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Abstract - High-resolution aerial images captured by UAVs are critical in various real-world applications. However, effective 

classification of these images is challenging due to scale variation, occlusions, and complex scene structures. Existing deep 

learning models often face a trade-off between computational efficiency and classification accuracy. To address this issue, a 

novel Path Aggregation Network-based Wider Attention EfficientNet (PANet-WATT-EffNet) is proposed. PANet-WATT-EffNet 

employs EfficientNet as a lightweight backbone, combined with wider attention layers to capture salient regions. PANet is 

used for multi-scale feature fusion. PANet-WATT-EffNet’s design improves the extraction of fine-grained and global features, 

enabling accurate recognition of small and complex objects in aerial imagery. Experimental evaluation on UAV benchmark 

datasets shows that the model achieves 97.71% accuracy. A significant gain is observed in F-measure, MCC, and reduced 

RMSE values of PANet-WATT-EffNet, while also lowering computational time compared to existing methods. The results 

confirm the robustness of the approach in handling diverse aerial imagery. The lightweight architecture further supports 

deployment on resource-constrained edge devices, making it suitable for applications in precision agriculture, urban 

infrastructure monitoring, disaster management, and defence surveillance. 

Keywords - Remote sensing, Path aggregation network, EfficientNet, Multi-scale feature fusion, Remote sensing, Lightweight 

deep learning. 

1. Introduction 
Remote sensing has become an important method in 

agriculture, range management, and environmental 

monitoring. It supports applications such as precision 

farming, biodiversity detection, and vegetation change 

tracking [1]. Remote sensing helps in better and timely 

decision-making for crop management, land use planning, 

ecological conservation, etc. Historically, satellites and 

manned aircraft collected most remote sensing imagery. 

However, Unmanned Aerial Vehicles (UAVs) have emerged 

as an effective alternative for capturing aerial data at higher 

spatial resolutions. UAVs are more cost-effective than hiring 

manned aircraft. They also offer greater schedule flexibility. 

They can capture centimetre-level resolution imagery, which 

is essential for detecting small-scale changes in landscapes. 

UAVs have been increasingly adopted for agricultural 

monitoring. They are used for assessing crop health, 

detecting plant stress, estimating yield, etc [2]. UAV imagery 

has also been integrated with satellite platforms to upscale 

local measurements for regional-scale analysis [3]. UAV-

mounted LiDAR and multispectral sensors enable accurate 

vegetation structure and species composition mapping. 

Studies have shown their effectiveness in monitoring savanna 

vegetation, crop phenology, plant canopy structures, etc [4]. 

This multi-scale integration is important for long-term 

environmental monitoring and resource management. 

In precision agriculture, UAV-based imaging supports 

targeted resource allocation, irrigation planning, early 

detection of pests and diseases, etc [5]. In urban planning, 

UAV imagery assists in infrastructure inspection, traffic 

monitoring, land use classification, etc. In environmental 

surveillance, UAVs help track deforestation, monitor wetland 

changes, and assess coastal erosion [6]. These applications 

require high classification accuracy to ensure reliability in 

operational decision-making. 

Despite advances in UAV sensing technologies, 

processing high-resolution aerial imagery remains 

challenging. Large image sizes demand high computational 

resources. Conventional neural networks often struggle to 

balance computational efficiency with classification 

accuracy [7]. Few models fail to capture complex spatial 

relationships, while deeper models can become 

computationally expensive. This problem becomes more 
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severe in time-sensitive applications, such as disaster 

response, security monitoring, etc, where faster classification 

is necessary [6]. 

Recent research has explored various deep learning 

architectures for UAV image classification. UAV images 

contain objects of varying sizes and shapes. Multi-scale 

feature fusion is an essential factor in such datasets. 

EfficientNet has gained attention due to its scalable 

architecture and balanced depth, width, and resolution 

parameters [8]. However, EfficientNet alone may not fully 

exploit fine-grained spatial features in the UAV imagery. 

Attention mechanisms have been introduced to focus on 

important image regions. However, integrating them with 

scalable architectures for aerial image classification requires 

careful design.  

This research proposes Path Aggregation Network-based 

WATT-EffNet (PANet-WATT-EffNet), a novel architecture 

for UAV imagery classification. PANet-WATT-EffNet 

combines EfficientNet’s scalability and efficiency with 

attention mechanisms and path aggregation [9, 10]. Wider 

Attention (WATT) modules capture fine-grained spatial 

features [9]. WATT-EffNet acts as a backbone, integrating a 

lightweight and fast architecture with an attention 

mechanism. The idea is to capture fine-grained global 

information from aerial imagery. PAN enables multi-scale 

feature fusion [10]. The design of PANet-WATT-EffNet is 

targeted to achieve high accuracy in complex aerial imagery 

classification.  

Motivation for this research comes from the growing 

need for accurate and efficient UAV image classification. 

The proposed PANet-WATT-EffNet uses advanced attention 

modules and hierarchical feature aggregation. This improves 

feature extraction and classification accuracy while keeping 

computational cost low. The approach aims to enable reliable 

performance in operational applications. 

2. Literature Survey 
This survey explores various innovative methods for 

unmanned aerial image classification. UAV is designed to 

autonomously identify and accept two distinct loads of 

varying weights in the cargo reception area, utilizing image 

processing approaches. Moreover, based on their weight, 

UAV uses a weight sensor to transport loads to a designated 

drop location at a predefined GPS position. Trial outcomes 

indicate that the UAV successfully identified the loads, lifted 

them off the ground, and transported them to the designated 

load-shedding region. In terms of load recognition and 

classification, the prototype achieved an average success rate 

of 90% and 82.5%, respectively. 

Two fully convolutional network frameworks are 

investigated [11]. One framework employed a dilated 

convolution layer without down-sampling. The other utilized 

a learned up-sampling convolution layer combined with 

down-sampling. Three basic classes were identified: 

structures, a mixed class comprising barren land and low 

vegetation, and a higher vegetation class. 

A neural network was designed with higher-resolution 

KOMPSAT-3 satellite images to classify land cover with 

greater accuracy [12]. Training data was generated after 

obtaining satellite imagery of the coastal areas near Gyeongju 

City. Land cover was categorized into three classes: flora, 

land, and water, using neural network algorithms. The 

accuracy of classification results using deep learner models 

was 92.0%. 

To improve the model’s diagnosis and classification 

capabilities, as well as its generalization potential, a UAV 

dataset was created based on various UAV structural forms 

[13]. Subsequently, six classic deep convolutional neural 

network detection models are empirically evaluated using the 

transfer learning technique. The collected UAV test dataset is 

then subjected to experimental analysis. Compared to 

traditional recognition models, the transfer learning-based 

image classification method utilized in this study 

demonstrated significantly improved accuracy, recall, and 

precision. 

Several image-based machine learning processes are 

investigated for UAV image diagnosis and classification 

[14]. The topic has garnered significant interest recently due 

to the exponential growth in the availability of UAVs, which 

are used for applications ranging from entertainment to 

defense missions, alongside the associated risks. Presently, 

the most commonly used technologies for UAV diagnosis 

and classification include acoustic, optical, radar, and radio 

frequency sensing systems. The study’s findings highlight the 

efficiency of machine learning-based UAV classifications 

and the important separate contributions in this field.  

A UAV is prototyped for autonomous load 

transportation [15]. It is a low-cost, high-mobility, 

autonomously flying rotary-wing UAV. An image processing 

module has been onboarded on the prototype. This UAV 

prototype achieved a success rate of 90% in load recognition 

and 82.5% in classification and transport tasks. 

A parallel neural network model was designed for UAV 

Hyperspectral Image (HIS) classification [16]. An ICA-2D-

CNN branch with a 3D-CNN branch was combined. ICA-2D-

CNN branch extracts spatial features. 3D-CNN branch 

processes both spectral and spatial features simultaneously. 

Using UAV HSI data with a spatial resolution of 5 cm as an 

instance, the model achieved a total accuracy of 71.87%, an 

average accuracy of 72.9%, and a Kappa coefficient of 0.639. 

Performance of 1D-CNN, 2D-CNN, and 3D-CNN improved 

by 3.6%, 9.3%, and 6.5%, respectively. 
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An efficient approach was introduced to assess the 

readiness of rose crops for cultivation [17]. A deep learning 

model analyzed UAV footage to automatically distinguish 

between open and closed rosebuds across large cultivation 

areas. This technique integrated various algorithms to 

enhance detection and counting precision. This approach 

improved tracking stability and reduced duplicate counts. 

This model achieved a mAP of 94.1%, which highlights its 

robustness and practical efficiency. This method significantly 

decreases the time and effort required for rose crop 

monitoring, yield estimation, and cultivation management.  

Despite these advancements, several research challenges 

remain in unmanned aerial image classification. Current deep 

learning models often face real-time processing and 

scalability limitations, especially when applied to large and 

high-resolution UAV datasets. In addition, many algorithms 

show poor adaptability to environmental variability, such as 

fluctuations in lighting, weather conditions, or object 

occlusions. Another important gap is the limited exploration 

of multimodal integration, where visual imagery could be 

combined with thermal, multispectral, or hyperspectral data 

for enhanced feature representation. Further, deep learning 

methods require large labeled datasets for effective training, 

but the creation of such datasets is costly and time-intensive. 

These factors emphasize the need for unsupervised and semi-

supervised learning strategies that can reduce dependency on 

labeled data while improving classification robustness. 

Addressing these gaps is critical to increasing the 

dependability, efficiency, and practical applicability of aerial 

image classification systems in agriculture, environmental 

monitoring, and urban planning. 

3. Proposed Methodology 
In this research, PANet-WATT-EffNet, a novel Path 

Aggregation Network-based Wider Attention EfficientNet 

framework is designed (Figure 1). The target is to optimize 

feature extraction and classification tasks of aerial images. 

WATT-EffNet serves as the backbone, integrating a 

lightweight and fast architecture with attention mechanisms, 

to extract fine-grained and global information since aerial 

data [8, 9].  

PANet incorporates multi-scale feature fusion [10]. This 

enables aggregation of multi-scale features across various 

levels of the backbone network. This integration enhances 

PANet-WATT-EffNet’s capability to recognize complex 

patterns at various scales typically found in aerial images.

 

 

Fig. 1 Proposed PANet-WATT-EffNet learning model for unmanned aerial image classification 
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Fig. 2 Architecture of PANet learning model 

3.1. Data Preprocessing and Augmentation 
The Median Filtering (MF) approach is used to enhance 

image quality. The most recent indicators classify this 

method as a nonlinear signal processing paradigm. The 

median values of neighborhoods, known as masks, are used 

to correct erroneous digital representations. To replace 

inaccurate results, the median scores of a group are stored 

after the pixel is graded for its gray level. Any shape, such as 

a cross, square, round, or linear, can be used for the mask. 

Since MF is a nonlinear filter, performing numerical analysis 

on images containing random noise is quite challenging. The 

noise variance of MF would have a mean equal to zero if the 

image is categorized as having noise below the standard 

distribution. 

𝜎𝑚𝑒𝑑
2 =

1

4𝑛𝑓2(𝑛)
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𝜎𝑖
2
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𝜋
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                 (1) 

Where σi
2 describes input noise power, n signifies the 

size of MF, and f(n) is noise intensity. 

The average filtering noise variance is represented in 

Equation (2). 

𝜎0
2 =

1

𝑛
𝜎𝑖
2                         (2) 

Equations (1) and (2) are compared to determine the MF 

functions. By eliminating noise, the MF method significantly 

outperforms average filtering. Therefore, the MF method is 

more effective when the pulse width is smaller and the 

narrow pulse is farther away from impulse noise. When used 

with an average filtering model, the purpose of the MF 

technique is to maximize performance. Subsequently, a data 

augmentation procedure is performed with two operations: 

rotation and flipping. 

3.2. PANet 
PANet is a feature pyramid network architecture 

designed to enhance instance segmentation by improving 

feature representation through bottom-up path aggregation 

and an adaptive pooling mechanism (Figure 2).  

PANet efficiently propagates information across all 

levels of the feature pyramid, which is particularly beneficial 

for detecting objects at different scales and handling complex 

instance segmentation tasks [18, 19]. 

3.2.1. Bottom-Up Path Augmentation 

PANet enhances the traditional top-down Feature 

Pyramid Network (FPN) by introducing a bottom-up 

pathway. This addition strengthens low-level features with 

high-level semantic information and vice versa, thereby 

improving feature alignment and robustness. 

Given a feature map Fl at level l of the pyramid, the 

original FPN computes top-down features Fl
td using Equation 

(3). 

   𝐹𝑙
𝑡𝑑 = 𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒(𝐹𝑙+1

𝑡𝑑 ) + 𝐹𝑙                       (3) 

PANet introduces the bottom-up path Fl
bu by connecting 

features from low to high levels. Equation (4) shows the 

mathematical modeling of the bottom-up pathway.  

This bottom-up augmentation integrates detailed spatial 

information from lower levels with abstract semantics from 

higher levels. 

𝐹𝑙
𝑏𝑢 = 𝐷𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑒(𝐹𝑙−1

𝑏𝑢 ) + 𝐹𝑙                  (4) 

fc 
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3.2.2. Adaptive Feature Pooling 

To ensure that the features are well-aligned for Region 

of Interest(RoI) operations, PANet employs adaptive pooling 

across multiple feature pyramid levels. This process 

generates a unified feature representation for each RoI by 

pooling features from different levels. 

Let R represent a region of interest. The adaptive pooling 

operation AdaptivePool (R, Fl) combines information across 

all levels. 

𝐹𝑅 = ∑ 𝜔𝑙𝑙 . 𝑃𝑜𝑜𝑙(𝑅, 𝐹𝑙)                       (5) 

Here, Fl is a pooled feature for region R, ωl is the learned 

weight for each level l, and Pool(R, Fl) extracts features of R 

from level l. 

3.2.3. Fully Connected Fusion 

To further enhance instance segmentation, PANet 

employs a fully connected layer for feature fusion, ensuring 

improved information propagation. Final output is computed 

as in Equation (6). 

𝐹𝑓𝑖𝑛𝑎𝑙 = 𝐹𝐶(𝐶𝑜𝑛𝑐𝑎𝑡(𝐹𝑙1 , 𝐹𝑙2 , . . . , 𝐹𝑙𝑘))            (6) 

Here, Concat() aggregates features from all levels 

l1,…,lk; FC is a fully connected layer that learns the optimal 

combination of these features. 

3.2.4 Loss Functions 

PANet uses standard loss functions, such as 

segmentation, combining classification loss Lcls, box 

regression loss  Lbox, and mask prediction loss Lmask, as 

shown in Equation (7). 

𝑳 = 𝑳𝒄𝒍𝒔 + 𝑳𝒃𝒐𝒙 + 𝑳𝒎𝒂𝒔𝒌                         (7) 

These components are optimized together to achieve 

better segmentation and detection performance. By 

integrating these mechanisms, PANet outperforms traditional 

FPN-based architectures in tasks such as object diagnosis and 

instance segmentation 

3.3. Wider Attention EfficientNet (WATT-EffNet)  

Wider Attention EfficientNet (WATT-EffNet) is a 

modification of the EfficientNet architecture that 

incorporates wider layers and attention mechanisms to 

enhance representational efficiency and accuracy. 

3.3.1. Baseline: EfficientNet Overview 

EfficientNet scales a baseline model by optimizing width 

ω, depth d, and resolution r using compound scaling as 

shown in Equation (8). 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑁𝑒𝑡(𝜙) = {𝜔 = 𝛼𝜙 , 𝑑 = 𝛽𝜙 , 𝑟 = 𝛾𝜙}      (8) 

Here, φ is the compound scaling factor; α, β, γ are 

constants satisfying α, β2, γ2 ≈ 1. 

3.3.2. Wider Layers in WATT-EffNet 

Wider Attention EfficientNet increases the width of 

layers while adhering to the scaling principles of 

EfficientNet. 

𝜔𝑛𝑒𝑤 = 𝑘.𝜔𝑏𝑎𝑠𝑒                                      (9) 

Here, K>1 ensures the model incorporates more neurons 

per layer, leading to better feature extraction capacity. Width 

scaling preserves computational efficiency by maintaining a 

balance with depth and resolution. 

3.3.3. Incorporation of Attention Mechanisms 

Squeeze-and-Excitation (SE) Block, CBAM attention 

mechanisms are incorporated into PANet-WATT-EffNet in 

order to enhance focus on salient features. A typical attention 

module operates by computing attention weights. 

SE Block 

a) Squeeze: Global average pooling aggregates spatial 

features into channel descriptors. 

𝑧𝑐 =
1

𝐻.𝑊
∑ ∑ 𝑋𝑖,𝑗,𝑐

𝑊
𝑗=1

𝐻
𝑖=1          (10) 

Here, Xi,j,c is the feature map at spatial location (i, j) and 

channel c. 

b) Excitation: A gating mechanism adjusts the scaling of 

channel activations. Where W1, W2 are learnable weights 

and σ is the sigmoid function. 

𝑠𝑐 = 𝜎(𝑊2. 𝑅𝑒 𝐿 𝑈(𝑊1. 𝑧𝑐))         (11) 

c) Reweighting: Allows the network to focus on the most 

informative channels while ignoring irrelevant ones. 

𝑋̂𝑖,𝑗,𝑐 = 𝑠𝑐 . 𝑋𝑖,𝑗,𝑐                      (12) 

Convolutional Block Attention Module (CBAM). 

Attention is applied to both the spatial and channel 

dimensions. Channel attention is similar to SE Block. Spatial 

attention is defined in Equation (13). 

𝑀𝑠(𝑋) = 𝜎(𝑓7×7([𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝑋);𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑋)]))   (13) 

 

Here, f7x7 is a convolution filter. 

3.4. Final WATT-EffNet Architecture 

The output of each block integrates attention-enhanced 

features. 
𝑌𝑏𝑙𝑜𝑐𝑘 = 𝑓(𝑋;𝛩).𝑀𝑎(𝑋) + 𝐵                  (14) 
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Here, f(X;Θ)represents the widened convolutional 

layers, M_a (X)is the attention map, and B is the bias. 

The network structure balances the improved 

representational capacity of wider layers and attention, while 

scaling efficiently as defined in Equation (15). 

𝑊𝐴𝑇𝑇 − 𝐸𝑓𝑓𝑁𝑒𝑡(𝜙) = {𝑘𝜔, 𝛽𝜙𝑑, 𝛾𝜙𝑟}            (15)  

In PANet-WATT-EffNet, PANet improves hierarchical 

feature fusion for better multi-scale feature handling in 

unmanned aerial image data. The WATT-EffNet model uses 

EfficientNet’s lightweight design to achieve computational 

efficiency with high classification accuracy. Wider attention 

layers in WATT-EffNet highlight salient image regions, 

improving the capture of critical features for aerial image 

classification. The combined use of PANet and attention 

mechanisms increases robustness in processing composite 

scenes with varied backgrounds and occlusions. 

4. Experimental Results and Discussion 
4.1. Dataset Description  

The dataset considered for experimentation comprises 

high-resolution aerial imagery captured by UAVs [20]. The 

dataset is designed to advance small object detection tasks 

using DL techniques. This version is based on the original 

dataset [21]. This dataset offers an organized split for 

effective model building and assessment. The dataset 

includes 717 training examples, 84 validation samples, and 

43 testing samples, enabling researchers to systematically 

develop and compare algorithms for identifying and 

categorizing tiny, poorly represented objects in aerial 

photography. Sample aerial images are presented in Figure 3. 

4.2. Environmental Setup  

Windows 10 was used for the experiments, and the 

system specifications included an Intel(R) Xeon(R) W-2223 

CPU, an Nvidia GeForce RTX 3060 GPU, and 80 GB of 

RAM. Python 3.8 was utilized as the programming language. 

CUDA 11.7 served as the acceleration environment, 

PyCharm was the development platform, and PyTorch 2.0.1 

was the framework. This research employs existing methods, 

including Mask-RCNN [22], EDL-MMLCC [23], MLCG-

OCNN [24], and DRL-GAN [25]. 

4.3. Results and Discussion 

The proposed PANet-WATT-EffNet is evaluated against 

the following learning models. 

Mask-RCNN [22]: To segment apple blossoms by instance, 

the Mask-RCNN algorithm was used. Various image 

enhancement methods were applied, and their effects on 

flower detection were evaluated. 

 

 
Fig. 3 Sample images from aerial dataset 
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Fig. 4 Comparative analysis of PANet-WATT-EffNet  

Table 1. Comparative analysis of PANet-WATT-EffNet 

Learning Model Accuracy F-Measure Precision MCC Hit Rate 

Mask-RCNN 89.45 87.34 89.84 89.78 87.48 

EDL-MMLCC 92.90 90.22 91.98 90.34 91.23 

MLCG-OCNN 87.24 89.55 88.87 86.97 87.55 

DRL-GAN 94.87 89.22 93.45 91.33 92.87 

PANet-WATT-EffNet 97.71 93.45 95.55 96.56 93.98 

 

EDL-MMLCC [23]: The goal of the EDL-MMLCC 

method is to categorize remote sensing images based on land 

cover, clouds, and shadows. Data augmentation techniques 

and preprocessing methods, such as median filtering, are 

commonly used. 

MLCG-OCNN [24]: To achieve precise object 

classification, a feature-fusing OCNN is proposed. It learns 

higher-level features by integrating spectral patterns, object-

level contextual information, and geometric attributes. 

Additionally, it incorporates object deformation coefficients 

as a supplement to the object contour-preserving mask 

technique. DRL-GAN [25]: A DRL-GAN utilizes high-

resolution images as a guide to generate low-resolution data. 

It generates clearer and more detailed images that are better 

suited for recognition tasks. It also recovers missing 

information in both low-frequency and high-frequency 

components. This capability ensures that reconstructed 

images maintain structural consistency as well as fine details. 

Table 1 and Figure 4 present a comparative analysis of 

various performance metrics across different models, 

showcasing their respective effectiveness in terms of 

Accuracy, F-Measure, precision, Matthews Correlation 

Coefficient (MCC), and Hit Rate.  

 
Fig. 5 Computational time analysis of PANet-WATT-EffNet 
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Fig. 6 RMSE analysis of PANet-WATT-EffNet 

The proposed model outperforms all others, achieving 

the highest Accuracy (97.71%), F-Measure (93.45%), 

precision (95.55%), MCC (96.56%), and Hit Rate (93.98%). 

Among the remaining models, DRL-GAN follows closely, 

demonstrating strong performance, particularly in precision 

(93.45%) and Hit Rate (92.87%).  

EDL-MMLCC also show solid results, excelling in 

Accuracy (92.9%), Hit Rate (91.23%), and F-Measure 

(91.98%). MLCG-OCNN, though performing reasonably 

well, exhibits the lowest values across all metrics, 

particularly in accuracy (87.24%). Overall, the proposed 

model demonstrates a significant improvement over the 

existing methods across all evaluated metrics. 

Figure 5 presents computational time analysis of PANet-

WATT-EffNet in comparison with other models. The PANet-

WATT-EffNet model demonstrates the fastest computational 

time at 8.456 ms, outperforming all other models. Mask-

RCNN takes the longest time to process, with a 

computational time of 16.876 ms. EDL-MMLCC and DRL-

GAN show relatively efficient performance, taking 10.761 

ms and 12.876 ms, respectively. MLCG-OCNN requires 

15.665 ms to complete its computations. Overall, the PANet-

WATT-EffNet demonstrated efficiency in computational 

time. Thus, making it a promising choice for real-time 

applications. 

Figure 6 presents RMSE analysis of PANet-WATT-

EffNet in comparison to other models. PANet-WATT-EffNet 

has the lowest RMSE of 17.87%, indicating superior 

accuracy and smaller prediction errors. In contrast, DRL-

GAN follows with an RMSE of 26.87%, a relatively good 

presentation. EDL-MMLCC and Mask-RCNN report RMSE 

values of 29.87% and 30.99%, respectively, reflecting 

slightly higher prediction errors. Meanwhile, MLCG-OCNN 

records the highest RMSE at 31.18%, indicating a relatively 

larger deviation between forecast and actual values. Overall, 

the significantly lower RMSE of PANet-WATT-EffNet 

highlights its efficacy in reducing forecast errors. 

PANet-WATT-EffNet’s performance is evaluated 

against existing research using several key metrics. PANet-

WATT-EffNet model achieved an accuracy of 97.71%, when 

compared to other models, Mask-RCNN (89.45%), EDL-

MMLCC (92.9%), MLCG-OCNN (87.24%), and DRL-GAN 

(94.87%). PANet-WATT-EffNet model acquired F-Measure 

(93.45%), Precision (95.55%), and MCC (96.56%). These 

results showcase PANet-WATT-EffNet’s capability to make 

balanced and reliable forecasts compared to other models. 

PANet-WATT-EffNet’s Hit Rate (93.98%) emphasized its 

robustness. PANet-WATT-EffNet achieved computational 

effectiveness, with the lowest computational time (8.456 ms). 

RMSE (17.87) highlights its suitability for real-time 

requirements. Experimental results show that PANet-WATT-

EffNet delivers higher classification accuracy.  

 

 
Fig. 7 Experimental results of the ablation study on PANet-WATT-EffNet 
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4.4. Ablation Study  

This section presents the results of ablation tests 

conducted on PANet-WATT-EffNet.  Figure 7 illustrates the 

results of the ablation study, highlighting the incremental 

contributions of various components to PANet-WATT-

EffNet. PANet-WATT-EffNet achieved an accuracy of 

97.71%, demonstrating the efficacy of its holistic 

architecture. Removing the PANet module reduced accuracy 

to 95.56%, while excluding the attention module further 

lowered it to 93.98%. When PANet and attention modules are 

removed together, accuracy dropped significantly to 85.65%. 

The base model, EffNet, achieved the lowest accuracy of 

78.56%. 

This result shows that the plain baseline struggled to 

capture complex patterns present in aerial imagery. When 

compared, it is clear that additional components, Wider 

Attention and PANet, played a vital role. These modules 

strengthened the feature extraction process and pushed the 

accuracy higher.  

4.5. Influence of WATT-EffNet  

The influence of WATT-EffNet lies in its capability, 

particularly in complex image classification tasks. By 

incorporating a wider attention mechanism alongside the 

efficient architecture of EfficientNet, WATT-EffNet 

increases PANet-WATT-EffNet’s capacity to focus on 

critical features while reducing computational overhead.  

A broader attention mechanism enabled WATT-EffNet 

to efficiently capture spatial hierarchies and context. This 

makes it highly suitable for applications such as UAV image 

classification. 

5. Conclusion 
This research addressed the challenge of classifying 

high-resolution UAV images. Conventional DL models often 

struggle to balance computational efficiency with accuracy. 

To overcome these limitations, a novel Path Aggregation 

Network-based Wider Attention EfficientNet (PANet-

WATT-EffNet) was proposed. PANet-WATT-EffNet 

integrates the scalable design of EfficientNet with wider 

attention layers and a path aggregation mechanism. Thus, 

enabling multi-scale feature fusion and enhancing focus on 

salient image regions. A combination of these components 

strengthens PANet-WATT-EffNet’s capability to capture 

both local and global information. This feature is crucial for 

handling complex aerial objects at various scales. 

Experimental results demonstrated that PANet-WATT-

EffNet outperformed existing methods, achieving the highest 

accuracy of 97.71%, superior F-measure, MCC, and 

significantly lower RMSE. Reduced computational time 

further highlights the efficiency of PANet-WATT-EffNet, 

making it suitable for real-time aerial image classification 

tasks. Ablation study confirmed individual and collective 

contributions of wider attention and path aggregation 

modules. PANet-WATT-EffNet framework provides a 

robust and efficient solution for aerial image classification. 

Its capability to achieve high accuracy with reduced 

computational time makes it highly relevant for real-time 

applications, including precision agriculture, urban 

infrastructure monitoring, disaster response, etc. This 

research contributes to advancing UAV-based image analysis 

by combining scalable architectures with attention-driven 

feature refinement and effective multi-scale fusion, ensuring 

both reliability and efficiency in practical deployments. 
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