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Abstract - In recent years, cybersecurity has become a hot topic for exploration among researchers. The anomaly-based 

Detection methods have been widely used for early detection and mitigation of Intrusions. As the hardware is evolving, there 

is a need for exploration of new features. This is made possible through novel deep learning models. In this paper, an 

automated construction of various hybrid deep learning models is performed through a twin optimization algorithm. The 

Teaching Learning Based Optimization and Class Topper Optimization are used to generate new deep learning structures. 

The model parameters, like the Number of Hidden layers, the Optimizer and the Learning Rate, are controlled by TLBO. CTO 

was used to select different internal parameters such as Types of layers, Number of nodes per layer, the activation function 

and initializers. The proposed model was used to explore several deep learning models to train and test on the NSL-KDD 

dataset. Binary and Multiclass classifiers were explored for different neural network architectures based on TLBO and CTO 

parameters. The explored models showed comparable accuracy with respect to existing detection models. 

Keywords - Teaching Learning Based Optimization, Class Topper Optimization, Hybrid Neural Network, Intrusion Detection 

System, Optimization. 

1. Introduction  
Artificial Intelligence models such as Machine learning 

and Deep learning models have become one of the most 

popular assets for prediction and forecasting of unknowns in 

many fields such as healthcare, agriculture, defense, security 

and many other fields. One such emerging field is the 

detection of malicious activities in a network. The 

advancement in the interconnection of devices without 

human involvement has left the communication nodes under 

the threat of an attack. These cyber threats are known as 

Intrusions.  

 

These Intrusions are deliberate, malicious activities that 

may or may not disrupt or destroy network resources. An 

Intrusion can be active or passive in nature. An active attack, 

such as a Denial of Service (DoS) attack, can deplete 

bandwidth or other resources, such as power, in an energy-

constrained environment. On the other hand, passive attacks, 

such as probe attacks, do not directly hamper network 

activities but remain dormant and search for vulnerabilities in 

the system. Passive attacks have proven to be more damaging 

to a network as they are very difficult to detect.  

 

An Intrusion Detection System (IDS) is a monitoring 

framework used in a computer or a network traffic analyzer 

to detect malicious activities [1]. IDS, nowadays, is 

implemented not only on computers, but also on Cloud 

services, VANETs, MANETs and other Wireless Sensor 

Networks (WSN) [2].  

 

The IDS can be of two types based on their detection 

strategies: Signature-based IDS and Anomaly-based IDS. 

The signature-based IDS detects known intrusive activities 

very fast, but fails to detect Zero-day attacks. A Zero-day 

attack is well detected by a Based IDS, where normal data is 

learnt and any deviation from normal is said to be malicious 

in nature. Anomaly-based IDS uses Stochastic, probabilistic, 

or Artificial intelligence-based learning techniques for 

training the models on the data.  

 

Different Deep Learning algorithms with novel 

structures are employed to explore more ways to detect the 

intrusive activities in an efficient manner. The deep learning 

model has been evolving with the advancement in processors 

and Graphics Processing Units (GPUs). Different 

architectures of deep learning models, such as autoencoders, 

hybrid models, transfer learning models, etc., are employed 

for black-box feature extraction.  

 

Deep Learning algorithms are structure-oriented models 

in which hidden layers are arranged in different possible 

orders to extract desirable features. There are many 

possibilities of the Deep Learning architectures resulting in 
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different feature extraction methods. These possibilities 

include structure as well as hyperparameter tuning. The 

number of implementable structures creates a problem of 

non-polynomial order. Therefore, there is a high need of 

optimizing the structure of the proposed architecture. 

Metaheuristic optimization algorithms, such as bio-inspired, 

human behavior, or physics-inspired techniques, have been 

utilized to automate these deep structures. This not only 

improves the accuracy by exploration of new architectures, 

but also mitigates the human cognitive bias for some specific 

structures. 

 

With the intrusion and attackers finding new strategies, 

IDS have to evolve at a faster rate. Novel Features have to be 

determined. In this paper, these advancements are explored. 

The hybrid model architectures are explored by using two 

human-inspired optimisation algorithms, namely, Teaching 

Learning Based Optimization and Class Topper 

Optimization, to explore new Optimized Hybrid Neural 

Network (OHNN) architectures. The combined optimization 

algorithms mimic the knowledge transfer from teacher to 

student, and competition among students encourages them to 

learn more. 

 

The paper's structure is given as follows. Section I briefly 

introduces the ongoing issues with intrusions and deep 

learning structures. Section II deals with the Literature 

Survey and explains the existing algorithms. Methodology is 

presented in Section III. Section IV gives information about 

the Experimental Work carried out, and Section V includes 

the Conclusion of the paper along with the future scope. 

 

2. Related Work 
In this section, a rationale survey of the SOTA research 

in Intrusion Detection Systems has been presented.   

 

Ajawan in [3] proposed a deep learning architecture for 

a real-time Intrusion Detection System. A four-layer fully 

connected network had been proposed. The architecture was 

deployed on IoT devices for the detection of Blackhole, 

Distributed Denial of Services, Sinkhole and Workhole 

attacks. Network Emulators have been employed to connect 

the victim machine to the network virtually. Moreover, the 

author was able to achieve a high detection accuracy of 

93.74%. 

 

Qazi et al. [4] proposed a hybrid deep neural network for 

network-based IDS.  A convolutional recurrent network was 

utilized to mitigate any malicious packets from the network. 

A collection of local features was performed by a 

convolutional neural network layer, whereas the recurrent 

layer was responsible for feature extraction. The 

CICIDS2018 dataset was used to train the hybrid 

architecture. The architecture consisted of two convolutional 

layers followed by a recurrent network. Then, a dense layer 

along with a flattened layer was applied to produce output for 

classification. A high accuracy of 98.90% was achieved by 

the authors. 

 

Hossain and Islam in [5] proposed an ensemble machine 

learning algorithm for the detection of intrusions. Ensemble-

based bagging algorithms, such as Random Forest (RF). 

Meanwhile, boosting-based algorithms like Gradient 

Boosting, Adaboost, XGBoost, and Simple Stacking 

classifiers were used for detection purposes. Feature 

extraction was performed on various datasets using 

correlation analysis. Furthermore, Principal Component 

Analysis (PCA) was applied to reduce the feature dimension. 

The authors ensured a very high accuracy of 99% for more 

than 10 datasets, including NSL-KDD and UNSW-NB15 

datasets. 

 

Bhavsar et al. [6] proposed a Pearson Correlation 

Coefficient-based Convolutional Neural Network. The 

Pearson correlation coefficient was used for feature 

extraction. NSL-KDD, which is a prominent dataset, was 

employed for training. The latest datasets, CICIDS-2017 and 

IOTID20, were utilised to train the convolutional neural 

network with Pearson correlation coefficient-based features. 

A three-layer CNN was used for classification and achieved 

99% accuracy. 

 

Wu et al. [7] proposed a transformer-based intrusion 

detection system. The authors balanced the dimensionality 

reduction and feature retention trade-off in the work. The 

structure consisted of six encoder layers, each made of a self-

attention network. The class imbalance was dealt with using 

the SMOTE algorithm for  

the creation of synthetic data. 98.58% accuracy was achieved 

by the anomaly-based detection method. 

 

Kasongo in [8] proposed various feedback neural 

network architectures. An XGBoost-based feature selection 

algorithm was employed with feedback networks like RNN. 

Moreover, GRU and LSTM-based networks were also 

inferred. Moreover, authors inferred that increased feature 

space complexity leads to decreased testing accuracy. A 

three-layer architecture with varying hidden nodes from 15 to 

210 was compared. 

 

Korium et al in [9] proposed a model with a z-score for 

normalization of the features. Regression models were 

employed for the complexity reduction, and various machine 

learning algorithms were used as classifiers. The SMOTE 

algorithm was applied to the synthetic data along with the 

modified nearest neighbor technique.  HyperOpt was used to 

parameter-tune the IDS for vehicle intrusions.  

 

Musleh et al in [10] proposed a transfer learning based 

method for IDS. DenseNet and VGG-16 models were used 

for feature extraction, and machine learning algorithms, such 

as RF and K-NN, were used for the mitigation of malicious 
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packets in the network. An autocolor correlogram was 

applied to the processed data using the proposed method. 

98.3% accuracy was attained by the model with fine KNN.  

 

The use of hybrid structures has enabled researchers to 

explore more features in the deep learning algorithms. 

Altunay et al suggested a CNN-LSTM-based hybrid model. 

A two-layer CNN and a three-layer LSTM architecture were 

proposed [11]. The suggested model achieved 93.84% 

accuracy. 

 

Logeswari et al. [12] proposed a hybrid feature selection 

algorithm with Light Gradient Boosting Machine for 

Intrusion Detection Systems. Correlation-based feature 

extraction was proposed by the authors. In particular, 

Pearson’s Correlation Coefficient was employed for feature 

extraction in software-defined radio. Redundant features 

were eliminated using Random Forest with recursive feature 

elimination.  

 

Metaheuristic optimization algorithms, which are 

teaching learning based optimization, have gained much 

popularity among researchers. Kaushik et al in [13] proposed 

a teaching learning based optimized intrusion detection 

system to overcome communication overhead. The author 

was able to outperform the bat optimization algorithm and the 

genetic algorithm by a large margin on the UNSW-NB15 

dataset. A random forest classifier was employed to predict 

malicious packets in the network.  

 

Fraihat et al. [14] proposed a network-based intrusion 

detection system in an IoT NetFlow-based environment. An 

arithmetic optimization algorithm was employed for feature 

selection. The proposed algorithm was able to reduce the 

feature set from 43 features to 7 features. Ensemble tree-

based classifiers were employed for classification purposes. 

The authors suggested two-dimensional redundancy removal 

to achieve better accuracy. An objective function to minimize 

the loss as well as minimizer the size of selected features is 

incorporated.  

 

Alzaqebah et al in [15] proposed a modified grey wolf 

optimization technique by combining filter- and wrapper-

based approaches. This was performed to select important 

features and discard other extracted features. Most relevant 

features were selected based on information gain. The 

extreme learning machine technique was employed for 

classification purposes, which is a one-layer feed-forward 

neural network. A fitness function with minimization of false 

positives and false negatives, and reduced features was 

employed. 

 

Kilichev et al in [16] proposed a CNN model Optimized 

using genetic algorithm and particle swarm optimization. GA 

and PSO were used to explore and exploit the features at the 

same time through hyper-parameter optimization.  Network 

structure, learning and optimization, as well as the 

regularization effect, were taken into consideration. 

Constrained optimization with hyper-parameter tuning was 

applied for the creation of the CNN layer.  

 

Kunang et al in [17] proposed a similar approach by 

hyperparameter tuning using an optimization algorithm. An 

autoencoder, along with a deep neural network, was 

employed to detect intrusions. Parameter tuning was 

achieved by utilizing grid search and random search 

techniques. The algorithm Optimized hyperparameters using 

metaheuristic algorithms, which proved to be more efficient 

than built-in hyperparameter optimizers. These parameters 

were used to generate new deep learning architectures. 

However, the type of structures was confined to autoencoder 

and fully connected network layers only. 

 

Imran et al in [18] proposed a cuckoo search 

optimization algorithm-based intrusion detection system. 

Errors in predicting the patterns, such as MAE, MSE and 

RMSE, were minimized to predict the intrusions in the NSL-

KDD dataset.  

 

Latif et al in [19] proposed a genetic algorithm-based 

deep learning framework. Convolutional neural network, 

genetic algorithm and bootstrap aggregation transfer 

ensemble techniques were employed by the authors. Signals 

or instances were converted to images, and a CNN was 

applied along with GA for fine-tuning. Bootstrapping 

ensembles were used to make the system robust.  

 

Gupta et al in [20] proposed a modified twin 

optimization-based deep learning method for the detection 

and mitigation of intrusions. A hybrid chicken swarm and 

genetic algorithm were employed for feature selection. The 

mini-batch K-means clustering algorithm was employed for 

dimensionality reduction. The Levy flight, which is a feature 

of the crow optimization algorithm, was used in the chicken 

swarm optimization for better exploration of the search space.  

 

Khafaga et al suggested a voting classifier along with 

metaheuristic optimization of whale optimization algorithm 

guided by dipper throated optimizer [21].  Class imbalance 

was dealt with using the Synthetic Minority Oversampling 

Technique (SMOTE). The RPL-NIDS17 dataset was 

generated by the NetSim simulator to train and test the model. 

 

Based on the literature survey, the following 

shortcomings were found in the existing methodologies: 

 Authors in [11] adapted a hybrid Neural Network with 

CNN and LSTM layers. However, the human cognitive 

bias led to the combination of all CNN and LSTM layers. 

The architecture lacked exploration of different 

arrangements of these layers for better feature extraction 

strategies. 

 Tuned Neural Network architectures have been 
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suggested by [17, 19]. However, the methods either 

provided an optimized hyperparameter tuning method or 

employed only one type of hidden layer.  

 Authors in [16] employed a combined optimization 

technique for an optimization and regularization-based 

CNN model. However, the architecture had a fixed 

number of CNN hidden layers with variable dense 

layers. Moreover, the architectures lacked exploration on 

the basis of the number of hidden layers as well as the 

type of layered architectures. 

 

Incorporating the gaps found in the existing methods, the 

proposed work proposes the following novel approaches: 

 This paper proposes a twin optimization based on TLBO 

and CTO for exploring novel deep learning structures. 

 TLBO controls the structure of the Neural Network, such 

as the number of hidden layers, optimizer and learning 

rate. 

 CTO controls the hyperparameter of each layer 

individually, such as the type of hidden layers, number 

of filters, initializers and activation function.  

 The explored architectures were used to identify the 

malicious packets and detect the type of intrusion using 

binary and multiclass classifications on the NSL-KDD 

dataset. 

 The proposed paper tries to eliminate the human bias 

while creating a deep learning architecture using 

metaheuristic optimization techniques, making not only 

the learning of the artificial intelligence algorithms 

automated, but also the architecture of the models 

automated. 

3. Methodology 
Machine Learning and Deep Learning models have 

found many applications in the field of decision making, 

event detection and other classification and forecasting 

problems. Deep learning has enabled researchers to 

implement most of the feature functions using weight 

approximation. A certain drawback of the deep learning 

models is the dependency of the model on its architecture. 

Human cognitive ability and bias have highly confined the 

capabilities of Neural Networks. In this paper, the authors 

have employed a twin optimization algorithm for the 

exploration of new neural network architectures. The 

Teaching Learning Based Optimization (TLBO) and Class 

Topper Optimization (CTO) are employed for exploration 

purposes. The TLBO is responsible for the exploration of 

new neural network structures. Whereas the CTO is 

responsible for handling each layer and its hyperparameters. 

The methodology proposed in this paper is as follows: 

3.1. Initialization 

The TLBO algorithm controls the outer structure of the 

hybrid Neural Network, whereas internal parameters are 

controlled by CTO. The number of layers, the optimization 

technique used in back-propagation and the learning rate are 

controlled by TLBO. The type of hidden layer, number of 

filters or nodes, initialization function and activation 

functions are controlled by the CTO for each layer separately.   

 

The metaheuristic approaches are initialized by an initial 

population randomly generated as shown in equation 1. 

 

 𝑝𝑜𝑝 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐿1
𝑖 𝐿2

𝑖 𝐿3
𝑖 𝑂𝑝𝑡1

𝑖 𝑂𝑝𝑡2
𝑖 𝑂𝑝𝑡3

𝑖 𝑙𝑟1
𝑖 𝑙𝑟2

𝑖

𝐿𝑇1,1
𝑖 𝐿𝑇1,2

𝑖 𝐿𝑇1,3
𝑖 𝐿𝑇1,4

𝑖 𝐿𝑇1,5
𝑖 𝐿𝑇1,6

𝑖 𝐿𝑇1,7
𝑖 𝐿𝑇1,8

𝑖

𝐿𝑇2,1
𝑖 𝐿𝑇2,2

𝑖 𝐿𝑇2,3
𝑖 𝐿𝑇2,4

𝑖 𝐿𝑇2,5
𝑖 𝐿𝑇2,6

𝑖 𝐿𝑇2,7
𝑖 𝐿𝑇2,8

𝑖

𝐿𝑇3,1
𝑖 𝐿𝑇3,2

𝑖 𝐿𝑇3,3
𝑖 𝐿𝑇3,4

𝑖 𝐿𝑇3,5
𝑖 𝐿𝑇3,6

𝑖 𝐿𝑇3,7
𝑖 𝐿𝑇3,8

𝑖

𝐻1,1
𝑖 𝐻1,2

𝑖 𝐻1,3
𝑖 𝐻1,4

𝑖 𝐻1,5
𝑖 𝐻1,6

𝑖 𝐻1,7
𝑖 𝐻1,8

𝑖

𝐻2,1
𝑖 𝐻2,2

𝑖 𝐻2,3
𝑖 𝐻2,4

𝑖 𝐻2,5
𝑖 𝐻2,6

𝑖 𝐻2,7
𝑖 𝐻2,8

𝑖

𝐻3,1
𝑖 𝐻3,2

𝑖 𝐻3,3
𝑖 𝐻3,4

𝑖 𝐻3,5
𝑖 𝐻3,6

𝑖 𝐻3,7
𝑖 𝐻3,8

𝑖

𝐴𝐹1,1
𝑖 𝐴𝐹1,2

𝑖 𝐴𝐹1,3
𝑖 𝐴𝐹1,4

𝑖 𝐴𝐹1,5
𝑖 𝐴𝐹1,6

𝑖 𝐴𝐹1,7
𝑖 𝐴𝐹1,8

𝑖

𝐴𝐹2,1
𝑖 𝐴𝐹2,2

𝑖 𝐴𝐹2,3
𝑖 𝐴𝐹2,4

𝑖 𝐴𝐹2,5
𝑖 𝐴𝐹2,6

𝑖 𝐴𝐹2,7
𝑖 𝐴𝐹2,8

𝑖

𝐴𝐹3,1
𝑖 𝐴𝐹3,2

𝑖 𝐴𝐹3,3
𝑖 𝐴𝐹3,4

𝑖 𝐴𝐹3,5
𝑖 𝐴𝐹3,6

𝑖 𝐴𝐹3,7
𝑖 𝐴𝐹3,8

𝑖

𝐼𝑛𝑖𝑡1,1
𝑖 𝐼𝑛𝑖𝑡1,2

𝑖 𝐼𝑛𝑖𝑡1,3
𝑖 𝐼𝑛𝑖𝑡1,4

𝑖 𝐼𝑛𝑖𝑡1,5
𝑖 𝐼𝑛𝑖𝑡1,6

𝑖 𝐼𝑛𝑖𝑡1,7
𝑖 𝐼𝑛𝑖𝑡1,8

𝑖

𝐼𝑛𝑖𝑡2,1
𝑖 𝐼𝑛𝑖𝑡2,2

𝑖 𝐼𝑛𝑖𝑡2,3
𝑖 𝐼𝑛𝑖𝑡2,4

𝑖 𝐼𝑛𝑖𝑡2,5
𝑖 𝐼𝑛𝑖𝑡2,6

𝑖 𝐼𝑛𝑖𝑡2,7
𝑖 𝐼𝑛𝑖𝑡2,8

𝑖
]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

           (1) 

 
Where 𝐿𝑚,𝑘

𝑖 is the TLBO element, which determines the 

𝑚𝑡ℎ  bit of 𝑖𝑡ℎa member of the population, the number of 

layers present in the Neural Network architecture, 

𝑂𝑝𝑡𝑚
𝑖 determines the optimization algorithm to be employed 

during the training phase, with 𝑙𝑟𝑚
𝑖  the learning rate. 

Similarly, 𝐿𝑇𝑚,𝑘
𝑖 determines the type of hidden layer that is to 
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be used for 𝑘𝑡ℎ the layer. These vertical parameters are 

responsible for the creation of a hybrid deep neural network 

controlled by the CTO. However, the number of nodes in the 

hidden layers is determined by  𝐻𝑚,𝑘
𝑖  the 𝐴𝐹𝑚,𝑘

𝑖 activation 

function and 𝐼𝑛𝑖𝑡𝑚,𝑘
𝑖 the weight initializers.  

The TLBO-based configuration of the population is 

given in Table 1. The CTO parameters-based configuration is 

depicted in Table 2. Table 2 describes the hidden layer 

configuration for a single layer. The proposed method has the 

ability to accommodate up to 8 hidden layers along with input 

and output layers. 

 
Table 1. Teaching Learning Based Optimization configuration and its interpretation 

S. No. Bits Parameters Values Parameter Value 

1. 1-3 
Number of 

Layers 

000 

001 

010 

011 

100 

101 

110 

111 

1 

2 

3 

4 

5 

6 

7 

8 

2. 4-6 Optimizers 

000 

001 

010 

011 

100 

101 

110 

111 

SGD 

Adam 

AdamW 

Adadelta 

RMSProp 

AdaGrad 

AdaMax 

Nadam 

3. 7-8 
Learning 

Rate 

00 

01 

10 

11 

0.1 

0.01 

0.001 

0.0001 

 
Table 2. Class Topper Optimization configuration and its interpretation 

S. No. Bits Parameters Values Parameter Value 

1. 1-3 Type of Hidden Layer 

000 

001 

010 

011 

100 

101 

110 

111 

DNN 

CNN 

RNN 

GRU 

LSTM 

BiLSTM 

Batch Normalization 

Dropout 

2. 4-6 Number of Hidden Nodes (𝐻𝑚,𝑘
𝑖 ) 000 to 111 2𝐻𝑚,𝑘

𝑖
 

3. 7-9 Activation Function 

000 

001 

010 

011 

100 

101 

110 

111 

ReLU 

ELU 

CeLU 

Exponential 

Tanh 

Sigmoid 

Softplus 

Softmax 

4. 10-11 Initializers 

00 

01 

10 

11 

Random_Normal 

Random_Uniform 

Glorot_Normal 

Glorot_Uniform 



Shourya Shukla et al. / IJECE, 12(9), 162-177, 2025 

 

 

167 

These parameters, belonging to TLBO and CTO-

controlled values, are discussed in the Methodology section 

under TLBO and CTO Parameters, respectively. 

 

3.2. Teaching Learning Based Optimization  
Rao et al proposed TLBO in [22]. The metaheuristic 

optimization algorithm is based on human cognitive ability 

of knowledge sharing. In this optimization algorithm, 

knowledge transfer from teacher to student is simulated on 

the solution space. The prospect solutions are initialized as 

given in equation 2: 

 

𝑝𝑜𝑝 = 𝑙𝑏 + 𝑟𝑎𝑛𝑑𝑛 ⥂ ([0,1]) ∗ (𝑢𝑏 − 𝑙𝑏)   (2) 

 

Where pop is the population size, 𝑁𝑝 × (𝐷1 × 𝐷2) where 

𝑁𝑝is the size of the population, and 𝐷1 × 𝐷2 is the dimension 

of each solution. Lower bound of the population is kept at all 

zeros, and upper bounds are kept at all ones. The randn 

function is utilized for random placement of solutions in the 

search space for the binary population. 

 

The TLBO algorithm is a two-phase algorithm where, in 

the first phase, the knowledge is transferred from the teacher 

to the students. This phase is known as the teaching phase. In 

the teaching phase, the algorithms explore new solutions.  

 

3.2.1. Teaching Phase 

In this phase, the best student or solution is evaluated 

based on the fitness function. The solution with maximum 

accuracy was considered the best solution and was carried out 

to explore diverse regions of the search space. In our 

approach, to incorporate the binary search space, the 

modified equation for exploration of a new population in the 

teaching phase is given as: 

 

𝑋𝑛𝑒𝑤 = 𝑋𝑜𝑙𝑑 ⊕ {𝑟𝑎𝑛𝑑𝑛([0,1]) • (𝑋𝑏𝑒𝑠𝑡 ⊕ 𝑋𝑚𝑒𝑎𝑛)}     (3) 

 

Where⊕denotes the XOR operation, which replicates 

the summing and difference operation of arithmetic in the 

Boolean problem. This is performed to neglect any carry or 

borrow bit in the new solution. 𝑋𝑚𝑒𝑎𝑛Is the mean of the 

population in the current iteration, given by: 

 

𝑋𝑚𝑒𝑎𝑛 =
1

𝑁𝑃
⌊∑ 𝑋𝑜𝑙𝑑,𝑖

𝑁𝑃
𝑖=1 ⌋       (4) 

 

In the above equation 4, the mean of the population is 

estimated to the lower bounds wherever applicable. This 

enables the authors to explore the search space uniformly, 

while keeping close to the best solutions. After new solutions 

have been found, the fitness of each new solution is 

evaluated. The greedy algorithm is applied to replace or 

preserve the old solution according to its fitness. If the fitness 

of the new solution exceeds that of older ones, the older 

solutions are replaced; otherwise, the new solution is 

discarded.  

𝑖𝑓(𝑓𝑖𝑡𝑛𝑒𝑤
𝑖 > 𝑓𝑖𝑡𝑜𝑙𝑑

𝑖 ) 
𝑡ℎ𝑒𝑛(𝑋𝑖 ← 𝑋𝑛𝑒𝑤)𝑎𝑛𝑑(𝑓𝑖𝑡𝑖 ← 𝑓𝑖𝑡𝑛𝑒𝑤)  (5) 

 

3.2.2. Learning Phase 

The next phase of the TLBO is the learning phase. In this 

phase, students are supposed to interact with each other and 

explore more knowledge. The students' interaction takes 

place in pairs. Each student is paired with another student in 

the given population. The partner selection process is carried 

out by a random integer pointing towards any member of the 

population in each iteration. The new solution explored by 

student X and the partner 𝑋𝑝𝑡𝑟 is given as: 

 

𝑋𝑛𝑒𝑤 = 𝑋 ⊕ {𝑟𝑎𝑛𝑑𝑛([0,1]) • (𝑋 ⊕ 𝑋𝑝𝑡𝑟)}   (6) 

 

 The greedy selection is again used to replace the solution 

with the student having a better fitness value. These Teaching 

and Learning Phases are repeated for definite iterations. The 

best solution is found either by the Global best solution or the 

solution with the best fitness at the end of all iterations. In our 

model, the TLBO is used to find the most suitable depth of 

the neural network, along with the optimizer and learning 

rate, as discussed in Table 1.   

3.3. Class Topper Optimization  
Class Topper Optimization (CTO) is another 

optimization algorithm that mimics human learning behavior. 

The CTO was proposed by Das et al in [23], in which the 

authors emulated the learning and competitive approach seen 

in schools. The school has classes, and each class is divided 

into multiple sections. The algorithm is divided into a class 

level and into various sections. Section-level and student-

level behaviors are replicated in search of an optimized 

solution. In the algorithm, the fitness of each student is 

evaluated during the Examination. Hence, each iteration is 

known as an examination. The initialization of the student is 

the same as the initialization performed by the TLBO 

algorithm in equation 1. The TLBO population consists of 

parameters for each hidden layer individually. Hence, the 

dimensions of the CTO population are different from those of 

the TLBO population in the proposed algorithm. The 

population is initialized with both TLBO and CTO 

populations combined as given in equation 2.  

 

In the Section level of the CTO, each student attempts 

the Examination and their fitness, known as The Performance 

Index (PI), is evaluated as per the objective function. The 

student with the best PI is selected as the Section Topper 

(ST). Among the section toppers, the ST with the best PI, in 

turn, becomes the Class Topper (CT). In the proposed model, 

a single class with two sections has been considered for 

optimization. After every Examination, the students get a 

chance to enhance their grades. This step involves interaction 

of random students with the ST, and the new student solution 

is given as: 
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𝐼𝑆
𝐸+1 = 𝐼𝑆

𝐸 ⊕ 𝑑𝑒2𝑏𝑖(𝑆𝑇𝑃𝐼 ⊕ 𝑆𝑃𝐼)         (7) 
 

Where 𝐼𝑆
𝐸is the increment in student intellect while 

interacting with the ST?  𝑆𝑇𝑃𝐼 , 𝑆𝑃𝐼 are the PIs belonging to 

the Student S and Section Topper ST? de2bi is used to 

convert the integer solution to binary. Random student or, in 

our case, a hidden layer is selected at random, and an update 

step is performed using equation 8 given as: 
 

𝑆𝐸 = 𝐼𝑆
𝐸+1 ⊕ 𝑆𝐸          (8) 

 

In the next phase, the ST interacts with the CT, and the 

goal is to further enhance their PI and become the CT. This 

competition between ST and CT, considering that CT can 

only interact with ST but not with other Students, is given as: 

 

𝐼𝑆𝑇
𝐸+1 = 𝐼𝑆𝑇

𝐸 ⊕⥂⥂ (𝑑𝑒2𝑏𝑖(𝐶𝑇𝑃𝐼 ⊕ 𝑆𝑇𝑃𝐼))         (9) 

 

And the ST update takes place as: 

 

𝑆𝑇𝐸+1 = 𝐼𝑆𝑇
𝐸+1 ⊕ 𝑆𝑇𝐸          (10) 

 

Again, the greedy algorithm is employed to eliminate 

poor solutions. The step is emulated by comparing the PI of 

each section, and a new ST is selected. At the class level, all 

new STs are again compared to find out the new CT. The CT 

or multiple Class Toppers at the end of the maximum 

iterations provide the optimal solutions. 

3.4. Objective Function 

The objective of the proposed optimized hybrid Neural 

Network is to maximize the accuracy of the classifier 

implemented using TLBO and CTO series. The fitness 

function involving the accuracy of the classifier is given as: 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑚𝑎𝑥
𝑇𝑃⥂+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
          (11) 

 

 Where TP is the true positive, positive class instances are 

predicted as positive; similarly, TN correctly predicts 

negative class instances. On the other hand, FN and FP are 

falsely predicted positive and negative instances, 

respectively. 

3.5. Teaching Learning Based Optimizer Series  

The TLBO has been employed to optimize the external 

parametric values of the hybrid neural network structure. The 

following parameters, as depicted in Table 1, have been 

explained: 

 

3.5.1. Number of Layers  

The proposed algorithm has the ability to incorporate 

from 1 to 8 hidden layers. The first three bits of the TLBO 

population determine the number of layers used in the deep 

NN structure. The three bits can vary from 000, selecting a 

single hidden layer, to 111, selecting eight hidden layers, as 

shown in Table 1. 

3.5.2. Optimizers 

The proposed algorithm has given the users leverage to 

employ eight different optimizers in the hybrid neural 

network. Optimizers have application in the back-

propagation of neural networks. Back-propagation is used to 

minimize the loss in the prediction of a class. In the training 

phase, the difference between predicted output and actual 

output is termed as loss. Different optimizers are employed 

for weight update as given: 

 

SGD  

The Stochastic Gradient Descent is selected for the 000 

value in the TLBO series. The SGD is a variant of the 

gradient descent algorithm. It is an iterative method to 

compute the gradient of the loss function. This method has 

proved to be the most suitable for convex optimization 

problems. However, it is not suitable in case of higher order 

time, such as non-polynomial problems. The weight update 

step is given by: 

𝜍𝑡+1 = 𝜍𝑡 − 𝜂 ∗ 𝛻𝜍(𝐿)               (12) 
 

Where 𝜍 are the weight, 𝜂 the learning rate, and the loss 

gradient? 
 

AdaGrad  

It is an adaptive learning method for back-propagation 

and weight optimization in the NN architecture. As the name 

suggests, AdaGrad uses the gradient evaluated in the previous 

epochs. Suppose/is the diagonal matrix where the principal 

diagonal is the magnitude of the matrices formed by the 

gradient obtained in previous epochs. Then the weight update 

is given as: 

𝜍𝑡+1 = 𝜍𝑡 −
𝜂

√𝐺𝑡+𝜀
⋅ 𝑔𝑡                  (13) 

 

Where 𝜀 an arbitrarily small value is used to prevent a 

divide by zero error, and 𝑔𝑡 is the gradient obtained in the 

present 𝑡𝑡ℎepoch. 

 

AdaDelta  

The weight for AdaDelta uses the root mean square 

(RMS) value of the loss gradients given as: 

 

𝜍𝑡+1 = 𝜍𝑡 + 𝛥𝜍 

𝑤ℎ𝑒𝑟𝑒 

𝛥𝜍𝑡 =
−𝑅𝑀𝑆(𝛥𝜍𝑡−1)

𝑅𝑀𝑆(𝑔𝑡)
⋅ 𝑔𝑡                   (14) 

RMSProp  

The weight update employs the total power of the 

gradient. The variance of any random number is defined as 

the second moment around the center.  

 

𝛥𝜍 = −
𝜂

√𝐸[𝑔2]+𝜀
⋅ 𝑔𝑡                 (15) 
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Adam 

The adaptive moment estimation optimizer is the most 

commonly used optimizer nowadays. The Adam optimizer is 

computationally efficient for large data. The optimizer uses 

alpha and beta parameters with the mean and standard 

deviation of the loss gradient to update weights.  

 

𝜍𝑡+1 = 𝜍𝑡 −
𝜂

√𝜎𝑡+𝜀
⋅ 𝜇𝑡                 (16) 

 

Where 𝜎𝑡 is the standard deviation, and 𝜇𝑡 Is the mean of 

the loss gradient. The mean and standard deviations are 

updated after every epoch, given as: 

 

𝜇𝑡 = 𝛼 ⋅ 𝜇𝑡−1 + (1 − 𝛼) ⋅ 𝑔𝑡  
𝑎𝑛𝑑 

𝜎𝑡 = 𝛽 ⋅ 𝜎𝑡−1 + (1 − 𝛽) ⋅ 𝑔𝑡
2 (17) 

 

AdamW 

Weighted Adam optimizer incorporates negative effects 

of 𝜇𝑡 and 𝑔𝑡 𝜆 is used as an arbitrary positive real number to 

negotiate weight decay. 

 

𝜍𝑡+1 = 𝜍𝑡 − 𝜂 ⋅ 𝜍𝑡−1 −
𝜂

√𝜎𝑡+𝜀
⋅ 𝜇𝑡     (18) 

 

AdaMax Optimizer  

The AdaMax optimizer replaces the L2 regularization 

used in the Adam optimizer. The L2 norm is replaced by the 

L∞ norm in the AdaMax optimizer. The AdaMax optimizer 

uses the mean and standard deviation, the same as the Adam 

optimizer, and the weight update is given as: 

 𝜍𝑡+1 = 𝜍𝑡 − 𝜂 ⋅
𝜇̂𝑡

𝑢(𝑡)
      (19) 

Where u(t) is given by: 

𝑢(𝑡) = 𝑚𝑎𝑥(𝛽 ⋅ 𝑢(𝑡 − 1), |𝑔𝑡|)      (20) 

 

 

       

Fig. 1 Pictorial Representation of the Fully Connected Network 

Nadam Optimizer  

The Nadam optimizer uses the Nesterov update system 

along with the Adam optimizer, given as: 

 

𝜍𝑡+1 = 𝜍𝑡 − 𝜂 ⋅
𝛽⋅𝜇̂𝑡+(1−𝛽)⋅𝑔𝑡

√𝜎𝑡+𝜀
                      (21) 

 

3.5.3. Learning Rate 

The learning rate, as seen with the optimizer, decides the 

rate at which the gradient function influences the weights. 

The proposed algorithm uses the TLBO series to determine 

the learning rate. The last bits of the TLBO series are 

converted to decimal numbers. The decimal equivalent, let us 

say,  gives the learning rate as: 

𝜂 =
1

10𝑙𝑟                    (22) 

3.6. Class Topper Optimization Series 

The class topper optimization series determines the 

internal parameters of each layer. The CTO Series is 

initialized for the maximum possible layers, and the layers 

that undergo training are determined by the TLBO series. The 

internal parameters, such as the type of layer, number of 

hidden nodes for each layer, activation function and 

initializers, are determined using a series. The following 

possible outcomes are listed below: 

 

3.6.1. Type of Hidden Layer 

The CTO series determines the type of hidden layers for 

training and testing for malicious packets in the proposed 

algorithms. Different types of layers contribute to different 

ways of extracting features from the data. In our proposed 

method, feature extraction is performed using a metaheuristic 

method and normalization and feature deletion can also be 

performed. 

 

Fig. 2 Pictorial representation of CNN layer with x input, w moving 

window depicting convolution to give y output. 

lr

X1 X2 X3 Xn 

W1 W2 W3 

y 
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DNN  

This is the basic layer of any multi-layer perceptron. The 

DNN consists of Fully Connected Network Layers (FCN). In 

this type of layer, every neuron of the preceding layer is 

connected to the DNN layer. The output of the DNN layer 

with weights  and bias is given by:  

 

𝑦 = ℑ(𝜔 ⋅ 𝑥 + 𝑏)                (23) 

 

Where  is the input, and  what is the activation 

function? The FCN is generally used in the output layer, as it 

ensures that all the information of the extracted features is 

passed to the decision device. According to the universal 

approximation theorem, FCN can approximate any 

continuous function; therefore, FCN becomes a reliable layer 

for feature extraction. The pictorial representation of the FCN 

is given in Figure 1. 

 

CNN 

Basically, invented for image classification and 

segmentation, Convolutional Neural Network (CNN) has 

found many applications in signal processing, Natural 

Language Processing (NLP), and several other fields. As the 

name suggests, the CNN uses convolution of a moving 

window having a kernel size (1 × 𝜅) for signal processing 

with a stride of length 𝒮. The convolved output is used for 

feature extraction in deep CNN architectures. The CNN is 

capable of dealing with high-dimensional data. In this paper, 

the strides 𝒮 are set to 1 to make the output compatible with 

other layers.  

𝑦 = ℑ(𝜔 ∗ 𝑥 + 𝑏)              (24) 

 

Where * symbol represents that the weight window is 

convolved with the input sequence instead of the dot product, 

as shown in equation 23. Figure 2 gives the pictorial 

representation of the CNN layer.  

 

RNN 

The FCN and CNN extract features only in the forward 

direction; hence, they are called feed-forward networks. 

These layers lack feedback capabilities. To incorporate such 

features and succeeding layers that have an impact on the 

preceding layer, feedback-type layers have gained popularity. 

The feedback feature of RNN enables it to create a loop 

through different layers. This is achieved using temporary 

units. RNNs, although capable of memory retention, suffer 

from the problem of vanishing gradients. The output of the 

RNN layer is given by: 

𝑦 = ℑ([𝜔ℎ𝑥 ⋅ 𝑥𝑝 + 𝜔ℎℎ ⋅ ℎ𝑝−1] + 𝑏)                 (25) 

 

The self-feedback loop of the RNN is represented in 

Figure 3.  

 

Fig. 3 Feedback Representation of the RNN layer 

 

LSTM  

Like GRU, Long-Short-Term Memory (LSTM) was 

invented to mitigate the vanishing gradient problem. The 

LSTM layer uses a memory cell and three gates instead of 

two, in the case of GRU. The LSTM layer requires a Reshape 

layer when used in hybrid models. Explicit reshape layers 

were added to make LSTM compatible with the hybrid 

architecture. 

 

Batch Normalization  

The Batch Normalization uses z normalization of the 

extracted features. The Batch normalisation restores the 

feature bounds and, as a result, the learning and 

discrimination of features is accelerated. Feature 

normalization is given by: 

𝑥𝑛𝑜𝑟𝑚 =
𝑥−𝜇

𝜎
                  (26) 

 

Where 𝜇 is the average value, and 𝜎2 is the variance of 

the feature vector . The scaling and shifting 

parameters𝛼,𝛽respectively, are employed for output 

measurement. The scaled and shifted vector is given by: 

 

𝑦 = 𝛼 ⋅ 𝑥𝑛𝑜𝑟𝑚 + 𝛽                 (27) 

Dropout 

For feature selection, a dropout layer is used as an 

optional layer. In our model, it was coded to prevent 

consecutive dropout layers. 25% of the least important 

features were dropped using this layer. This layer is added to 

prevent the neural network from overfitting.   

 

3.6.2. Number of Hidden Nodes 

Each layer has a different number of nodes, filters or 

units depending on the type of layers. This is controlled by 

bits 4 to 6 of the CTO series for every hidden layer. 

Generally, the number of nodes is an integer power of 2. 

Hence, in this paper, the three bits are converted to an integer 

equivalent, and their power of 2 creates the number of nodes. 

The smallest value, 0’s for all three bits, represents a single 

y

 b

x 

x

y 

x 

RNN 
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node hidden layer, whereas the maximum nodes can be 128 

with three bits as 1’s. 

 

3.6.3. Activation Function 

Activation functions are used in Neural networks to 

apply non-linearity to the layer output. This is performed to 

ensure projection of non-linear practical data in a non-linear 

suitable feature space. Without activation functions, the deep 

learning algorithms would be mere linear functions of inputs 

that restrict the use of deep learning only to ideal scenarios. 

 

ReLU  

Rectified Linear Unit is a highly utilized activation 

function in deep learning algorithms. The ReLU activation 

allows the positive and negative features to be nullified, 

restricting the negative features from reaching the output 

layers. Transfer learning and pre-trained model, such as 

AlexNet, have employed ReLU as their activation function. 

The transfer function of ReLU is given as: 

 

𝑅𝑒 𝐿 𝑈 = {
𝑥, 𝑋 ≥ 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (28) 

ELU  

It stands for exponential linear unit. It has an advantage 

over ReLU in that the ELU uses negative and positive 

features. ELU is even preferred over softmax and sigmoid, as 

these activation functions tend to saturate at a boundary. 

Unlike sigmoid, ELU can extend up to infinity.  

 

𝐸𝐿𝑈 = {
𝑥, 𝑋 ≥ 0

𝛼 ⋅ (𝑒𝑥 − 1), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (29) 

 

Exponential 

As the name suggests, the output of the activation 

function is the exponential power of the input for all real 

values. 

 

Tanh 

This activation function is the default and the only 

allowed activation function for feedback-type layers. The 

function acts as a linear function for smaller values of inputs, 

but quickly saturates to ±1 for larger values. The function is 

given as: 

𝑡𝑎𝑛ℎ =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥               (30) 

Sigmoid 

This activation function is used for the binarization of 

features. Generally, this activation is utilized at the output 

layer for binary classification. This activation simulates the 

Fermi probability of any occupied state. The transfer function 

confined between 0 and 1 is given as: 

 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 =
1

1+𝑒−𝑥                (31) 

Softplus 

Similar to sigmoid, softplus employs the exponential 

power of inputs. The softplus uses a logarithmic function, 

making it suitable for large feature values. The softplus is 

given as: 

𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠 = 𝑙𝑜𝑔( 1 + 𝑒𝑥)                (32) 

 

In the above equation 32, a one is added to the 

exponential input to avoid a log of zero error. 

 

CeLU 

It stands for a continuously differentiable linear unit. As 

the name suggests, the transfer function is continuous and 

differentiable at each point. The CeLU was proposed by 

Barron in [24]. The transfer function is given as: 

 

𝐸𝐿𝑈 = {
𝑥, 𝑋 ≥ 0

𝛼 ⋅ (𝑒𝑥/𝛼 − 1), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
          (33) 

Softmax  

It is used in the output layer of multiclass classification 

problems. The softmax converts the features into a 

probabilistic feature space. The probabilities of the features 

are compressed between 0 and 1.  

 

Figure 4 depicts various activation functions for a range 

of inputs. 

 

3.6.4. Initializers 

The TLBO series uniquely provides each layer with its 

own initializer. Random as well as Glorot initializer are 

available in the CTO series. The Random initializer randomly 

initialize weights as either uniformly or normally distributed 

random numbers. At the same time, the Glorot initializer 

takes the fan-in and fan-out of the layer into consideration 

while initializing the weights. 

 
Fig. 4 The transfer function of different activation functions for a 

range of inputs from -10 to 10 
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4. Experimental Results and Discussions 
The flowchart of the experiment is depicted in Figure 9. 

The experiment is carried out on a Dell Precision 5820 

workstation with Windows 10 and Python 3.8. Tensorflow 

with the keras library is used to train the deep learning 

models. The CPU configuration of the system is 2TB HDD, 

16GB RAM DDR5 and 4GB GPU of Ryzen. 

 

The experiment starts with reading the data. The NSL-

KDD dataset is employed in this experiment to train and test 

the explored hybrid neural networks. The dataset is a refined 

version of the KDDCup99 dataset. The KDD99 dataset was 

cleaned by removing redundant data, and duplicates were 

also removed by Tavalaee [25].  

 

The dataset consists of 41 features and 125,973 

instances. The dataset was made by DARPA in 1999. The 

dataset contains 67,343 normal instances, and the rest are 

attack instances. These attack instances were recorded for 24 

different attack strategies, such as ping of death, smurf, saint, 

warezmaster, etc.  

 

These 24 attacks are marked as class 1, and normal 

instances are marked as class 0 for binary classification. In 

comparison, these attacks were marked under their umbrella 

attack strategies. Denial of Service (DoS), where an attacker 

disrupts the network resources, was labelled as 1. Probe, 

which is a passive attack strategy, was labelled 2. User to 

Root (U2R), in which the intruder gains super user access and 

Remote to Local (R2L), where an outside masquerades as the 

network, were labelled 4 and 5, respectively, for multiclass 

classification. This step is known as class labelling. 

 

Out of 41 features in the dataset, three of them are 

alphanumeric in nature. These features are protocol type, 

which has information about the communication protocol. 

Service and flag features are other alphanumeric features 

present in the data. These features are converted into a 

numeric value using a label encoder.  

 

In the optimization process, the first step involves the 

initialization of the population. Each solution has a size of 

12x8. The given size is the combined size of the TLBO and 

CTO. The TLBO series has a single row with eight elements, 

whereas CTO consist of 11 elements belonging to 8 possible 

layers. This makes the CTO series 11x8 in size. The 

population of students is taken to be 10. Hence, 10x12x8 

becomes the initial population size.  

 

In the next step, a random decision is made on the model 

that either structural or hidden layer parameters are modified 

to explore a new solution. A random variable is generated; if 

this variable is less than 0.5, the TLBO algorithm is 

implemented; otherwise, the CTO algorithm is implemented. 

This gives equal opportunities to both TLBO and CTO. 

 

If the TLBO is implemented, the external parameters are 

modified by the teaching phase and learning phases as given 

in equations 3 to 5 for the teaching phase and equation 6 in 

the learning phase. As the population is binary, these 

equations are modified by employing AND and XOR 

Boolean operations.  

 

If the CTO is selected, a random hidden one is selected 

from the two sections and modified using interaction with the 

class topper as well as the section topper.  

 

The modified population is then interpreted as a Hybrid 

neural network. The OHNN is then trained and tested on the 

NSL-KDD dataset. The OHNN with higher accuracy 

replaces the inferior solution in each iteration. The 

optimization was run for 100 iterations. At the end of the 

iteration, the best architecture is obtained.  

 

4.1. Binary Classification of NSL-KDD Dataset 

The experiment is performed on the NSL-KDD dataset 

with normal as class 0 and all other classes as 1. The Binary 

classifier is a six hidden structure. The OHNN consists of an 

input layer with 41 features, followed by a CNN layer with 

64 nodes, ReLU activation and Random Uniform Initializer. 

This layer is followed by an RNN layer with 16 units, tanh 

activation and Glorot Normal initializer. 

 

The RNN layer is followed by a DNN layer with 16 

nodes, a ReLU activation function and a Random Normal 

initializer. After that, an LSTM layer with 32 units, tanh, and 

a Random Normal initializer was modelled by OHNN. These 

layers were followed by DNN and RNN layers with CeLU 

and tanh activation functions. Both layers were initialized 

using random uniform initializers. 

 

The output layer is always a Dense layer with 2 nodes 

for binary classification. The Global Parameters neglected 

the last two layers of the CTO series by selecting a 6-layer 

deep architecture, making them non-critical or redundant 

layers. The Adadelta optimizer was used to update the 

weights of the OHNN with a 0.01 learning rate. The Binary 

OHNN achieved 94.33% accuracy. The figure depicts the 

accuracy of binary OHNN over 50 epochs. 

 

4.2. Multiclass Classification of NSL-KDD Dataset 

The multiclass classifier using OHNN was found to be a 

7-layered structure. The structure has an input layer with 41 

features of KDD.  

 

The first hidden layer is an LSTM layer with 32 units, 

tanh activation and a random normal initializer. This layer 

was followed by two CNN layers with 32 and 64 nodes, 

respectively. Glorot uniform and random normal initializer 

were selected.  
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Fig. 5 Binary OHNN accuracy vs epochs 

 

The next four layers are feedback-type layers. The four 

layers are LSTM, followed by RNN and two LSTM layers. 

The layers diverged with 16, 32 and 128 units, followed by 

16 units. All feedback layers are hard-coded to have a tanh 

activation function. The first LSTM and RNN have a 

Random Uniform initializer, followed by Random Normal, 

an initialiser followed by another Random Uniform. Reshape 

layers were explicitly added to the network. 

 

The output for the multiclass classifier has 5 nodes for 5 

classes with softmax activation. The TLBO series selected 

the AdaMax optimizer with a 0.01 learning rate. The 7-

layered architecture gave 99.37% accuracy, as shown in 

Figure 6, and the model plot is shown in Figure 8. 

 

 
Fig. 6 Multiclass OHNN Accuracy vs Epochs Curve 

 

4.3. Comparison with Existing Models 

A comparison with existing research papers is given in 

Table 3. The proposed algorithm outperformed several 

machine learning and deep learning algorithms. The TLBO 

and CTO optimized the architecture. After 100 iterations, the 

binary classifier has 6 6-layer structure as shown in the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 OHNN structure for Binary Classification 

 

Figure 7 The exploration and hyper-parameter tuning 

gave an accuracy of 94.33%.  The CNN layer, in combination 

with feedback networks, RNN and LSTM, has led to the 

extraction of moving windowed features utilizing the 

feedback effect of the succeeding recurrent layers.  

 

Thus, improving the accuracy of the model. These 

features are then passed to the dense layer for the extraction 

of linear as well as non-linear feature approximation. Due to 

the novel twin optimization strategy, the proposed 

architecture outperformed several existing methodologies, as 

shown in Table 3.  

Conv1D 

Input shape: (None, 1, 41) Output shape: (None, 1, 64) 

SimpleRNN 

Input shape: (None, 1, 64) Output shape: (None, 16) 

Dense 

Input shape: (None, 16) Output shape: (None, 16) 

Reshape 

Input shape: (None, 16) Output shape: (None, 1, 16) 

LSTM 

Input shape: (None, 1, 16) Output shape: (None, 32) 

Dense 

Input shape: (None, 32) Output shape: (None, 64) 

Reshape 

Input shape: (None, 64) Output shape: (None, 1, 64) 

SimpleRNN 

Input shape: (None, 1, 64) Output shape: (None, 8) 

Dense 

Input shape: (None, 8) Output shape: (None, 2) 

InputLayer 

Output shape: (None, 1, 41) 
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Table 3. Comparison with SOTA Algorithms 

S. NO. Author Technique Accuracy 

1. 

2. 

3. 

4. 

5. 

6.. 

VinayKumar 

[26]  

Almeseidin [27] 

Ingre [28] 

Jin [29] 

OHNN Binary 

OHNN Multi 

Deep 

Learning 

J48 

DT    

Rule Based  

Presented 

Bin 

Presented 

multi 

75.20 

93.20 

90.30 

98 

94.33 

99.37 

 

For multiclass classification of intrusions, not only the 

malicious packets but also the type of attack are determined. 

The optimized TLBO-CTO model gave a predominantly 

recurrent type architecture for the multiclass classification.  

 

The LSTM and RNN layers are capable of extracting 

long-term features, but they lack a local understanding of 

features, which were indeed extracted by the CNN layers, 

creating an interface between two recurrent sections.  

 

The CNN and recurrent layer complement each other, 

making an optimal architecture for detection purposes. Table 

3 depicts that the optimized architecture outperformed the 

existing techniques by a large margin. 

5. Conclusion 
In this paper, the TLBO and CTO-based optimized 

hybrid neural network has been proposed. In this algorithm, 

the human requirement for designing a deep learning 

algorithm is considered. The TLBO was appointed for outer 

parameters such as the number of layers, optimizers and 

learning rate.  

 

The CTO was appointed as an internal parameter 

selector. These include the type of layer, number of hidden 

nodes or units, activation function and weight initializers. 

The proposed optimization algorithm was iterated 100 times 

with 10 student population size.  

 

The binary classifier was a 6-layer structure with 94.33% 

accuracy, whereas the multiclass 7-layer structure gave 

99.37% accuracy.  

 

In future, other metaheuristic algorithms such as bio-

inspired grey wolf optimization, ant colony optimization, 

etc., can be employed for exploration of new deep 

architectures. In addition, some of the pre-trained models, 

such as ResNet, VGG16, VGG19, etc., can also be taken into 

consideration.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
Fig. 8 OHNN structure for Multiclass Classification 

 

LSTM 

Input shape: (None, 1, 41) Output shape: (None, 32) 

Reshape 

Input shape. (None, 32) Output shape: (None, 1, 32) 

Conv1D 

Input shapir (None, 1, 32) Dutput shape: (None, 1, 32) 

Conv1D 

Input shape: (None, 1, 32) Output shape: (None, 1, 64) 

Reshape 

Input shape: (None, 1, 64) Output shape: (None, 1, 64) 

LSTM 

Input shape (None, 1, 64) Output shape: (None, 16) 

Reshape 

Input shape: (None, 16) Output shape: (None, 1, 16) 
Output shape: (None, 1, 16) 

SimpleRNN 

Input shape: (None, 1, 16) Output shape: (None, 32) 

Reshape 

Input shape: (None, 32) Output shape: (None, 1, 32) 

InputLayer 

Output shape: (None, 1, 41) 

LSTM 

Input shape: (None, 1, 32) Oulput shape: (None, 128) 

Reshape 

Input shape: (None, 128) Output shape: (None, 1, 128) 

LSTM 

Input shape: (None, 1, 128) Output shape: (None, 16) 

Dense 

Input shape: (None, 16) Output shape: (None, 5) 
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Fig. 9 Flowchart of the proposed algorithm
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