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improves for all schemes but at different rates. The optimal 

TDD scheme achieves the highest spectral Efficiency. It 

starts at 7.2 bps/Hz for 5 cells and reaches 8.2 bps/Hz at 30 

cells. The MADRP scheme performs slightly lower. It starts 

at 6.5 bps/Hz and reaches around 7.5 bps/Hz at 30 cells. 

However, Static TDD has the lowest performance. It begins 

at 5 bps/Hz and increases to only 5.8 bps/Hz as the number 

of cells increases. This shows that MADRP outperforms 

Static TDD by about 1.5 to 2 bps/Hz across all cell numbers. 

The gap between MADRP and Optimal TDD is small. It 

shows that MADRP closely approaches the best possible 

performance while being more practical. This comparison 

highlights the benefits of dynamic slot allocation in MADRP. 

This makes it a better alternative than Static TDD for 

improving spectral Efficiency in 5G networks. 

 

Figure 3 shows the relationship between the number of 

users per cell and the SINR in dB for three different TDD 

schemes. Three different lines represent the performance of 

each TDD scheme. As the number of users increases, SINR 

decreases for all schemes. The optimal TDD scheme achieves 

the highest SINR. It starts at 27 dB for 5 users per cell and 

decreases to 20 dB for 30 users per cell. The MADRP scheme 

performs slightly lower. It starts at 25 dB and decreases to 18 

dB. However, Static TDD has the lowest performance. It 

begins at 20 dB and reduces to 12 dB as the number of users 

increases. This shows that MADRP outperforms Static TDD 

by about 5 to 6 dB across all user numbers. The gap between 

MADRP and Optimal TDD is small. MADRP achieves near-

optimal SINR performance. It is more practical for real-world 

use. Dynamic slot allocation improves MADRP’s Efficiency. 

This makes it better than Static TDD. It helps maintain signal 

quality in high-user-density scenarios. 

 

Fig. 3 SINR versus Number of users per cell 

 

 
Fig. 4 Average latency versus Traffic load 

    

 
Fig. 5 Packet drop rate versus Buffer occupancy 

 

 Figure 4 shows the relationship between traffic load in 

Mbps and average latency in milliseconds for three different 

TDD schemes. Three different lines represent the 

performance of each TDD scheme. As the traffic load 

increases, the average latency rises for all schemes. The 

increase is more significant for Static TDD. MADRP and 

Optimal TDD maintain lower latency levels. The optimal 

TDD scheme achieves the lowest latency. It starts at 5 ms for 

10 Mbps and increases to about 30 ms for 60 Mbps. The 

MADRP scheme performs slightly worse. It starts at 5 ms and 

reaches around 35 ms at 60 Mbps. However, Static TDD has 

the highest latency. It begins at 10 ms and increases sharply 

to 50 ms as the traffic load rises. This shows that MADRP 
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outperforms Static TDD by about 10 to 15 ms across different 

traffic loads. The gap between MADRP and Optimal TDD is 

smaller. It indicates that MADRP is a practical approach for 

latency reduction. The comparison highlights the benefits of 

dynamic slot allocation in MADRP. It helps reduce queuing 

delays and improve network responsiveness under high 

traffic conditions. This improvement is important for 

applications requiring low latency, like online gaming and 

video conferencing. The MADRP shows that it handles 

higher traffic loads more efficiently than Static TDD. It 

makes it a better choice for adaptive networks. 

 

Figure 5 shows the relationship between buffer 

occupancy and packet drop rate for three different TDD 

schemes. As buffer occupancy increases, the packet drop rate 

rises for all schemes, but at different rates. The optimal TDD 

scheme has the lowest packet drop rate. It starts near zero at 

10 percent buffer occupancy. It increases to around 20 

percent at 100 percent occupancy. The MADRP scheme 

performs slightly worse. It begins near zero and reaches about 

30 percent at full buffer occupancy. Static TDD has the 

highest packet drop rate. It starts at around 2 percent. It rises 

sharply to 60 percent when the buffer is full. MADRP reduces 

packet losses better than Static TDD. This is more effective 

at high buffer occupancy levels. The gap between MADRP 

and Optimal TDD is small. MADRP minimizes packet drops 

under heavy traffic. Adaptive slot allocation in MADRP 

improves buffer management.  

 

 
Fig. 6 Throughput versus Transmission power 

 

Figure 6 shows the relationship between transmission 

power in dBm and throughput in Mbps for four different 

TDD configurations. Four different lines represent the 

performance of each configuration. As transmission power 

increases, throughput improves for all configurations. D-

TDD Config 2 achieves the highest throughput. It starts at 

around 5 Mbps for 10 dBm, reaching approximately 43 Mbps 

at 50 dBm. D-TDD Config 1 performs slightly lower. It 

reaches around 41 Mbps at 50 dBm. S-TDD Config 2 follows 

next, starting near 5 Mbps and reaching about 36 Mbps at 50 

dBm. S-TDD Config 1 has the lowest throughput. It starts at 

4 Mbps. It increases to around 34 Mbps at maximum 

transmission power. This shows that D-TDD outperforms S-

TDD across all transmission power levels. The gap between 

the two methods widens as power increases. It demonstrates 

that dynamic slot allocation in D-TDD provides better 

resource utilization and Efficiency. The comparison 

highlights that D-TDD Config 2 offers the best performance. 

It makes it more suitable for high-throughput applications 

requiring adaptive resource allocation. 

 

Figure 7 shows the relationship between time in seconds 

and buffer utilization in percentage for three different TDD 

schemes. Three different lines represent the performance of 

each TDD scheme. As time increases, buffer utilization rises 

for all schemes. The optimal TDD scheme maintains the 

lowest buffer utilization. It starts at around 8 percent at 0 

seconds and increases to about 38 percent at 100 seconds. The 

MADRP scheme performs slightly worse, starting near 10 

percent and reaching around 45 percent at 100 seconds. 

However, Static TDD has the highest buffer utilization. It 

begins at around 12 percent and increases sharply to 80 

percent by the end of the observation period. This shows that 

MADRP outperforms Static TDD by reducing buffer 

congestion time. The gap between MADRP and Optimal 

TDD is smaller. It indicates that MADRP effectively 

manages buffer space under continuous data traffic. This 

comparison highlights the advantage of dynamic slot 

allocation in MADRP. It helps in improving buffer 

management and maintaining efficient network performance 

over time. 

 

 
Fig. 7 Buffer utilization versus Time 
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Fig. 8 Cross link interference versus UL/DL slot allocation ratio 

 

 
Fig. 9 Convergence time versus Number of training iterations 

 

Figure 8 shows the relationship between the UL/DL slot 

allocation ratio and cross-link interference for three different 

TDD schemes. Three different bar groups represent the 

performance of each TDD scheme. As the percentage of UL 

slots increases, cross-link interference decreases for all 

schemes. The decline is more significant for Static TDD. 

MADRP and Optimal TDD maintain lower interference 

levels across all allocation ratios. The optimal TDD scheme 

achieves the lowest cross-link interference. It starts at around 

12 dB for 10 percent UL slots and decreases to about 2 dB at 

90 percent UL slots. The MADRP scheme performs slightly 

worse. It begins near 15 dB and reaches around 4 dB at 90 

percent UL slots. However, Static TDD has the highest 

interference. It starts at around 20 dB and decreases to around 

8 dB at the highest UL slot ratio. This shows that MADRP 

outperforms Static TDD by reducing interference when UL 

slots are high. The gap between MADRP and Optimal TDD 

is small. MADRP reduces interference effectively. It 

maintains flexible slot allocation. Adaptive scheduling in 

MADRP improves network efficiency. It helps control 

interference as UL slot allocation increases. This benefits 

networks with changing UL and DL demands. Dynamic 

adjustments reduce signal degradation. MADRP balances 

performance between static and optimal configurations. It 

improves Efficiency while remaining practical for 

deployment. 

 

Figure 9 shows the relationship between the number of 

training iterations and convergence time. Three different 

lines represent the performance of each model. As the 

number of training iterations increases, convergence time 

rises for all models. The optimal RL model has the fastest 

convergence. It starts at around 1000 steps for 1000 

iterations. It increases to about 5000 steps at 10000 iterations. 

The MADRP model performs slightly worse. It starts at 

approximately 1100 steps. It reaches around 6000 steps at the 

highest iteration count. However, Static RL has the slowest 

convergence. It begins near 1200 steps and increases sharply 

to over 7000 steps at 10000 iterations. This shows that 

MADRP outperforms Static RL by requiring fewer training 

steps to reach stability. The gap between MADRP and 

Optimal RL is smaller. It indicates that MADRP provides a 

good balance between training efficiency and performance. 

The comparison shows MADRP's advantage in 

reinforcement learning. It converges faster when needed. 

This makes MADRP a practical choice. It is suitable for real-

time applications. 

 

Figure 10 illustrates the relationship between the number 

of agents. Four different lines correspond to the performance 

of each configuration. The graph shows that as the number of 

agents increases, computational complexity rises for all 

configurations. D-TDD Config 2 has the highest 

computational complexity. It begins at around 10 

milliseconds for 5 agents and rising to approximately 190 

milliseconds at 50 agents. D-TDD Config 1 follows closely 

with processing time increasing from around 8 milliseconds 

to about 170 milliseconds. S-TDD Config 2 has a lower 

computational complexity. It starts at approximately 7 

milliseconds, reaching around 140 milliseconds at 50 agents. 

S-TDD Config 1 shows the lowest computational 

complexity. It begins at nearly 6 milliseconds and increases 

to about 130 milliseconds as the number of agents grows. 

This indicates that D-TDD require more processing time due 

to the complexity of real-time slot adjustments. In contrast, 

S-TDD has lower computational complexity but is not as 

efficient in resource allocation. The results show that D-TDD 

Config 2 performs better. However, it needs higher 
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computational effort. S-TDD Config 1 is more efficient. It is 

better for scenarios needing a lower computational cost. 

 

 
Fig. 10 Computational complexity versus Number of agents 

 

 
Fig. 11 Energy efficiency versus Number of active users 

 

  Figure 11 illustrates how energy efficiency changes with 

the number of active users for three different TDD schemes. 

This metric indicates how efficiently energy is utilized in data 

transmission. The three schemes compared are MADRP, 

Static TDD and Optimal TDD. As the number of active users 

increases, energy efficiency improves for all three schemes. 

Among the schemes, Optimal TDD performs the best. It starts 

at around 11 bits per joule for 5 users and increases to about 

50 bits per joule at 50 users. MADRP follows closely, 

beginning at 10 bits per joule and reaching 45 bits per joule 

at 50 users. Static TDD has the lowest energy efficiency. It 

starts at around 9 bits per joule. It gradually increases to 35 

bits per joule. The results indicate that MADRP outperforms 

Static TDD. It maintains performance close to Optimal TDD. 

This suggests that MADRP is an effective approach for 

enhancing energy efficiency while maintaining adaptability 

to growing network loads. The comparison highlights the 

importance of dynamic resource allocation in maintaining 

energy-efficient operations as the number of active users 

grows. 

 

Figure 12 represents the relationship between training 

episodes and average reward in a reinforcement learning 

model. The curve starts at around 50 and gradually increases, 

following an upward trend. As the number of training 

episodes increases, the average reward continues to rise but 

at a decreasing rate. The curve flattens as it approaches a 

value close to 100, showing that the model is converging to 

an optimal policy. In the early stages of training, the average 

reward increases rapidly. It suggests that the agent is learning 

effective actions quickly. Between 200 and 600 episodes, the 

rate of improvement slows. It indicates that the agent is 

adjusting its strategy. After 800 episodes, the curve becomes 

nearly flat. It suggests that additional training provides only 

marginal improvements. The results show that the 

reinforcement learning model reaches near-optimal 

performance after sufficient training. This pattern is common 

in learning-based models; early training yields significant 

improvements, followed by gradual fine-tuning. The final 

reward value close to 100 suggests that the model has 

successfully learned an optimal or near-optimal policy. 

 

 
Fig. 12 Convergence evaluation of MADRL agent during training 

mode 

 

  Figure 13 illustrates the solved conflicts ratio's 

Cumulative Distribution Function (CDF) for different TDD 

configurations. Four different curves show the performance 

of each configuration. D-TDD with probability 0.1, D-TDD 

with probability 0.5. D-TDD with probability 0.8 and S-

TDD. The curves show that higher probability values in D-
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TDD lead to better conflict resolution. As the solved conflicts 

ratio increases, the CDF increases for all configurations. 

However, the rate of growth varies depending on the method 

used. The S-TDD curve reaches a CDF of 1 at the lowest 

solved conflicts ratio. It means it resolves conflicts more 

quickly. The D-TDD with probability 0.8 follows, reaching 

higher conflict resolution than the lower probability 

configurations. The D-TDD with probability 0.5 has 

moderate performance. D-TDD with probability 0.1 shows 

the slowest growth, indicating a lower solved conflicts ratio. 

The results suggest that increasing the probability in D-TDD 

improves conflict resolution but does not reach the Efficiency 

of S-TDD. The comparison shows that higher probability 

values improve adaptive methods—this balances conflict 

resolution and network flexibility. S-TDD has the highest 

resolution rate. However, D-TDD with higher probability 

values is more scalable. It provides a dynamic solution. 

Optimizing probability values in D-TDD improves 

adaptability. It maintains conflict resolution efficiency. 

 

 
Fig. 13 Performance evaluation of MADRP during the inference mode 

 

  Figure 14 represents the CDF of the solved conflicts ratio 

for different TDD configurations. Three different curves are 

shown for comparison. D-TDD with probability 0.1, D-TDD 

with probability 0.5. The curves show that the probability 

setting in D-TDD significantly impacts conflict resolution. 

The optimal TDD configuration maintains a steady and more 

consistent resolution. The lower probability D-TDD settings 

show a slower rate of improvement. The optimal TDD 

achieves the highest solved conflicts ratio, showing a nearly 

linear increase in CDF values. The D-TDD with probability 

0.5 has a steeper curve. It indicates a more consistent 

resolution of conflicts. The D-TDD with probability 0.1 

increases CDF values slowly. It resolves conflicts at a lower 

rate. Other methods perform better in conflict resolution. The 

results indicate that higher probability settings in D-TDD 

lead to better performance, but still do not reach the level of 

optimal TDD. The comparison shows that a higher 

probability in D-TDD improves conflict resolution. It 

performs better than lower probability settings. Networks 

using D-TDD should optimize probability values. This helps 

balance conflict resolution and system adaptability. The 

findings show that optimal TDD performs best. However, 

practical applications need a trade-off: this balance 

complexity and Efficiency. 

 

 
Fig. 14 Performance evaluation of MADRP during the inference mode 

with DL dominant traffic 

 

6. Conclusion 
This paper introduced the MADRP as a decentralized 

solution for dynamic TDD allocation in 5G networks. The 

proposed model uses DRL to optimize UL and DL slot 

allocations. It confirms efficient spectrum utilization while 

mitigating cross-link interference. The decentralized nature 

of MADRP enables real-time decision-making at each base 

station. It reduces the need for centralized coordination and 

lowers communication overhead. Through mathematical 

modelling, it was demonstrated that the proposed system 

effectively adapts to varying traffic conditions. The problem 

was solved using reinforcement learning techniques. These 

include DQN and policy gradient methods. This enables 

intelligent decision-making. The system adapts to dynamic 

network environments. The system demonstrated effective 

interference mitigation by coordinating slot allocation among 

neighboring cells. MADRP's reinforcement learning 

framework adapts to real-time traffic changes. It does not 

need prior knowledge of network conditions. This makes 

MADRP highly scalable. It is suitable for large-scale 5G and 

beyond-5G networks. The distributed learning approach 

improves network resilience. It maintains stable operations 

even with fluctuating traffic. Despite its advantages, MADRP 

has certain limitations. The learning process requires 

sufficient training time to converge to an optimal policy. 

Future research should explore hybrid approaches that 

integrate centralized and decentralized learning techniques to 

enhance coordination. Investigating energy efficiency 

aspects of MADRP is optimize resource utilization in 6G 

networks. Additionally, real-world implementation and 

testing on Open Air Interface (OAI) provides practical 

insights into the deployment feasibility of the proposed 
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framework. In conclusion, MADRP presents a novel and 

effective solution for dynamic TDD management in 5G 

networks. The combination of multi-agent reinforcement 

learning with decentralized decision-making improves 

spectral Efficiency, reduces latency and mitigates 

interference. 
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