
SSRG International Journal of Electronics and Communication Engineering Volume 12 Issue 9, 162-177, September 2025

ISSN: 2348-8549/ https://doi.org/10.14445/23488549/IJECE-V12I9P114 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

OHNN: An Optimized Hybrid Neural Network for

Intrusion Detection Systems Using TLBO and CTO

Shourya Shukla1, Ajay Singh Raghuvanshi1, Saikat Majumder1

1Department of Electronics and Communication Engineering, National Institute of Technology, Raipur, Chhattisgarh, India.

1Corresponding Author : sshukla.phd2019.ece@nitrr.ac.in

Received: 14 July 2025 Revised: 16 August 2025 Accepted: 15 September 2025 Published: 29 September 2025

Abstract - In recent years, cybersecurity has become a hot topic for exploration among researchers. The anomaly-based

Detection methods have been widely used for early detection and mitigation of Intrusions. As the hardware is evolving, there

is a need for exploration of new features. This is made possible through novel deep learning models. In this paper, an

automated construction of various hybrid deep learning models is performed through a twin optimization algorithm. The

Teaching Learning Based Optimization and Class Topper Optimization are used to generate new deep learning structures.

The model parameters, like the Number of Hidden layers, the Optimizer and the Learning Rate, are controlled by TLBO. CTO

was used to select different internal parameters such as Types of layers, Number of nodes per layer, the activation function

and initializers. The proposed model was used to explore several deep learning models to train and test on the NSL-KDD

dataset. Binary and Multiclass classifiers were explored for different neural network architectures based on TLBO and CTO

parameters. The explored models showed comparable accuracy with respect to existing detection models.

Keywords - Teaching Learning Based Optimization, Class Topper Optimization, Hybrid Neural Network, Intrusion Detection

System, Optimization.

1. Introduction
Artificial Intelligence models such as Machine learning

and Deep learning models have become one of the most

popular assets for prediction and forecasting of unknowns in

many fields such as healthcare, agriculture, defense, security

and many other fields. One such emerging field is the

detection of malicious activities in a network. The

advancement in the interconnection of devices without

human involvement has left the communication nodes under

the threat of an attack. These cyber threats are known as

Intrusions.

These Intrusions are deliberate, malicious activities that

may or may not disrupt or destroy network resources. An

Intrusion can be active or passive in nature. An active attack,

such as a Denial of Service (DoS) attack, can deplete

bandwidth or other resources, such as power, in an energy-

constrained environment. On the other hand, passive attacks,

such as probe attacks, do not directly hamper network

activities but remain dormant and search for vulnerabilities in

the system. Passive attacks have proven to be more damaging

to a network as they are very difficult to detect.

An Intrusion Detection System (IDS) is a monitoring

framework used in a computer or a network traffic analyzer

to detect malicious activities [1]. IDS, nowadays, is

implemented not only on computers, but also on Cloud

services, VANETs, MANETs and other Wireless Sensor

Networks (WSN) [2].

The IDS can be of two types based on their detection

strategies: Signature-based IDS and Anomaly-based IDS.

The signature-based IDS detects known intrusive activities

very fast, but fails to detect Zero-day attacks. A Zero-day

attack is well detected by a Based IDS, where normal data is

learnt and any deviation from normal is said to be malicious

in nature. Anomaly-based IDS uses Stochastic, probabilistic,

or Artificial intelligence-based learning techniques for

training the models on the data.

Different Deep Learning algorithms with novel

structures are employed to explore more ways to detect the

intrusive activities in an efficient manner. The deep learning

model has been evolving with the advancement in processors

and Graphics Processing Units (GPUs). Different

architectures of deep learning models, such as autoencoders,

hybrid models, transfer learning models, etc., are employed

for black-box feature extraction.

Deep Learning algorithms are structure-oriented models

in which hidden layers are arranged in different possible

orders to extract desirable features. There are many

possibilities of the Deep Learning architectures resulting in

http://creativecommons.org/licenses/by-nc-nd/4.0/

Shourya Shukla et al. / IJECE, 12(9), 162-177, 2025

163

different feature extraction methods. These possibilities

include structure as well as hyperparameter tuning. The

number of implementable structures creates a problem of

non-polynomial order. Therefore, there is a high need of

optimizing the structure of the proposed architecture.

Metaheuristic optimization algorithms, such as bio-inspired,

human behavior, or physics-inspired techniques, have been

utilized to automate these deep structures. This not only

improves the accuracy by exploration of new architectures,

but also mitigates the human cognitive bias for some specific

structures.

With the intrusion and attackers finding new strategies,

IDS have to evolve at a faster rate. Novel Features have to be

determined. In this paper, these advancements are explored.

The hybrid model architectures are explored by using two

human-inspired optimisation algorithms, namely, Teaching

Learning Based Optimization and Class Topper

Optimization, to explore new Optimized Hybrid Neural

Network (OHNN) architectures. The combined optimization

algorithms mimic the knowledge transfer from teacher to

student, and competition among students encourages them to

learn more.

The paper's structure is given as follows. Section I briefly

introduces the ongoing issues with intrusions and deep

learning structures. Section II deals with the Literature

Survey and explains the existing algorithms. Methodology is

presented in Section III. Section IV gives information about

the Experimental Work carried out, and Section V includes

the Conclusion of the paper along with the future scope.

2. Related Work
In this section, a rationale survey of the SOTA research

in Intrusion Detection Systems has been presented.

Ajawan in [3] proposed a deep learning architecture for

a real-time Intrusion Detection System. A four-layer fully

connected network had been proposed. The architecture was

deployed on IoT devices for the detection of Blackhole,

Distributed Denial of Services, Sinkhole and Workhole

attacks. Network Emulators have been employed to connect

the victim machine to the network virtually. Moreover, the

author was able to achieve a high detection accuracy of

93.74%.

Qazi et al. [4] proposed a hybrid deep neural network for

network-based IDS. A convolutional recurrent network was

utilized to mitigate any malicious packets from the network.

A collection of local features was performed by a

convolutional neural network layer, whereas the recurrent

layer was responsible for feature extraction. The

CICIDS2018 dataset was used to train the hybrid

architecture. The architecture consisted of two convolutional

layers followed by a recurrent network. Then, a dense layer

along with a flattened layer was applied to produce output for

classification. A high accuracy of 98.90% was achieved by

the authors.

Hossain and Islam in [5] proposed an ensemble machine

learning algorithm for the detection of intrusions. Ensemble-

based bagging algorithms, such as Random Forest (RF).

Meanwhile, boosting-based algorithms like Gradient

Boosting, Adaboost, XGBoost, and Simple Stacking

classifiers were used for detection purposes. Feature

extraction was performed on various datasets using

correlation analysis. Furthermore, Principal Component

Analysis (PCA) was applied to reduce the feature dimension.

The authors ensured a very high accuracy of 99% for more

than 10 datasets, including NSL-KDD and UNSW-NB15

datasets.

Bhavsar et al. [6] proposed a Pearson Correlation

Coefficient-based Convolutional Neural Network. The

Pearson correlation coefficient was used for feature

extraction. NSL-KDD, which is a prominent dataset, was

employed for training. The latest datasets, CICIDS-2017 and

IOTID20, were utilised to train the convolutional neural

network with Pearson correlation coefficient-based features.

A three-layer CNN was used for classification and achieved

99% accuracy.

Wu et al. [7] proposed a transformer-based intrusion

detection system. The authors balanced the dimensionality

reduction and feature retention trade-off in the work. The

structure consisted of six encoder layers, each made of a self-

attention network. The class imbalance was dealt with using

the SMOTE algorithm for

the creation of synthetic data. 98.58% accuracy was achieved

by the anomaly-based detection method.

Kasongo in [8] proposed various feedback neural

network architectures. An XGBoost-based feature selection

algorithm was employed with feedback networks like RNN.

Moreover, GRU and LSTM-based networks were also

inferred. Moreover, authors inferred that increased feature

space complexity leads to decreased testing accuracy. A

three-layer architecture with varying hidden nodes from 15 to

210 was compared.

Korium et al in [9] proposed a model with a z-score for

normalization of the features. Regression models were

employed for the complexity reduction, and various machine

learning algorithms were used as classifiers. The SMOTE

algorithm was applied to the synthetic data along with the

modified nearest neighbor technique. HyperOpt was used to

parameter-tune the IDS for vehicle intrusions.

Musleh et al in [10] proposed a transfer learning based

method for IDS. DenseNet and VGG-16 models were used

for feature extraction, and machine learning algorithms, such

as RF and K-NN, were used for the mitigation of malicious

Shourya Shukla et al. / IJECE, 12(9), 162-177, 2025

164

packets in the network. An autocolor correlogram was

applied to the processed data using the proposed method.

98.3% accuracy was attained by the model with fine KNN.

The use of hybrid structures has enabled researchers to

explore more features in the deep learning algorithms.

Altunay et al suggested a CNN-LSTM-based hybrid model.

A two-layer CNN and a three-layer LSTM architecture were

proposed [11]. The suggested model achieved 93.84%

accuracy.

Logeswari et al. [12] proposed a hybrid feature selection

algorithm with Light Gradient Boosting Machine for

Intrusion Detection Systems. Correlation-based feature

extraction was proposed by the authors. In particular,

Pearson’s Correlation Coefficient was employed for feature

extraction in software-defined radio. Redundant features

were eliminated using Random Forest with recursive feature

elimination.

Metaheuristic optimization algorithms, which are

teaching learning based optimization, have gained much

popularity among researchers. Kaushik et al in [13] proposed

a teaching learning based optimized intrusion detection

system to overcome communication overhead. The author

was able to outperform the bat optimization algorithm and the

genetic algorithm by a large margin on the UNSW-NB15

dataset. A random forest classifier was employed to predict

malicious packets in the network.

Fraihat et al. [14] proposed a network-based intrusion

detection system in an IoT NetFlow-based environment. An

arithmetic optimization algorithm was employed for feature

selection. The proposed algorithm was able to reduce the

feature set from 43 features to 7 features. Ensemble tree-

based classifiers were employed for classification purposes.

The authors suggested two-dimensional redundancy removal

to achieve better accuracy. An objective function to minimize

the loss as well as minimizer the size of selected features is

incorporated.

Alzaqebah et al in [15] proposed a modified grey wolf

optimization technique by combining filter- and wrapper-

based approaches. This was performed to select important

features and discard other extracted features. Most relevant

features were selected based on information gain. The

extreme learning machine technique was employed for

classification purposes, which is a one-layer feed-forward

neural network. A fitness function with minimization of false

positives and false negatives, and reduced features was

employed.

Kilichev et al in [16] proposed a CNN model Optimized

using genetic algorithm and particle swarm optimization. GA

and PSO were used to explore and exploit the features at the

same time through hyper-parameter optimization. Network

structure, learning and optimization, as well as the

regularization effect, were taken into consideration.

Constrained optimization with hyper-parameter tuning was

applied for the creation of the CNN layer.

Kunang et al in [17] proposed a similar approach by

hyperparameter tuning using an optimization algorithm. An

autoencoder, along with a deep neural network, was

employed to detect intrusions. Parameter tuning was

achieved by utilizing grid search and random search

techniques. The algorithm Optimized hyperparameters using

metaheuristic algorithms, which proved to be more efficient

than built-in hyperparameter optimizers. These parameters

were used to generate new deep learning architectures.

However, the type of structures was confined to autoencoder

and fully connected network layers only.

Imran et al in [18] proposed a cuckoo search

optimization algorithm-based intrusion detection system.

Errors in predicting the patterns, such as MAE, MSE and

RMSE, were minimized to predict the intrusions in the NSL-

KDD dataset.

Latif et al in [19] proposed a genetic algorithm-based

deep learning framework. Convolutional neural network,

genetic algorithm and bootstrap aggregation transfer

ensemble techniques were employed by the authors. Signals

or instances were converted to images, and a CNN was

applied along with GA for fine-tuning. Bootstrapping

ensembles were used to make the system robust.

Gupta et al in [20] proposed a modified twin

optimization-based deep learning method for the detection

and mitigation of intrusions. A hybrid chicken swarm and

genetic algorithm were employed for feature selection. The

mini-batch K-means clustering algorithm was employed for

dimensionality reduction. The Levy flight, which is a feature

of the crow optimization algorithm, was used in the chicken

swarm optimization for better exploration of the search space.

Khafaga et al suggested a voting classifier along with

metaheuristic optimization of whale optimization algorithm

guided by dipper throated optimizer [21]. Class imbalance

was dealt with using the Synthetic Minority Oversampling

Technique (SMOTE). The RPL-NIDS17 dataset was

generated by the NetSim simulator to train and test the model.

Based on the literature survey, the following

shortcomings were found in the existing methodologies:

 Authors in [11] adapted a hybrid Neural Network with

CNN and LSTM layers. However, the human cognitive

bias led to the combination of all CNN and LSTM layers.

The architecture lacked exploration of different

arrangements of these layers for better feature extraction

strategies.

 Tuned Neural Network architectures have been

Shourya Shukla et al. / IJECE, 12(9), 162-177, 2025

165

suggested by [17, 19]. However, the methods either

provided an optimized hyperparameter tuning method or

employed only one type of hidden layer.

 Authors in [16] employed a combined optimization

technique for an optimization and regularization-based

CNN model. However, the architecture had a fixed

number of CNN hidden layers with variable dense

layers. Moreover, the architectures lacked exploration on

the basis of the number of hidden layers as well as the

type of layered architectures.

Incorporating the gaps found in the existing methods, the

proposed work proposes the following novel approaches:

 This paper proposes a twin optimization based on TLBO

and CTO for exploring novel deep learning structures.

 TLBO controls the structure of the Neural Network, such

as the number of hidden layers, optimizer and learning

rate.

 CTO controls the hyperparameter of each layer

individually, such as the type of hidden layers, number

of filters, initializers and activation function.

 The explored architectures were used to identify the

malicious packets and detect the type of intrusion using

binary and multiclass classifications on the NSL-KDD

dataset.

 The proposed paper tries to eliminate the human bias

while creating a deep learning architecture using

metaheuristic optimization techniques, making not only

the learning of the artificial intelligence algorithms

automated, but also the architecture of the models

automated.

3. Methodology
Machine Learning and Deep Learning models have

found many applications in the field of decision making,

event detection and other classification and forecasting

problems. Deep learning has enabled researchers to

implement most of the feature functions using weight

approximation. A certain drawback of the deep learning

models is the dependency of the model on its architecture.

Human cognitive ability and bias have highly confined the

capabilities of Neural Networks. In this paper, the authors

have employed a twin optimization algorithm for the

exploration of new neural network architectures. The

Teaching Learning Based Optimization (TLBO) and Class

Topper Optimization (CTO) are employed for exploration

purposes. The TLBO is responsible for the exploration of

new neural network structures. Whereas the CTO is

responsible for handling each layer and its hyperparameters.

The methodology proposed in this paper is as follows:

3.1. Initialization

The TLBO algorithm controls the outer structure of the

hybrid Neural Network, whereas internal parameters are

controlled by CTO. The number of layers, the optimization

technique used in back-propagation and the learning rate are

controlled by TLBO. The type of hidden layer, number of

filters or nodes, initialization function and activation

functions are controlled by the CTO for each layer separately.

The metaheuristic approaches are initialized by an initial

population randomly generated as shown in equation 1.

 𝑝𝑜𝑝 =

[

𝐿1
𝑖 𝐿2

𝑖 𝐿3
𝑖 𝑂𝑝𝑡1

𝑖 𝑂𝑝𝑡2
𝑖 𝑂𝑝𝑡3

𝑖 𝑙𝑟1
𝑖 𝑙𝑟2

𝑖

𝐿𝑇1,1
𝑖 𝐿𝑇1,2

𝑖 𝐿𝑇1,3
𝑖 𝐿𝑇1,4

𝑖 𝐿𝑇1,5
𝑖 𝐿𝑇1,6

𝑖 𝐿𝑇1,7
𝑖 𝐿𝑇1,8

𝑖

𝐿𝑇2,1
𝑖 𝐿𝑇2,2

𝑖 𝐿𝑇2,3
𝑖 𝐿𝑇2,4

𝑖 𝐿𝑇2,5
𝑖 𝐿𝑇2,6

𝑖 𝐿𝑇2,7
𝑖 𝐿𝑇2,8

𝑖

𝐿𝑇3,1
𝑖 𝐿𝑇3,2

𝑖 𝐿𝑇3,3
𝑖 𝐿𝑇3,4

𝑖 𝐿𝑇3,5
𝑖 𝐿𝑇3,6

𝑖 𝐿𝑇3,7
𝑖 𝐿𝑇3,8

𝑖

𝐻1,1
𝑖 𝐻1,2

𝑖 𝐻1,3
𝑖 𝐻1,4

𝑖 𝐻1,5
𝑖 𝐻1,6

𝑖 𝐻1,7
𝑖 𝐻1,8

𝑖

𝐻2,1
𝑖 𝐻2,2

𝑖 𝐻2,3
𝑖 𝐻2,4

𝑖 𝐻2,5
𝑖 𝐻2,6

𝑖 𝐻2,7
𝑖 𝐻2,8

𝑖

𝐻3,1
𝑖 𝐻3,2

𝑖 𝐻3,3
𝑖 𝐻3,4

𝑖 𝐻3,5
𝑖 𝐻3,6

𝑖 𝐻3,7
𝑖 𝐻3,8

𝑖

𝐴𝐹1,1
𝑖 𝐴𝐹1,2

𝑖 𝐴𝐹1,3
𝑖 𝐴𝐹1,4

𝑖 𝐴𝐹1,5
𝑖 𝐴𝐹1,6

𝑖 𝐴𝐹1,7
𝑖 𝐴𝐹1,8

𝑖

𝐴𝐹2,1
𝑖 𝐴𝐹2,2

𝑖 𝐴𝐹2,3
𝑖 𝐴𝐹2,4

𝑖 𝐴𝐹2,5
𝑖 𝐴𝐹2,6

𝑖 𝐴𝐹2,7
𝑖 𝐴𝐹2,8

𝑖

𝐴𝐹3,1
𝑖 𝐴𝐹3,2

𝑖 𝐴𝐹3,3
𝑖 𝐴𝐹3,4

𝑖 𝐴𝐹3,5
𝑖 𝐴𝐹3,6

𝑖 𝐴𝐹3,7
𝑖 𝐴𝐹3,8

𝑖

𝐼𝑛𝑖𝑡1,1
𝑖 𝐼𝑛𝑖𝑡1,2

𝑖 𝐼𝑛𝑖𝑡1,3
𝑖 𝐼𝑛𝑖𝑡1,4

𝑖 𝐼𝑛𝑖𝑡1,5
𝑖 𝐼𝑛𝑖𝑡1,6

𝑖 𝐼𝑛𝑖𝑡1,7
𝑖 𝐼𝑛𝑖𝑡1,8

𝑖

𝐼𝑛𝑖𝑡2,1
𝑖 𝐼𝑛𝑖𝑡2,2

𝑖 𝐼𝑛𝑖𝑡2,3
𝑖 𝐼𝑛𝑖𝑡2,4

𝑖 𝐼𝑛𝑖𝑡2,5
𝑖 𝐼𝑛𝑖𝑡2,6

𝑖 𝐼𝑛𝑖𝑡2,7
𝑖 𝐼𝑛𝑖𝑡2,8

𝑖
]

 (1)

Where 𝐿𝑚,𝑘

𝑖 is the TLBO element, which determines the

𝑚𝑡ℎ bit of 𝑖𝑡ℎa member of the population, the number of

layers present in the Neural Network architecture,

𝑂𝑝𝑡𝑚
𝑖 determines the optimization algorithm to be employed

during the training phase, with 𝑙𝑟𝑚
𝑖 the learning rate.

Similarly, 𝐿𝑇𝑚,𝑘
𝑖 determines the type of hidden layer that is to

Shourya Shukla et al. / IJECE, 12(9), 162-177, 2025

166

be used for 𝑘𝑡ℎ the layer. These vertical parameters are

responsible for the creation of a hybrid deep neural network

controlled by the CTO. However, the number of nodes in the

hidden layers is determined by 𝐻𝑚,𝑘
𝑖 the 𝐴𝐹𝑚,𝑘

𝑖 activation

function and 𝐼𝑛𝑖𝑡𝑚,𝑘
𝑖 the weight initializers.

The TLBO-based configuration of the population is

given in Table 1. The CTO parameters-based configuration is

depicted in Table 2. Table 2 describes the hidden layer

configuration for a single layer. The proposed method has the

ability to accommodate up to 8 hidden layers along with input

and output layers.

Table 1. Teaching Learning Based Optimization configuration and its interpretation

S. No. Bits Parameters Values Parameter Value

1. 1-3
Number of

Layers

000

001

010

011

100

101

110

111

1

2

3

4

5

6

7

8

2. 4-6 Optimizers

000

001

010

011

100

101

110

111

SGD

Adam

AdamW

Adadelta

RMSProp

AdaGrad

AdaMax

Nadam

3. 7-8
Learning

Rate

00

01

10

11

0.1

0.01

0.001

0.0001

Table 2. Class Topper Optimization configuration and its interpretation

S. No. Bits Parameters Values Parameter Value

1. 1-3 Type of Hidden Layer

000

001

010

011

100

101

110

111

DNN

CNN

RNN

GRU

LSTM

BiLSTM

Batch Normalization

Dropout

2. 4-6 Number of Hidden Nodes (𝐻𝑚,𝑘
𝑖) 000 to 111 2𝐻𝑚,𝑘

𝑖

3. 7-9 Activation Function

000

001

010

011

100

101

110

111

ReLU

ELU

CeLU

Exponential

Tanh

Sigmoid

Softplus

Softmax

4. 10-11 Initializers

00

01

10

11

Random_Normal

Random_Uniform

Glorot_Normal

Glorot_Uniform

Shourya Shukla et al. / IJECE, 12(9), 162-177, 2025

167

These parameters, belonging to TLBO and CTO-

controlled values, are discussed in the Methodology section

under TLBO and CTO Parameters, respectively.

3.2. Teaching Learning Based Optimization
Rao et al proposed TLBO in [22]. The metaheuristic

optimization algorithm is based on human cognitive ability

of knowledge sharing. In this optimization algorithm,

knowledge transfer from teacher to student is simulated on

the solution space. The prospect solutions are initialized as

given in equation 2:

𝑝𝑜𝑝 = 𝑙𝑏 + 𝑟𝑎𝑛𝑑𝑛 ⥂ ([0,1]) ∗ (𝑢𝑏 − 𝑙𝑏) (2)

Where pop is the population size, 𝑁𝑝 × (𝐷1 × 𝐷2) where

𝑁𝑝is the size of the population, and 𝐷1 × 𝐷2 is the dimension

of each solution. Lower bound of the population is kept at all

zeros, and upper bounds are kept at all ones. The randn

function is utilized for random placement of solutions in the

search space for the binary population.

The TLBO algorithm is a two-phase algorithm where, in

the first phase, the knowledge is transferred from the teacher

to the students. This phase is known as the teaching phase. In

the teaching phase, the algorithms explore new solutions.

3.2.1. Teaching Phase

In this phase, the best student or solution is evaluated

based on the fitness function. The solution with maximum

accuracy was considered the best solution and was carried out

to explore diverse regions of the search space. In our

approach, to incorporate the binary search space, the

modified equation for exploration of a new population in the

teaching phase is given as:

𝑋𝑛𝑒𝑤 = 𝑋𝑜𝑙𝑑 ⊕ {𝑟𝑎𝑛𝑑𝑛([0,1]) • (𝑋𝑏𝑒𝑠𝑡 ⊕ 𝑋𝑚𝑒𝑎𝑛)} (3)

Where⊕denotes the XOR operation, which replicates

the summing and difference operation of arithmetic in the

Boolean problem. This is performed to neglect any carry or

borrow bit in the new solution. 𝑋𝑚𝑒𝑎𝑛Is the mean of the

population in the current iteration, given by:

𝑋𝑚𝑒𝑎𝑛 =
1

𝑁𝑃
⌊∑ 𝑋𝑜𝑙𝑑,𝑖

𝑁𝑃
𝑖=1 ⌋ (4)

In the above equation 4, the mean of the population is

estimated to the lower bounds wherever applicable. This

enables the authors to explore the search space uniformly,

while keeping close to the best solutions. After new solutions

have been found, the fitness of each new solution is

evaluated. The greedy algorithm is applied to replace or

preserve the old solution according to its fitness. If the fitness

of the new solution exceeds that of older ones, the older

solutions are replaced; otherwise, the new solution is

discarded.

𝑖𝑓(𝑓𝑖𝑡𝑛𝑒𝑤
𝑖 > 𝑓𝑖𝑡𝑜𝑙𝑑

𝑖)
𝑡ℎ𝑒𝑛(𝑋𝑖 ← 𝑋𝑛𝑒𝑤)𝑎𝑛𝑑(𝑓𝑖𝑡𝑖 ← 𝑓𝑖𝑡𝑛𝑒𝑤) (5)

3.2.2. Learning Phase

The next phase of the TLBO is the learning phase. In this

phase, students are supposed to interact with each other and

explore more knowledge. The students' interaction takes

place in pairs. Each student is paired with another student in

the given population. The partner selection process is carried

out by a random integer pointing towards any member of the

population in each iteration. The new solution explored by

student X and the partner 𝑋𝑝𝑡𝑟 is given as:

𝑋𝑛𝑒𝑤 = 𝑋 ⊕ {𝑟𝑎𝑛𝑑𝑛([0,1]) • (𝑋 ⊕ 𝑋𝑝𝑡𝑟)} (6)

 The greedy selection is again used to replace the solution

with the student having a better fitness value. These Teaching

and Learning Phases are repeated for definite iterations. The

best solution is found either by the Global best solution or the

solution with the best fitness at the end of all iterations. In our

model, the TLBO is used to find the most suitable depth of

the neural network, along with the optimizer and learning

rate, as discussed in Table 1.

3.3. Class Topper Optimization
Class Topper Optimization (CTO) is another

optimization algorithm that mimics human learning behavior.

The CTO was proposed by Das et al in [23], in which the

authors emulated the learning and competitive approach seen

in schools. The school has classes, and each class is divided

into multiple sections. The algorithm is divided into a class

level and into various sections. Section-level and student-

level behaviors are replicated in search of an optimized

solution. In the algorithm, the fitness of each student is

evaluated during the Examination. Hence, each iteration is

known as an examination. The initialization of the student is

the same as the initialization performed by the TLBO

algorithm in equation 1. The TLBO population consists of

parameters for each hidden layer individually. Hence, the

dimensions of the CTO population are different from those of

the TLBO population in the proposed algorithm. The

population is initialized with both TLBO and CTO

populations combined as given in equation 2.

In the Section level of the CTO, each student attempts

the Examination and their fitness, known as The Performance

Index (PI), is evaluated as per the objective function. The

student with the best PI is selected as the Section Topper

(ST). Among the section toppers, the ST with the best PI, in

turn, becomes the Class Topper (CT). In the proposed model,

a single class with two sections has been considered for

optimization. After every Examination, the students get a

chance to enhance their grades. This step involves interaction

of random students with the ST, and the new student solution

is given as:

Shourya Shukla et al. / IJECE, 12(9), 162-177, 2025

168

𝐼𝑆
𝐸+1 = 𝐼𝑆

𝐸 ⊕ 𝑑𝑒2𝑏𝑖(𝑆𝑇𝑃𝐼 ⊕ 𝑆𝑃𝐼) (7)

Where 𝐼𝑆
𝐸is the increment in student intellect while

interacting with the ST? 𝑆𝑇𝑃𝐼 , 𝑆𝑃𝐼 are the PIs belonging to

the Student S and Section Topper ST? de2bi is used to

convert the integer solution to binary. Random student or, in

our case, a hidden layer is selected at random, and an update

step is performed using equation 8 given as:

𝑆𝐸 = 𝐼𝑆
𝐸+1 ⊕ 𝑆𝐸 (8)

In the next phase, the ST interacts with the CT, and the

goal is to further enhance their PI and become the CT. This

competition between ST and CT, considering that CT can

only interact with ST but not with other Students, is given as:

𝐼𝑆𝑇
𝐸+1 = 𝐼𝑆𝑇

𝐸 ⊕⥂⥂ (𝑑𝑒2𝑏𝑖(𝐶𝑇𝑃𝐼 ⊕ 𝑆𝑇𝑃𝐼)) (9)

And the ST update takes place as:

𝑆𝑇𝐸+1 = 𝐼𝑆𝑇
𝐸+1 ⊕ 𝑆𝑇𝐸 (10)

Again, the greedy algorithm is employed to eliminate

poor solutions. The step is emulated by comparing the PI of

each section, and a new ST is selected. At the class level, all

new STs are again compared to find out the new CT. The CT

or multiple Class Toppers at the end of the maximum

iterations provide the optimal solutions.

3.4. Objective Function

The objective of the proposed optimized hybrid Neural

Network is to maximize the accuracy of the classifier

implemented using TLBO and CTO series. The fitness

function involving the accuracy of the classifier is given as:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑚𝑎𝑥
𝑇𝑃⥂+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
 (11)

 Where TP is the true positive, positive class instances are

predicted as positive; similarly, TN correctly predicts

negative class instances. On the other hand, FN and FP are

falsely predicted positive and negative instances,

respectively.

3.5. Teaching Learning Based Optimizer Series

The TLBO has been employed to optimize the external

parametric values of the hybrid neural network structure. The

following parameters, as depicted in Table 1, have been

explained:

3.5.1. Number of Layers

The proposed algorithm has the ability to incorporate

from 1 to 8 hidden layers. The first three bits of the TLBO

population determine the number of layers used in the deep

NN structure. The three bits can vary from 000, selecting a

single hidden layer, to 111, selecting eight hidden layers, as

shown in Table 1.

3.5.2. Optimizers

The proposed algorithm has given the users leverage to

employ eight different optimizers in the hybrid neural

network. Optimizers have application in the back-

propagation of neural networks. Back-propagation is used to

minimize the loss in the prediction of a class. In the training

phase, the difference between predicted output and actual

output is termed as loss. Different optimizers are employed

for weight update as given:

SGD

The Stochastic Gradient Descent is selected for the 000

value in the TLBO series. The SGD is a variant of the

gradient descent algorithm. It is an iterative method to

compute the gradient of the loss function. This method has

proved to be the most suitable for convex optimization

problems. However, it is not suitable in case of higher order

time, such as non-polynomial problems. The weight update

step is given by:

𝜍𝑡+1 = 𝜍𝑡 − 𝜂 ∗ 𝛻𝜍(𝐿) (12)

Where 𝜍 are the weight, 𝜂 the learning rate, and the loss

gradient?

AdaGrad

It is an adaptive learning method for back-propagation

and weight optimization in the NN architecture. As the name

suggests, AdaGrad uses the gradient evaluated in the previous

epochs. Suppose/is the diagonal matrix where the principal

diagonal is the magnitude of the matrices formed by the

gradient obtained in previous epochs. Then the weight update

is given as:

𝜍𝑡+1 = 𝜍𝑡 −
𝜂

√𝐺𝑡+𝜀
⋅ 𝑔𝑡 (13)

Where 𝜀 an arbitrarily small value is used to prevent a

divide by zero error, and 𝑔𝑡 is the gradient obtained in the

present 𝑡𝑡ℎepoch.

AdaDelta

The weight for AdaDelta uses the root mean square

(RMS) value of the loss gradients given as:

𝜍𝑡+1 = 𝜍𝑡 + 𝛥𝜍

𝑤ℎ𝑒𝑟𝑒

𝛥𝜍𝑡 =
−𝑅𝑀𝑆(𝛥𝜍𝑡−1)

𝑅𝑀𝑆(𝑔𝑡)
⋅ 𝑔𝑡 (14)

RMSProp

The weight update employs the total power of the

gradient. The variance of any random number is defined as

the second moment around the center.

𝛥𝜍 = −
𝜂

√𝐸[𝑔2]+𝜀
⋅ 𝑔𝑡 (15)

Shourya Shukla et al. / IJECE, 12(9), 162-177, 2025

169

Adam

The adaptive moment estimation optimizer is the most

commonly used optimizer nowadays. The Adam optimizer is

computationally efficient for large data. The optimizer uses

alpha and beta parameters with the mean and standard

deviation of the loss gradient to update weights.

𝜍𝑡+1 = 𝜍𝑡 −
𝜂

√𝜎𝑡+𝜀
⋅ 𝜇𝑡 (16)

Where 𝜎𝑡 is the standard deviation, and 𝜇𝑡 Is the mean of

the loss gradient. The mean and standard deviations are

updated after every epoch, given as:

𝜇𝑡 = 𝛼 ⋅ 𝜇𝑡−1 + (1 − 𝛼) ⋅ 𝑔𝑡
𝑎𝑛𝑑

𝜎𝑡 = 𝛽 ⋅ 𝜎𝑡−1 + (1 − 𝛽) ⋅ 𝑔𝑡
2 (17)

AdamW

Weighted Adam optimizer incorporates negative effects

of 𝜇𝑡 and 𝑔𝑡 𝜆 is used as an arbitrary positive real number to

negotiate weight decay.

𝜍𝑡+1 = 𝜍𝑡 − 𝜂 ⋅ 𝜍𝑡−1 −
𝜂

√𝜎𝑡+𝜀
⋅ 𝜇𝑡 (18)

AdaMax Optimizer

The AdaMax optimizer replaces the L2 regularization

used in the Adam optimizer. The L2 norm is replaced by the

L∞ norm in the AdaMax optimizer. The AdaMax optimizer

uses the mean and standard deviation, the same as the Adam

optimizer, and the weight update is given as:

 𝜍𝑡+1 = 𝜍𝑡 − 𝜂 ⋅
𝜇̂𝑡

𝑢(𝑡)
 (19)

Where u(t) is given by:

𝑢(𝑡) = 𝑚𝑎𝑥(𝛽 ⋅ 𝑢(𝑡 − 1), |𝑔𝑡|) (20)

Fig. 1 Pictorial Representation of the Fully Connected Network

Nadam Optimizer

The Nadam optimizer uses the Nesterov update system

along with the Adam optimizer, given as:

𝜍𝑡+1 = 𝜍𝑡 − 𝜂 ⋅
𝛽⋅𝜇̂𝑡+(1−𝛽)⋅𝑔𝑡

√𝜎𝑡+𝜀
 (21)

3.5.3. Learning Rate

The learning rate, as seen with the optimizer, decides the

rate at which the gradient function influences the weights.

The proposed algorithm uses the TLBO series to determine

the learning rate. The last bits of the TLBO series are

converted to decimal numbers. The decimal equivalent, let us

say, gives the learning rate as:

𝜂 =
1

10𝑙𝑟 (22)

3.6. Class Topper Optimization Series

The class topper optimization series determines the

internal parameters of each layer. The CTO Series is

initialized for the maximum possible layers, and the layers

that undergo training are determined by the TLBO series. The

internal parameters, such as the type of layer, number of

hidden nodes for each layer, activation function and

initializers, are determined using a series. The following

possible outcomes are listed below:

3.6.1. Type of Hidden Layer

The CTO series determines the type of hidden layers for

training and testing for malicious packets in the proposed

algorithms. Different types of layers contribute to different

ways of extracting features from the data. In our proposed

method, feature extraction is performed using a metaheuristic

method and normalization and feature deletion can also be

performed.

Fig. 2 Pictorial representation of CNN layer with x input, w moving

window depicting convolution to give y output.

lr

X1 X2 X3 Xn

W1 W2 W3

y

Shourya Shukla et al. / IJECE, 12(9), 162-177, 2025

170

DNN

This is the basic layer of any multi-layer perceptron. The

DNN consists of Fully Connected Network Layers (FCN). In

this type of layer, every neuron of the preceding layer is

connected to the DNN layer. The output of the DNN layer

with weights and bias is given by:

𝑦 = ℑ(𝜔 ⋅ 𝑥 + 𝑏) (23)

Where is the input, and what is the activation

function? The FCN is generally used in the output layer, as it

ensures that all the information of the extracted features is

passed to the decision device. According to the universal

approximation theorem, FCN can approximate any

continuous function; therefore, FCN becomes a reliable layer

for feature extraction. The pictorial representation of the FCN

is given in Figure 1.

CNN

Basically, invented for image classification and

segmentation, Convolutional Neural Network (CNN) has

found many applications in signal processing, Natural

Language Processing (NLP), and several other fields. As the

name suggests, the CNN uses convolution of a moving

window having a kernel size (1 × 𝜅) for signal processing

with a stride of length 𝒮. The convolved output is used for

feature extraction in deep CNN architectures. The CNN is

capable of dealing with high-dimensional data. In this paper,

the strides 𝒮 are set to 1 to make the output compatible with

other layers.

𝑦 = ℑ(𝜔 ∗ 𝑥 + 𝑏) (24)

Where * symbol represents that the weight window is

convolved with the input sequence instead of the dot product,

as shown in equation 23. Figure 2 gives the pictorial

representation of the CNN layer.

RNN

The FCN and CNN extract features only in the forward

direction; hence, they are called feed-forward networks.

These layers lack feedback capabilities. To incorporate such

features and succeeding layers that have an impact on the

preceding layer, feedback-type layers have gained popularity.

The feedback feature of RNN enables it to create a loop

through different layers. This is achieved using temporary

units. RNNs, although capable of memory retention, suffer

from the problem of vanishing gradients. The output of the

RNN layer is given by:

𝑦 = ℑ([𝜔ℎ𝑥 ⋅ 𝑥𝑝 + 𝜔ℎℎ ⋅ ℎ𝑝−1] + 𝑏) (25)

The self-feedback loop of the RNN is represented in

Figure 3.

Fig. 3 Feedback Representation of the RNN layer

LSTM

Like GRU, Long-Short-Term Memory (LSTM) was

invented to mitigate the vanishing gradient problem. The

LSTM layer uses a memory cell and three gates instead of

two, in the case of GRU. The LSTM layer requires a Reshape

layer when used in hybrid models. Explicit reshape layers

were added to make LSTM compatible with the hybrid

architecture.

Batch Normalization

The Batch Normalization uses z normalization of the

extracted features. The Batch normalisation restores the

feature bounds and, as a result, the learning and

discrimination of features is accelerated. Feature

normalization is given by:

𝑥𝑛𝑜𝑟𝑚 =
𝑥−𝜇

𝜎
 (26)

Where 𝜇 is the average value, and 𝜎2 is the variance of

the feature vector . The scaling and shifting

parameters𝛼,𝛽respectively, are employed for output

measurement. The scaled and shifted vector is given by:

𝑦 = 𝛼 ⋅ 𝑥𝑛𝑜𝑟𝑚 + 𝛽 (27)

Dropout

For feature selection, a dropout layer is used as an

optional layer. In our model, it was coded to prevent

consecutive dropout layers. 25% of the least important

features were dropped using this layer. This layer is added to

prevent the neural network from overfitting.

3.6.2. Number of Hidden Nodes

Each layer has a different number of nodes, filters or

units depending on the type of layers. This is controlled by

bits 4 to 6 of the CTO series for every hidden layer.

Generally, the number of nodes is an integer power of 2.

Hence, in this paper, the three bits are converted to an integer

equivalent, and their power of 2 creates the number of nodes.

The smallest value, 0’s for all three bits, represents a single

y

 b

x 

x

y

x

RNN

Shourya Shukla et al. / IJECE, 12(9), 162-177, 2025

171

node hidden layer, whereas the maximum nodes can be 128

with three bits as 1’s.

3.6.3. Activation Function

Activation functions are used in Neural networks to

apply non-linearity to the layer output. This is performed to

ensure projection of non-linear practical data in a non-linear

suitable feature space. Without activation functions, the deep

learning algorithms would be mere linear functions of inputs

that restrict the use of deep learning only to ideal scenarios.

ReLU

Rectified Linear Unit is a highly utilized activation

function in deep learning algorithms. The ReLU activation

allows the positive and negative features to be nullified,

restricting the negative features from reaching the output

layers. Transfer learning and pre-trained model, such as

AlexNet, have employed ReLU as their activation function.

The transfer function of ReLU is given as:

𝑅𝑒 𝐿 𝑈 = {
𝑥, 𝑋 ≥ 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (28)

ELU

It stands for exponential linear unit. It has an advantage

over ReLU in that the ELU uses negative and positive

features. ELU is even preferred over softmax and sigmoid, as

these activation functions tend to saturate at a boundary.

Unlike sigmoid, ELU can extend up to infinity.

𝐸𝐿𝑈 = {
𝑥, 𝑋 ≥ 0

𝛼 ⋅ (𝑒𝑥 − 1), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (29)

Exponential

As the name suggests, the output of the activation

function is the exponential power of the input for all real

values.

Tanh

This activation function is the default and the only

allowed activation function for feedback-type layers. The

function acts as a linear function for smaller values of inputs,

but quickly saturates to ±1 for larger values. The function is

given as:

𝑡𝑎𝑛ℎ =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 (30)

Sigmoid

This activation function is used for the binarization of

features. Generally, this activation is utilized at the output

layer for binary classification. This activation simulates the

Fermi probability of any occupied state. The transfer function

confined between 0 and 1 is given as:

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 =
1

1+𝑒−𝑥 (31)

Softplus

Similar to sigmoid, softplus employs the exponential

power of inputs. The softplus uses a logarithmic function,

making it suitable for large feature values. The softplus is

given as:

𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠 = 𝑙𝑜𝑔(1 + 𝑒𝑥) (32)

In the above equation 32, a one is added to the

exponential input to avoid a log of zero error.

CeLU

It stands for a continuously differentiable linear unit. As

the name suggests, the transfer function is continuous and

differentiable at each point. The CeLU was proposed by

Barron in [24]. The transfer function is given as:

𝐸𝐿𝑈 = {
𝑥, 𝑋 ≥ 0

𝛼 ⋅ (𝑒𝑥/𝛼 − 1), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (33)

Softmax

It is used in the output layer of multiclass classification

problems. The softmax converts the features into a

probabilistic feature space. The probabilities of the features

are compressed between 0 and 1.

Figure 4 depicts various activation functions for a range

of inputs.

3.6.4. Initializers

The TLBO series uniquely provides each layer with its

own initializer. Random as well as Glorot initializer are

available in the CTO series. The Random initializer randomly

initialize weights as either uniformly or normally distributed

random numbers. At the same time, the Glorot initializer

takes the fan-in and fan-out of the layer into consideration

while initializing the weights.

Fig. 4 The transfer function of different activation functions for a

range of inputs from -10 to 10

Shourya Shukla et al. / IJECE, 12(9), 162-177, 2025

172

4. Experimental Results and Discussions
The flowchart of the experiment is depicted in Figure 9.

The experiment is carried out on a Dell Precision 5820

workstation with Windows 10 and Python 3.8. Tensorflow

with the keras library is used to train the deep learning

models. The CPU configuration of the system is 2TB HDD,

16GB RAM DDR5 and 4GB GPU of Ryzen.

The experiment starts with reading the data. The NSL-

KDD dataset is employed in this experiment to train and test

the explored hybrid neural networks. The dataset is a refined

version of the KDDCup99 dataset. The KDD99 dataset was

cleaned by removing redundant data, and duplicates were

also removed by Tavalaee [25].

The dataset consists of 41 features and 125,973

instances. The dataset was made by DARPA in 1999. The

dataset contains 67,343 normal instances, and the rest are

attack instances. These attack instances were recorded for 24

different attack strategies, such as ping of death, smurf, saint,

warezmaster, etc.

These 24 attacks are marked as class 1, and normal

instances are marked as class 0 for binary classification. In

comparison, these attacks were marked under their umbrella

attack strategies. Denial of Service (DoS), where an attacker

disrupts the network resources, was labelled as 1. Probe,

which is a passive attack strategy, was labelled 2. User to

Root (U2R), in which the intruder gains super user access and

Remote to Local (R2L), where an outside masquerades as the

network, were labelled 4 and 5, respectively, for multiclass

classification. This step is known as class labelling.

Out of 41 features in the dataset, three of them are

alphanumeric in nature. These features are protocol type,

which has information about the communication protocol.

Service and flag features are other alphanumeric features

present in the data. These features are converted into a

numeric value using a label encoder.

In the optimization process, the first step involves the

initialization of the population. Each solution has a size of

12x8. The given size is the combined size of the TLBO and

CTO. The TLBO series has a single row with eight elements,

whereas CTO consist of 11 elements belonging to 8 possible

layers. This makes the CTO series 11x8 in size. The

population of students is taken to be 10. Hence, 10x12x8

becomes the initial population size.

In the next step, a random decision is made on the model

that either structural or hidden layer parameters are modified

to explore a new solution. A random variable is generated; if

this variable is less than 0.5, the TLBO algorithm is

implemented; otherwise, the CTO algorithm is implemented.

This gives equal opportunities to both TLBO and CTO.

If the TLBO is implemented, the external parameters are

modified by the teaching phase and learning phases as given

in equations 3 to 5 for the teaching phase and equation 6 in

the learning phase. As the population is binary, these

equations are modified by employing AND and XOR

Boolean operations.

If the CTO is selected, a random hidden one is selected

from the two sections and modified using interaction with the

class topper as well as the section topper.

The modified population is then interpreted as a Hybrid

neural network. The OHNN is then trained and tested on the

NSL-KDD dataset. The OHNN with higher accuracy

replaces the inferior solution in each iteration. The

optimization was run for 100 iterations. At the end of the

iteration, the best architecture is obtained.

4.1. Binary Classification of NSL-KDD Dataset

The experiment is performed on the NSL-KDD dataset

with normal as class 0 and all other classes as 1. The Binary

classifier is a six hidden structure. The OHNN consists of an

input layer with 41 features, followed by a CNN layer with

64 nodes, ReLU activation and Random Uniform Initializer.

This layer is followed by an RNN layer with 16 units, tanh

activation and Glorot Normal initializer.

The RNN layer is followed by a DNN layer with 16

nodes, a ReLU activation function and a Random Normal

initializer. After that, an LSTM layer with 32 units, tanh, and

a Random Normal initializer was modelled by OHNN. These

layers were followed by DNN and RNN layers with CeLU

and tanh activation functions. Both layers were initialized

using random uniform initializers.

The output layer is always a Dense layer with 2 nodes

for binary classification. The Global Parameters neglected

the last two layers of the CTO series by selecting a 6-layer

deep architecture, making them non-critical or redundant

layers. The Adadelta optimizer was used to update the

weights of the OHNN with a 0.01 learning rate. The Binary

OHNN achieved 94.33% accuracy. The figure depicts the

accuracy of binary OHNN over 50 epochs.

4.2. Multiclass Classification of NSL-KDD Dataset

The multiclass classifier using OHNN was found to be a

7-layered structure. The structure has an input layer with 41

features of KDD.

The first hidden layer is an LSTM layer with 32 units,

tanh activation and a random normal initializer. This layer

was followed by two CNN layers with 32 and 64 nodes,

respectively. Glorot uniform and random normal initializer

were selected.

Shourya Shukla et al. / IJECE, 12(9), 162-177, 2025

173

Fig. 5 Binary OHNN accuracy vs epochs

The next four layers are feedback-type layers. The four

layers are LSTM, followed by RNN and two LSTM layers.

The layers diverged with 16, 32 and 128 units, followed by

16 units. All feedback layers are hard-coded to have a tanh

activation function. The first LSTM and RNN have a

Random Uniform initializer, followed by Random Normal,

an initialiser followed by another Random Uniform. Reshape

layers were explicitly added to the network.

The output for the multiclass classifier has 5 nodes for 5

classes with softmax activation. The TLBO series selected

the AdaMax optimizer with a 0.01 learning rate. The 7-

layered architecture gave 99.37% accuracy, as shown in

Figure 6, and the model plot is shown in Figure 8.

Fig. 6 Multiclass OHNN Accuracy vs Epochs Curve

4.3. Comparison with Existing Models

A comparison with existing research papers is given in

Table 3. The proposed algorithm outperformed several

machine learning and deep learning algorithms. The TLBO

and CTO optimized the architecture. After 100 iterations, the

binary classifier has 6 6-layer structure as shown in the

Fig. 7 OHNN structure for Binary Classification

Figure 7 The exploration and hyper-parameter tuning

gave an accuracy of 94.33%. The CNN layer, in combination

with feedback networks, RNN and LSTM, has led to the

extraction of moving windowed features utilizing the

feedback effect of the succeeding recurrent layers.

Thus, improving the accuracy of the model. These

features are then passed to the dense layer for the extraction

of linear as well as non-linear feature approximation. Due to

the novel twin optimization strategy, the proposed

architecture outperformed several existing methodologies, as

shown in Table 3.

Conv1D

Input shape: (None, 1, 41) Output shape: (None, 1, 64)

SimpleRNN

Input shape: (None, 1, 64) Output shape: (None, 16)

Dense

Input shape: (None, 16) Output shape: (None, 16)

Reshape

Input shape: (None, 16) Output shape: (None, 1, 16)

LSTM

Input shape: (None, 1, 16) Output shape: (None, 32)

Dense

Input shape: (None, 32) Output shape: (None, 64)

Reshape

Input shape: (None, 64) Output shape: (None, 1, 64)

SimpleRNN

Input shape: (None, 1, 64) Output shape: (None, 8)

Dense

Input shape: (None, 8) Output shape: (None, 2)

InputLayer

Output shape: (None, 1, 41)

Shourya Shukla et al. / IJECE, 12(9), 162-177, 2025

174

Table 3. Comparison with SOTA Algorithms

S. NO. Author Technique Accuracy

1.

2.

3.

4.

5.

6..

VinayKumar

[26]

Almeseidin [27]

Ingre [28]

Jin [29]

OHNN Binary

OHNN Multi

Deep

Learning

J48

DT

Rule Based

Presented

Bin

Presented

multi

75.20

93.20

90.30

98

94.33

99.37

For multiclass classification of intrusions, not only the

malicious packets but also the type of attack are determined.

The optimized TLBO-CTO model gave a predominantly

recurrent type architecture for the multiclass classification.

The LSTM and RNN layers are capable of extracting

long-term features, but they lack a local understanding of

features, which were indeed extracted by the CNN layers,

creating an interface between two recurrent sections.

The CNN and recurrent layer complement each other,

making an optimal architecture for detection purposes. Table

3 depicts that the optimized architecture outperformed the

existing techniques by a large margin.

5. Conclusion
In this paper, the TLBO and CTO-based optimized

hybrid neural network has been proposed. In this algorithm,

the human requirement for designing a deep learning

algorithm is considered. The TLBO was appointed for outer

parameters such as the number of layers, optimizers and

learning rate.

The CTO was appointed as an internal parameter

selector. These include the type of layer, number of hidden

nodes or units, activation function and weight initializers.

The proposed optimization algorithm was iterated 100 times

with 10 student population size.

The binary classifier was a 6-layer structure with 94.33%

accuracy, whereas the multiclass 7-layer structure gave

99.37% accuracy.

In future, other metaheuristic algorithms such as bio-

inspired grey wolf optimization, ant colony optimization,

etc., can be employed for exploration of new deep

architectures. In addition, some of the pre-trained models,

such as ResNet, VGG16, VGG19, etc., can also be taken into

consideration.

Fig. 8 OHNN structure for Multiclass Classification

LSTM

Input shape: (None, 1, 41) Output shape: (None, 32)

Reshape

Input shape. (None, 32) Output shape: (None, 1, 32)

Conv1D

Input shapir (None, 1, 32) Dutput shape: (None, 1, 32)

Conv1D

Input shape: (None, 1, 32) Output shape: (None, 1, 64)

Reshape

Input shape: (None, 1, 64) Output shape: (None, 1, 64)

LSTM

Input shape (None, 1, 64) Output shape: (None, 16)

Reshape

Input shape: (None, 16) Output shape: (None, 1, 16)
Output shape: (None, 1, 16)

SimpleRNN

Input shape: (None, 1, 16) Output shape: (None, 32)

Reshape

Input shape: (None, 32) Output shape: (None, 1, 32)

InputLayer

Output shape: (None, 1, 41)

LSTM

Input shape: (None, 1, 32) Oulput shape: (None, 128)

Reshape

Input shape: (None, 128) Output shape: (None, 1, 128)

LSTM

Input shape: (None, 1, 128) Output shape: (None, 16)

Dense

Input shape: (None, 16) Output shape: (None, 5)

Shourya Shukla et al. / IJECE, 12(9), 162-177, 2025

175

Fig. 9 Flowchart of the proposed algorithm

Determine Best Solution

C
la

ss
 T

o
p

p
er

 O
p

ti
m

iz
at

io
n

Divide the Student (CTO)

population into 2 sections

Find the best student for each section.

Assign Section Topper

Assign best student as Class Topper

Section Topper learns from Class topper

Students learn from Section Topper

T
ea

ch
in

g
 P

h
as

e

Calculate Mean of the TLBO
population

Determine best fitness

Assign best fitness solution as teacher

Calculate new solutions

If rand <

0.5

In
it

ia
li

za
ti

o
n

Read

Data

Label Encoding of the alpha numeric

data

Class Labelling

Initialize TLBO population

Initialize CTO Population

Y

e

N

o

L
ea

n
in

g
 P

h
as

e

Assign Random Partners

Calculate new solutions with partners

Perform Greedy Selection

O
b

je
ct

iv
e

F
u

n
ct

io
n

Is

Max

Iterati

Create Hybrid Neural Network using

TLBO and CTO population

Find Accuracy

Y

Shourya Shukla et al. / IJECE, 12(9), 162-177, 2025

176

References

[1] Salman Muneer et al., “A Critical Review of Artificial Intelligence Based Approaches in Intrusion Detection: A

Comprehensive Analysis,” Journal of Engineering, vol. 2024, no. 1, pp. 1-16, 2024. [CrossRef] [Google Scholar]

[Publisher Link]

[2] Abdul Qaddos et al., “A Novel Intrusion Detection Framework for Optimizing IoT Security,” Scientific Reports, vol. 14,

pp. 1-22, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[3] Albara Awajan, “A Novel Deep Learning-Based Intrusion Detection System for IoT Networks,” Computers, vol. 12, no.

2, pp. 1-17, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[4] Emad Ul Haq Qazi, Muhammad Hamza Faheem, and Tanveer Zia, “HDLNIDS : Hybrid Deep-Learning-Based Network

Intrusion Detection System,” Applied Sciences, vol. 13, no. 8, pp. 1-16, 2023. [CrossRef] [Google Scholar] [Publisher

Link]

[5] Md. Alamgir Hossain, and Md. Saiful Islam, “Ensuring Network Security with a Robust Intrusion Detection System using

Ensemble-Based Machine Learning,” Array, vol. 19, pp. 1-14, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[6] Mansi Bhavsar et al., “Anomaly-based Intrusion Detection System for IoT Application,” Discover Internet of Things, vol.

3, pp. 1-23, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[7] Zihan Wu et al., “RTIDS: A Robust Transformer-Based Approach for Intrusion Detection System,” IEEE Access, vol. 10,

pp. 64375-64387, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[8] Sydney Mambwe Kasongo, “A Deep Learning Technique for Intrusion Detection System Using a Recurrent Neural

Networks based Framework,” Computer Communications, vol. 199, pp. 113-125, 2023. [CrossRef] [Google Scholar]

[Publisher Link]

[9] Mohamed Selim Korium et al., “Intrusion Detection System for Cyberattacks in the Internet of Vehicles Environment,”

Ad Hoc Networks, vol. 153, pp. 1-16, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[10] Dhiaa Musleh et al., “Intrusion Detection System Using Feature Extraction with Machine Learning Algorithms in IoT,”

Journal of Sensor and Actuator Networks, vol. 12, no. 2, pp. 1-19, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[11] Hakan Can Altunay, and Zafer Albayrak, “A Hybrid CNN+LSTM based Intrusion Detection System for Industrial IoT

Networks,” Engineering Science and Technology, an International Journal, vol. 38, pp. 1-13, 2023. [CrossRef] [Google

Scholar] [Publisher Link]

[12] G. Logeswari, S. Bose, and T. Anitha, “An Intrusion Detection System for SDN Using Machine Learning,” Intelligent

Automation & Soft Computing, vol. 35, no. 1, pp. 867-880, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[13] Ajay Kaushik, and Hamed Al-Raweshidy, “A Novel Intrusion Detection System for Internet of Things Devices and Data,”

Wireless Networks, vol. 30, pp. 258-294, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[14] Salam Fraihat et al., “Intrusion Detection System for Large-Scale IoT NetFlow Networks Using Machine Learning with

Modified Arithmetic Optimization Algorithm,” Internet of Things, vol. 22, 2023. [CrossRef] [Google Scholar] [Publisher

Link]

[15] Abdullah Alzaqebah et al., “A Modified Grey Wolf Optimization Algorithm for an Intrusion Detection System,”

Mathematics, vol. 10, no. 6, pp. 1-16, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[16] Dusmurod Kilichev, and Wooseong Kim, “Hyper-Parameter Optimization for 1D-CNN-Based Network Intrusion

Detection Using GA and PSO,” Mathematics, vol. 11, no. 17, pp. 1-31, 2023. [CrossRef] [Google Scholar] [Publisher

Link]

[17] Yesi Novaria Kunang et al., “Attack Classification of an Intrusion Detection System using Deep Learning and Hyper-

Parameter Optimization,” Journal of Information Security and Applications, vol. 58, 2021. [CrossRef] [Google Scholar]

[Publisher Link]

[18] Muhammad Imran et al., “Intrusion Detection in Networks using Cuckoo Search Optimization,” Soft Computing, vol. 26,

pp. 10651-10663, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[19] Shahid Latif et al., “DTL-IDS: An Optimized Intrusion Detection Framework using Deep Transfer Learning and Genetic

Algorithm,” Journal of Network and Computer Applications, vol. 221, pp. 1-10, 2024. [CrossRef] [Google Scholar]

[Publisher Link]

[20] Subham Kumar Gupta, Meenakshi Tripathi, and Jyoti Grover, “Hybrid Optimization and Deep Learning Based Intrusion

Detection System,” Computers and Electrical Engineering, vol. 100, 2022. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1155/2024/3909173
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Critical+Review+of+Artificial+Intelligence+Based+Approaches+in+Intrusion+Detection%3A+A+Comprehensive+Analysis&btnG=
https://onlinelibrary.wiley.com/doi/full/10.1155/2024/3909173
https://doi.org/10.1038/s41598-024-72049-z
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+novel+intrusion+detection+framework+for+optimizing+IoT+security&btnG=
https://www.nature.com/articles/s41598-024-72049-z
https://doi.org/10.3390/computers12020034
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Novel+Deep+Learning-Based+Intrusion+Detection+System+for+IoT+Networks&btnG=
https://www.mdpi.com/2073-431X/12/2/34
https://doi.org/10.3390/app13084921
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=HDLNIDS%3A+Hybrid+Deep-Learning-Based+Network+Intrusion+Detection+System&btnG=
https://www.mdpi.com/2076-3417/13/8/4921
https://www.mdpi.com/2076-3417/13/8/4921
https://doi.org/10.1016/j.array.2023.100306
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=M.+A.+Hossain%2C+Ensuring+network+security+with+a+robust+intrusion+detection+system+using+ensemble-based+machine+learning&btnG=
https://www.sciencedirect.com/science/article/pii/S2590005623000310
https://doi.org/10.1007/s43926-023-00034-5
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Anomaly-based+intrusion+detection+system+for+IoT+application&btnG=
https://link.springer.com/article/10.1007/s43926-023-00034-5
https://doi.org/10.1109/ACCESS.2022.3182333
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=RTIDS%3A+A+Robust+Transformer-Based+Approach+for+Intrusion+Detection+System&btnG=
https://ieeexplore.ieee.org/abstract/document/9794665
https://doi.org/10.1016/j.comcom.2022.12.010
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+deep+learning+technique+for+intrusion+detection+system+using+a+Recurrent+Neural+Networks+based+framework&btnG=
https://www.sciencedirect.com/science/article/pii/S0140366422004601
https://doi.org/10.1016/j.adhoc.2023.103330
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Intrusion+detection+system+for+cyberattacks+in+the+Internet+of+Vehicles+environment&btnG=
https://www.sciencedirect.com/science/article/pii/S1570870523002500
https://doi.org/10.3390/jsan12020029
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Intrusion+Detection+System+Using+Feature+Extraction+with+Machine+Learning+Algorithms+in+IoT&btnG=
https://www.mdpi.com/2224-2708/12/2/29
https://doi.org/10.1016/j.jestch.2022.101322
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+hybrid+CNN+%2B+LSTMbased+intrusion+detection+system+for+industrial+IoT+networks&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+hybrid+CNN+%2B+LSTMbased+intrusion+detection+system+for+industrial+IoT+networks&btnG=
https://www.sciencedirect.com/science/article/pii/S2215098622002312
https://doi.org/10.32604/iasc.2023.026769
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Intrusion+Detection+System+for+SDN+Using+Machine+Learning&btnG=
https://www.techscience.com/iasc/v35n1/48147
https://doi.org/10.1007/s11276-023-03435-0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+novel+intrusion+detection+system+for+internet+of+things+devices+and+data&btnG=
https://link.springer.com/article/10.1007/s11276-023-03435-0
https://doi.org/10.1016/j.iot.2023.100819
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Intrusion+detection+system+for+large-scale+IoT+NetFlow+networks+using+machine+learning+with+modified+Arithmetic+Optimization+Algorithm&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S2542660523001427
https://www.sciencedirect.com/science/article/abs/pii/S2542660523001427
https://doi.org/10.3390/math10060999
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Modified+Grey+Wolf+Optimization+Algorithm+for+an+Intrusion+Detection+System&btnG=
https://www.mdpi.com/2227-7390/10/6/999
https://doi.org/10.3390/math11173724
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hyper-parameter+Optimization+for+1D-CNN-Based+Network+Intrusion+Detection+Using+GA+and+PSO&btnG=
https://www.mdpi.com/2227-7390/11/17/3724
https://www.mdpi.com/2227-7390/11/17/3724
https://doi.org/10.1016/j.jisa.2021.102804
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Attack+classification+of+an+intrusion+detection+system+using+deep+learning+and+hyper-parameter+optimization&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S2214212621000430
https://doi.org/10.1007/s00500-022-06798-2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Intrusion+detection+in+networks+using+cuckoo+search+optimization&btnG=
https://link.springer.com/article/10.1007/s00500-022-06798-2
https://doi.org/10.1016/j.jnca.2023.103784
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=DTL-IDS%3A+An+optimized+Intrusion+Detection+Framework+using+Deep+Transfer+Learning+and+Genetic+Algorithm&btnG=
https://www.sciencedirect.com/science/article/pii/S1084804523002035
https://doi.org/10.1016/j.compeleceng.2022.107876
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hybrid+optimization+and+deep+learning+based+intrusion+detection+system%2C&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0045790622001653

Shourya Shukla et al. / IJECE, 12(9), 162-177, 2025

177

[21] Doaa Sami Khafaga et al., “Voting Classifier and Metaheuristic Optimization for Network Intrusion Detection,”

Computers, Materials & Continua, vol. 74, no. 2, pp. 3183-3198, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[22] R.V. Rao, V.J. Savsani, and D.P. Vakharia, “Teaching–Learning-Based Optimization: A Novel Method for Constrained

Mechanical Design Optimization Problems,” Computer-Aided Design, vol. 43, no. 3, pp. 303-315, 2011. [CrossRef]

[Google Scholar] [Publisher Link]

[23] Pranesh Das, Dushmanta Kumar Das, and Shouvik Dey, “A New Class Topper Optimization Algorithm with an

Application to Data Clustering,” IEEE Transactions on Emerging Topics in Computing, vol. 8, no. 4, pp. 948-959, 2020.

[CrossRef] [Google Scholar] [Publisher Link]

[24] Jonathan T. Barron, “Continuously Differentiable Exponential Linear Units,” arXiv Preprint, pp. 1-2, 2017. [CrossRef]

[Google Scholar] [Publisher Link]

[25] Mahbod Tavallaee et al., “A Detailed Analysis of the KDD CUP 99 Data Set,” 2009 IEEE Symposium on Computational

Intelligence for Security and Defense Applications, Ottawa, ON, Canada, pp. 1-6, 2009. [CrossRef] [Google Scholar]

[Publisher Link]

[26] R. Vinayakumar et al., “Deep Learning Approach for Intelligent Intrusion Detection System,” IEEE Access, vol. 7, pp.

41525-41550, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[27] Mohammad Almseidin et al., “Evaluation of Machine Learning Algorithms for Intrusion Detection System,” 2017 IEEE

15th International Symposium on Intelligent Systems and Informatics (SISY), Subotica, Serbia, pp. 277-282, 2017.

[CrossRef] [Google Scholar] [Publisher Link]

[28] Bhupendra Ingre, Anamika Yadav, and Atul Kumar Soni, “Decision Tree Based Intrusion Detection System for NSL-

KDD Dataset,” Information and Communication Technology for Intelligent Systems, vol. 2, pp. 207-218, 2017. [CrossRef]

[Google Scholar] [Publisher Link]

[29] Dongzi Jin et al., “SwiftIDS: Real-Time Intrusion Detection System based on LightGBM and Parallel Intrusion Detection

Mechanism,” Computers & Security, vol. 97, 2020. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.32604/cmc.2023.033513
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Voting+Classifier+and+Metaheuristic+Optimization+for+Network+Intrusion+Detection&btnG=
https://www.techscience.com/cmc/v74n2/50302
https://doi.org/10.1016/j.cad.2010.12.015
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Teaching%E2%80%93learning-based+optimization%3A+a+novel+method+for+constrained+mechanical+design+optimization+problems&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0010448510002484
https://doi.org/10.1109/TETC.2018.2812927
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+New+Class+Topper+Optimization+Algorithm+with+an+Application+to+Data+Clustering&btnG=
https://ieeexplore.ieee.org/abstract/document/8307256
https://doi.org/10.48550/arXiv.1704.07483
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Continuously+Differentiable+Exponential+Linear+Units&btnG=
https://arxiv.org/abs/1704.07483
https://doi.org/10.1109/CISDA.2009.5356528
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Detailed+Analysis+of+the+KDD+CUP+99+Data+Set&btnG=
https://ieeexplore.ieee.org/abstract/document/5356528
https://doi.org/10.1109/ACCESS.2019.2895334
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+Learning+Approach+for+Intelligent+Intrusion+Detection+System&btnG=
https://ieeexplore.ieee.org/abstract/document/8681044
https://doi.org/10.1109/SISY.2017.8080566
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Evaluation+of+machine+learning+algorithms+for+intrusion+detection+system&btnG=
https://ieeexplore.ieee.org/abstract/document/8080566
https://doi.org/10.1007/978-3-319-63645-0_23
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Decision+tree+based+intrusion+detection+system+for+NSL-KDD+dataset&btnG=
https://link.springer.com/chapter/10.1007/978-3-319-63645-0_23
https://doi.org/10.1016/j.cose.2020.101984
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=SwiftIDS%3A+Real-time+intrusion+detection+system+based+on+LightGBM+and+parallel+intrusion+detection+mechanism&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167404820302571

