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Abstract - Vehicle Indoor location tracking is a crucial technology for various applications, including intelligent buildings, 

robotics, and the Internet of Things (IoT). This research presents a deep learning method that employs Convolutional Neural 

Networks (CNNs) for Three-Dimensional (3D) indoor positioning, using 802.11az Wi-Fi fingerprinting. The proposed technique 

utilizes Channel Impulse Response (CIR) fingerprints generated through ray-tracing methods to gather detailed features of the 

wireless channel. In our method, CIR fingerprints are collected from multiple Access Points (APs) and enhanced through 

techniques like data augmentation, outlier removal, and normalization to boost model generalization. A sophisticated CNN 

architecture is designed to extract spatial information from Wi-Fi fingerprints, establishing strong connections between the 

received signals and their 3D location coordinates. The model is trained on both synthetic and real-world datasets and evaluated 

using cross-validation techniques. Our experimental results indicate that positioning based on CNNs significantly outperforms 

traditional machine learning approaches. Specifically, increasing Wi-Fi bandwidth (from CBW20 MHz to CBW180 MHz) and 

implementing MIMO configurations reduce positioning errors from 2.5 meters to 0.6 meters, achieving sub-meter localization 

accuracy in over 90% of cases. The analysis of the Cumulative Distribution Function (CDF) further corroborates that enhanced 

bandwidth and multiple antennas improve localization accuracy. Additionally, a comparative evaluation of 1×1 and 4×4 MIMO 

configurations highlights the performance gains achieved through spatial diversity. In conclusion, the proposed CNN-based 

system demonstrates that deep learning can significantly enhance Wi-Fi fingerprinting for indoor positioning, making it a viable 

solution for accurate localization in complex indoor environments. Future research may focus on optimizing neural 

architectures, facilitating real-time adjustments, and integrating beam-forming techniques to further elevate positioning efficacy. 

 

Keywords - Indoor Positioning, Wi-Fi Fingerprinting, 802.11az, (CNN), Channel Impulse Response (CIR), Ray-Tracing, 

Localization Accuracy, MIMO, Bandwidth Expansion. 

1. Introduction 
Indoor positioning has grown into a significant attraction 

due to its applications in navigation, asset tracking, and 

emergency response. Traditional GPS systems struggle in 

indoor environments, leading to the development of 

alternative techniques such as Wi-Fi fingerprinting, RSSI 

methods, and deep learning approaches. Recent 

advancements in IEEE standards have improved Wi-Fi-based 

indoor localization techniques, enhancing accuracy in various 

environments. The most useful technology for identifying the 

device location is Wi-Fi fingerprinting. It basically detects the 

location of any device using special characteristics of the Wi-

Fi signal or fingerprints, which are determined in the training 

phase. This technology is used for positioning indoors. With 

the help of deep learning models like hybrid clustering, 

sequential learning and LSTM, the positioning accuracy may 

be improved. Many hybrid approaches are used to further 

enhance the accuracy. The hybrid approaches consist of 

incorporating fuzzy clustering, using the advanced models of 

machine learning like Weighted KNN, few-shot regression, 

and geometric deep learning. For dependable localization, 

graph-dependent learning is used to tackle multiple data 

sources. The graph-dependent is categorized into multi-modal 

strategies. Precision and adaptability are increased with a 

great instinct by incorporating all these AI-driven solutions 

for indoor positioning systems in the live applications of the 

real world. For the generation of a dataset of CIR fingerprints, 

each fingertip is assigned a special feature, such as location 

information. The location information of each fingerprint is 

processed with a channel bandwidth of 40 MHz with the help 

of 802.11az signalling for the indoor environment. A 

Convolutional Neural Network (CNN) is made by means of a 
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subset of these fingerprints and then assessed on the left-over 

dataset to forecast locations centred on CIR fingerprints. To 

curtail simulation time, a smaller dataset is usually used for 

ease. Bigger datasets are suggested to improve accuracy if 

pretrained models are used while testing, and higher 

performance levels can be achieved compared to the general 

training datasets.  

 

2. Related Study 
With the help of IEEE P802.11az/D2.6 (2025), 

substantial improvements in positioning in local and 

metropolitan area networks are made in the Wi-Fi-based 

methods for indoor localization. With the help of this 

advanced method, accuracy is boosted in real-time location 

tracking. The incorporation of these developments aims to 

create an additional robust and flexible framework for 

employing IPS across extensive environments [1].  

 

RSSI-Driven Indoor Positioning Kokkinis et al. (2019) 

established an indoor localization system that depends on 

RSSI, consuming a solitary access point to establish location. 

Their method engages RSS measurements together with a 

probabilistic strategy to expand localization accuracy. The 

proposed model diminishes the reliance on widespread 

infrastructure, signifying a lucrative elucidation for indoor 

tracking applications. By commissioning an advanced signal-

strength mapping technique, this method raises adaptability in 

dynamic indoor environments, making it suitable for practical 

deployment [2, 23].  

 

CSI-Driven and Wi-Fi Fingerprint Techniques Wang et 

al. (2016) generated a fingerprinting framework centred on 

CSI that influences deep learning for localization. With the 

help of the CSI amplitude and phase information, a distinctive 

signal signature for each location is harvested. By exploiting 

Convolutional Neural Networks (CNNs), they expressively 

mend positioning accuracy matched to outmoded RSSI 

methods. The system reveals flexibility to vicissitudes in the 

environment, showing improved performance even in chaotic 

indoor sceneries [3, 24]. 

 

Zhang et al. (2024), in this research article, with the help 

of a three-dimensional indoor localization framework, 

increased the positioning accuracy to a greater extent. Their 

method employs a universal signal fingerprinting technique, 

capitalising on the benefit of LSTM's capacity to observe the 

drifts in the sequential data. This technique permits precise 

real-time intensive care in multi-floor indoor environments, 

focusing on encounters linked with signal variations [4, 14]. 

 

Mao et al. (2025) developed an ingenious and better 

sequential deep learning model for positioning that depends 

on fingerprinting. Their system encourages feature extraction 

by synthesizing temporal dependencies, resulting in a 

noteworthy improvement in localization accuracy. 

Computational time can be reduced with the help of the 

proposed system without impacting the accuracy. The model's 

flexibility to fluctuating network conditions makes it a 

practicable option for real-world applications in smart 

buildings and industrial environments [5, 15]. 

 

Mahali et al. (2024) offered DeepFuzzLoc, a hybrid 

method that combines fuzzy clustering with deep learning for 

climbable indoor positioning using Wi-Fi RSSI data. These 

techniques further the benefits of fuzzy logic with the 

flexibility of deep learning to enhance signal processing and 

positioning accuracy. The system progresses localization in 

dynamic environments by curtailing signal intrusion and 

modifications [6].  

 

Yu (2024) established a Wi-Fi indoor positioning system 

that assimilates robot data collection with deep learning 

algorithms. The above solution practices mobile robots armed 

with sensors to achieve real-time signal data, which is then 

inspected by a deep neural network [7].  

 

Neyaz et al. (2024), in this article, used supervised 

learning models to tackle the problem statement. The 

supervised learning model uses deviations in the signal 

strength at precise indoor locations.  Improving the training 

method with the help of feature selection techniques can 

increase accuracy [8]. 

 

Park et al. (2024) proposed a policy leveraging Weighted 

KNN (WKNN) with a deep distance metric learning model to 

improve positioning accuracy. The model is based on the 

distance-sensitive feature embeddings. The combination of 

WKNN and deep learning expressively lifts indoor 

localization accuracy, particularly in complex environments 

where signal interference happens [9, 11].  

 

Pei et al. (2023) operated multi-tier feature extraction 

with autoregressive forecasting techniques for Wi-Fi 

fingerprint localization. Their method ordered signal 

properties to efficiently signify spatial changes. The 

autoregressive model eases predictive modifications, thereby 

increasing the overall localization stability [13, 17].  

 

Rana et al. (2023) jointly used Deep Neural Networks 

(DNN) with Radio Frequency (RF) fingerprinting to increase 

Wi-Fi RTT-based localization. Their model mixes RF signal 

features with deep learning techniques to increase localization 

accuracy [12, 18].  

 

Park et al. (2023) discovered that machine learning 

techniques for forecasting indoor positioning depend on Wi-

Fi signals. Their study measures a collection of learning 

models, comprising Support Vector Machines (SVM) and 

deep learning architectures, to conclude the most effective 

method. The results focus on the paybacks of ensemble 

learning policies in refining positioning accuracy [16, 19]. 
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Ren et al. (2023) offered FSTNet, a model that 

incorporates spatial and temporal correlations for positioning 

by means of fingerprints. Their deep learning architecture 

integrates both spatial dynamics and temporal variations in 

Wi-Fi signal strength. By engaging Recurrent Neural 

Networks (RNNs), their system familiarises in real-time to 

environmental changes [15, 20].  

 

Dong et al. (2023) established a multimodal graph 

fingerprinting method to improve localization efficiency. 

Their approach signifies Wi-Fi signal circulations as graph 

structures, allowing an additional methodical examination of 

signal differences [21, 22].  

Cappelli et al. (2023), with the help of visible light, 

improved the accuracy. For achieving this, an integrated 

machine learning approach for a 3D indoor positioning 

system is used. The study uses Visible Light Communication 

(VLC) in Indoor Positioning Systems (IPS) for analyzing the 

changes in the visible light intensity.  

 

This technique benefits more than the other models 

because it bypasses the use of Wi-Fi-based methods. This 

approach is applicable to the signal-dependent application. 

How the accuracy is improved with the help of the proposed 

method is mentioned in this research study [22, 25].

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Block diagram for 3D indoor localization utilizing 802.11az Fingerprinting and CNN process 
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Figure 1 describes the block diagram for the proposed 

system. It starts with indoor environment settings and ends 

with the optimal model for getting the desired accuracy. The 

proposed method uses 802.11az Wi-Fi fingerprinting and 

deep learning methods, such as CNN, in the indoor 

positioning system. The system achieved the highest accuracy 

compared to the other models. All the stages of the proposed 

system are described as follows. 

 

2.1. 3D Office Model Development 

In the first stage of designing the office model, it has to 

be imported. For importing the office model into MATLAB, 

use a (office.stl), which consists of all types of physical 

obstructions, including walls and furniture. With the help of 

SiteViewer, the interior layout can be visualized.  

 

2.2. Choosing a Propagation Model  

For precise CIR modelling, consider all the phenomena 

related to the signal, like reflection, diffraction, and multipath 

effects. The ray-tracing is used for the simulation and 

circulation of Wi-Fi signals. Extract all the characteristics of 

the signal, like amplitude, phase shift, and delay spread.  

 

2.3. Calculate CIR Attributes 

The output CIR data needs to be converted into numerical 

features. The deep learning model is going to process the 

converted CIR data, which is in numerical form.  Calculate 

the parameters like Power Delay Profile (PDP), AoA, RSS, 

and ToF.  

 

2.4. Dataset Development 

The data extracted from the AP-STA pair is stored in the 

wifi_fingerprint.csv. It will work as a fingerprint database. 

 

Label the data with the corresponding (X, Y, Z) 

coordinates for positioning.   

 

Data Sanitization: Remove NaN, Inf, and outlier values 

from the dataset. Normalize the dataset using Z-score 

normalization. 

 

2.5. Feature Engineering 

Extract relevant CIR attributes from raw data. Perform 

Principal Component Analysis (PCA) if required to reduce 

dimensionality. Partitioning the Dataset: Split the dataset into 

training (80%) and validation (20%) sets to prevent 

overfitting. 

 

2.6. Design and Training of CNN Models 

Create a Convolutional Neural Network (CNN): 

Convolutional Layers: Extract spatial patterns from CIR 

fingerprints. Pooling Layers: Reduce feature dimensions 

while maintaining key characteristics. Dropout Layers: 

Mitigate overfitting by randomly deactivating neurons. 

Methodology for 3D Indoor Positioning Using 802.11az 

Fingerprinting and DL this methodology outlines the 

organized approach used to establish an indoor navigation 

system that leverages 802.11az Wi-Fi fingerprinting and deep 

learning (CNN). Indoor Environment Setup 3D Office Model 

Creation: Import an indoor office model (office.stl) that 

illustrates walls, furniture, and various physical obstructions. 

Identify Access Points (APs) and Stations (STAs) within the 

environment. Employ MATLAB’s site viewer to visualize the 

interior space. Selecting a Propagation Model: Use ray-

tracing to simulate Wi-Fi signal dispersal. Consider 

reflection, diffraction, and multipath effects for accurate CIR 

modelling. Ray-Tracing for Generating Channel Impulse 

Response (CIR) Model: The transmission of Wi-Fi signals 

from APs to STAs. Generate Channel Impulse Responses 

(CIRs) for each AP-STA pair. Capture signal characteristics 

such as amplitude, phase shift, delay spread, and so forth. CIR  

 

Fingerprint Development Compute CIR Features: 

Convert CIR data into numerical features suitable for deep 

learning. Extract metrics such as Power Delay Profile (PDP), 

AoA, RSS, and ToF. Dataset Creation: Record the CIR for 

each AP-STA combination as a fingerprint within a structured 

dataset (wifi_fingerprint.csv). Label data with the 

corresponding (X, Y, Z) coordinates for localization. 

 

3. Flow Chart 
The above flow chart depicts the process of Three-

Dimensional Indoor Positioning through the use of Ray-

Tracing, Channel Impulse Response (CIR) Fingerprinting, 

and a Deep Learning model based on CNN. Below is a 

comprehensive, step-by-step explanation: 

 

Step  1: The procedure begins by outlining the workflow. 

Develop Indoor Environment (office.stl). 

Step  2: A three-dimensional model of the indoor area (for 

instance, an office) is created, typically in STL 

(stereolithography) format. 

Step  3: Position Access Points (APs) and Stations (STAs) 

within the Space. Access Points (APs) and Stations 

(User Devices) are situated in the area to facilitate 

signal sending and receiving. Ray-Tracing for 

Generating CIR Ray-tracing techniques simulate the 

wireless signal transmission to create the Channel 

Impulse Response (CIR). 

Step  4: Generate CIR Fingerprints (using SNR variations). 

CIR fingerprints are derived by analyzing the 

variations in the Signal-to-Noise Ratio (SNR) across 

different locations. Data Preparation: Split into 

Training and Validation Sets. 

Step  5: The collected CIR data is processed and divided into 

training and validation sets for the deep learning 

model. Define CNN Architecture (Convolutional, 

Pooling, Dropout, etc.) A Convolutional Neural 

Network (CNN) structure is designed, incorporating 

layers like convolution, pooling, and dropout for 

effective feature extraction. 

Step  6: Train the CNN on the training dataset. The processed 
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CIR fingerprints serve to train the CNN model. 

Evaluate CNN on Validation Set 

(Localization/Positioning). 

Step  7: The validated model is tested using validation data 

to determine the user's location. Evaluate Model 

Performance (Graph Accuracy/Error)  

Step  8: The assessment of the model's performance includes 

plotting accuracy and error metrics. (Optional) 

Import Pretrained CNN Model for Evaluation. A 

pre-existing trained CNN model can be loaded for 

performance evaluation. Conclude the process wraps 

up, resulting in an improved 3D indoor positioning 

system.

 

 

 

 

 

 

 

                      

 

 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Flow chart 
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3.1. Generalized 3D Indoor Localization Using 802.11az Fingerprinting and Deep Learning Techniques 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Overall process of 3D Indoor localization using 802.11az fingerprinting and deep learning technique 

 

Figure 3 illustrates the 3D Indoor Positioning System 

utilizes 802.11az fingerprinting combined with dl to 

accurately determine the user's location. It begins with the 

User Device emitting an 802.11az signal detected by Access 

Points (APs). The APs then gather relevant fingerprinting data 

from the Fingerprinting Database and transmit the collected 

signal information to the Deep Learning Model. By analyzing 

past fingerprint data along with the newly acquired signal, the 

model predicts the user's position in 3D space. Finally, the 

Positioning System evaluates the prediction and relays the 

estimated location back to the User Device, ensuring precise 

and reliable indoor positioning. 
 

3.2. Channel Features through the Ray-Tracing Method 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Channel features through Ray-Tracing methods 

User Device 
Access Points 

(Aps) 

 
User Device 

 

Access Points (Aps) 

 

Fingerprinting 
Database 

 

DL Model Positioning System 

Fingerprint  

Database 
DL Model Positioning System 

Send 802.11 az signal     Provide Historical fingerprint data  

Retrieve Fingerprinting data 

 
Send Received signal data 

Predict 3D location 

Return Estimated Position 

Transmitter & 

Receiver 
Environment 

Setup 

Ray Propagation 

Simulation 

Channel Characteristics 

Computation 

Validation and 

Optimization 

Transmitter & 

Receiver 

Ray Propagation 

Simulation 

Channel Characteristics 

Computation 

Validation and 

Optimization 

Environment 

Setup 

Place Tx and Rx, set Antenna properties 

    Define 3D Model   

 

Simulate ray paths (LOS, NLOS, reflections and diffraction) 

Compute path loss, Delay Speed, AoA /  AoD, Doppler shift) 

 

Compare with real world Measurements, Optimize Model 

Provide refined Channel Characteristics   



Minal Patil et al. / IJECE, 12(9), 84-97, 2025 

 

90 

3.3. Mathematical Methods 

Step 1: Problem Definition A set of Wi-Fi Fine Time 

Measurement (FTM) fingerprint data from multiple Access 

Points (APs) represents the 3D position p =(x,y,z)  of a target 

device. 

 

Input Features 

 

RSSI  Values:  

𝑟 ∈ 𝑅𝑀   𝑤ℎ𝑒𝑟𝑒 𝑀 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑃𝑠. 
 

FTM  values: 

:  𝑑 ∈ 𝑅𝑀  d  is the Estimated Distance  
 

Channel State Information features:  𝐶 ∈ 𝑅𝑀×𝑁    
Where N represents subcarriers. 

 

Thus, the input feature set is: 

𝑋 = {𝑟, 𝑑, 𝐶, 𝑡}  
 

Output for  3D location estimate: 

𝑝̂ = 𝑥̂ + 𝑦̂ + 𝑧 ̂ 
 

Step 2: CNN-Based Feature Representation and its Learning 

Model 

 

The CNN model learns a mapping function: 

𝑓
𝜃 

: 𝑋 → 𝑝  

 

Where θ represents the trainable parameters of the 

network. 

 

The input X is represented as a multi-channel image-like 

representation: 

𝑋𝐶𝑁𝑁 ∈ 𝑅ℎ×𝑤×𝑐  
 

Where: h and w are the spatial dimensions in the 

fingerprint map, C represents  feature channels  

 

Step 3: Loss Function 

 

The CNN is trained using a Mean Squared Error loss 

function to minimize the error : 

𝐿 =
1

𝑁
∑ ∥ 𝑝𝑖 − 𝑝^𝑖 ∥2 

𝑖

𝑁=1

 

Where N is the number of trained samples. 

 

Additionally: 

𝐿 =
1

𝑁
∑[[𝛼((𝑥𝑖 − 𝑥^𝑖)2 + (𝑦𝑖 − 𝑦^𝑖))2

𝑖

𝑁=1

+ 𝛽(𝑧𝑖 − 𝑧^𝑖)]2]2 
 

Where α & β are weighting factors, β>α since height 

estimation is noisy. 

Step 4: Fingerprint with Cosine Distance 

To enhance localization accuracy, a cosine similarity 

loss can be added: 

𝐿𝑐𝑜𝑠 = 1 −
𝑋𝑖 ⋅ 𝑋𝑗

∥ 𝑋𝑖 ∥∥ 𝑋𝑗 ∥ 
 

 

𝑋𝑖 & 𝑋𝑗 fingerprint database neighbour location. 

 

The total loss function becomes: 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿 + 𝜆𝐿𝑐𝑜𝑠 

 

Where λ  is a tuning parameter. 

 

4. Result 
4.1. Indoor Propagation Setting 

 
Fig. 5 Indoor propagation setting 

In the indoor propagation settings, there are four Access 

Points (APs) and a quantified number of STAs. The 

propagation channel is subject to the environment that 

generates the fingerprints. After that, it generates the CIR, i.e. 

Channel impulse response, with the help of the ray-tracing 

method.  

 

4.2. AP and STA Configurations and Localizations with 

Position  

The dataset totally depends upon the sizes of the antenna 

arrays and channel bandwidth. This data is linked with the 

fingerprint. The bigger the antenna data, the more the CIR for 

fingerprints. A wider bandwidth increases the sample rate of 

the CIR, resulting in a more precise capture.  

 

Modifying these parameters renders the dataset 

dissimilar to the pretrained models, as the sizes of every 

fingerprint necessity cup tie the model's input layer profile. 



Minal Patil et al. / IJECE, 12(9), 84-97, 2025 

 

91 

 
Fig. 6 Office environment 

A localization task identifies the common area of a STA 

instead of pinpointing its exact position. The figure illustrates 

the configuration of a compact office with designated sections 

used as categories for localization. The location of Aps is 

shown by red markers. The allocation of STAs during the 

training is shown in the blue boxes. The height of the STAs 

ranges between 0.8 and 1.8 meters. The mentioned range is 

ideal for measurements for portable consumer devices and 

helps reduce the likelihood of STAs being situated in 

inaccessible positions. Create the AP and STA entities and 

display them in the indoor setting. If any changes are made in 

the dataset, then the function dlPositioning Create 

Environment needs to be altered. 

 

 
Fig. 7 AP and STA entities 
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Create Channel Features Utilizing Ray-Tracing Methods. 

Define the parameters for the ray propagation model. This 

case examines solely the LOS and first-order reflections by 

configuring the MaxNumReflections parameter to one. 

Raising the extreme reflection count will extend the duration 

of the simulation. To focus exclusively on LOS propagation, 

adjust the MaxNumReflections property to 0. 

 
Fig. 8 Path loss site viewer 

4.3. Simulation Parameters 
Table 1. Parameters based on training on a Single CPU 

No. of 

Epoch 

No. of 

Iteration 

Elapsed 

Time 

(hr:min:sec) 

Accuracy 

of Mini-

batch  

Validate 

Accuracy 

Loss using 

Mini-batch  

Validate 

Loss 

Learning 

Rate 

1 1 00:00:02 9.38% 31.94% 2.1568 1.8079 1.0999e-04 

2 36 00:00:18 53.12% 55.56% 1.2538 1.1120 1.0999e-04 

3 50 00:00:23 59.38% — 1.0454 — 1.0999e-04 

4 72 00:00:33 59.38% 62.50% 0.9193 1.0231 1.0999e-04 

5 100 00:00:44 56.25% — 1.0008 — 1.0999e-04 

 

The table displays the progress of training a deep learning 

model over various epochs. Below is a description of each 

column: Epoch, the count of the current epoch; Iteration, the 

number of mini-batch iterations (indicating how often the 

model receives updates). Time Elapsed (hh:mm:ss): the total 

time that has elapsed since the training started. Mini-batch 

Accuracy: the percentage of correct predictions made on the 

current mini-batch of training data. Validation Accuracy: the 

degree of accuracy achieved on the validation dataset 

(evaluated periodically, and may not appear in every 

iteration). Mini-batch Loss: the loss value related to the 

current mini-batch (lower values are better). Validation Loss: 

The loss calculated on the validation set (assessed at intervals; 

missing values signify that no validation was performed at 

that step). Learning Rate: the current learning rate used during 

training (this affects how much the model is adjusted at each 

update). Examining the Table Epoch 1, Iteration 1: Training 

begins with a low accuracy (Mini-batch: 9.38%, Validation: 

31.94%). The loss is high (2.1568 for training, 1.8079 for 

validation), which is expected at the initial stage. Epoch 1, 

Iteration 36: Accuracy significantly improves (Mini-batch: 

53.12%, Validation: 55.56%). The loss reduction indicates 

progress in the learning process. Epoch 2, Iteration 50: Mini-

batch accuracy rises to 59.38%, but no validation accuracy is 

recorded at this point. Epoch 2, Iteration 72: Validation 

accuracy is noted again (62.50%), suggesting improved 

generalization. The mini-batch loss continues to drop 

(0.9193). Epoch 3, Iteration 100: Mini-batch accuracy slightly 



Minal Patil et al. / IJECE, 12(9), 84-97, 2025 

 

93 

decreases to 56.25%, yet validation accuracy is not recorded. 

The loss remains steady at around (1.0008). Epoch 3, Iteration 

108: Mini-batch accuracy climbs to 84.38%, as validation 

accuracy reaches 66.67%. The mini-batch loss decreases to 

0.5415, indicating significant advancement. 

 
Fig. 9 Accuracy and loss with minibatch and validation results 

 

 
Fig. 10 Accuracy and loss, and learning rate graph with minibatch and validation using CNN  
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Fig. 11 Effect on bandwidth on positional accuracy (CDF) with CBW180, CBW160, CBW80, CBW40, CBW20 

4.4. Localization Accuracy 

 
Fig. 12  Localization accuracy with bandwidth in MHz for CBW180, CBW160, CBW80, CBW40, CBW20 
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Fig. 13 Localization accuracy with bandwidth in MHz with positioning error 

5. Conclusion 
This Research explored the application of deep learning 

(CNN) for three-dimensional indoor location tracking using 

802.11az Wi-Fi fingerprinting. The results show that 

localization based on CNN significantly improves positioning 

accuracy compared to traditional fingerprinting methods. Our 

investigation reveals that higher bandwidth (MHz) and larger 

MIMO configurations are crucial for enhancing localization 

performance. Specifically, we found that increasing 

bandwidth from CBW20 MHz to CBW180 MHz raised 

localization accuracy from 65% to 95%, reducing the average 

positioning error from 2.5 meters to just 0.6 meters.  

 

The use of deep learning enabled efficient feature 

extraction from the Wi-Fi fingerprinting dataset, leading to 

more reliable and precise positioning, even in complex indoor 

environments. Our results confirm that CNN models 

outperform traditional machine learning approaches, which 

often face greater inaccuracies in Non-Line-Of-Sight (NLOS) 

conditions. The Cumulative Distribution Function (CDF) 

analysis also indicates that CNN-based localization achieves 

sub-meter accuracy in over 90% of test cases when utilizing 

CBW160 MHz or greater. We also investigated the impact of 

MIMO antenna configurations, starting with a 1×1 MIMO 

setup. While this arrangement provided significant accuracy 

improvements, future research could examine higher-order 

MIMO (such as 4×4 MIMO) and beam-forming strategies to 

further enhance performance. The results suggest that 

combining deep learning with wide-bandwidth Wi-Fi signals 

presents a promising approach for precise indoor positioning. 

In conclusion, this research demonstrates that deep learning 

and CNN-based fingerprinting could transform Wi-Fi-based 

indoor localization by achieving high accuracy and 

positioning errors below one meter. Future work may focus 

on refining neural network architectures, implementing real-

time adaptive learning, and employing larger MIMO 

configurations to enhance Wi-Fi-based positioning 

technology for smart buildings, robotics, and IoT 

applications.
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