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Abstract - Electric Vehicle (EV) technology is an emerging field with several benefits, including lower running costs. Long-

lasting batteries have always been the aim of EVs; thus, any additional hardware might significantly shorten battery life. 

Humans frequently make mistakes. As a result, driving habits like moderation and sports style may cause collisions and 

fatalities. Driver identification has emerged as a research hotspot in the fields of intelligent transportation and modern car 

development, and it is crucial to achieving personalized services for drivers and road traffic safety for electric vehicles. An 

enhanced deep learning-based method for identifying and supporting drivers in Better-performing electric vehicles was 

presented in this study. This method produces better results by utilizing a special real-world dataset that represents a variety 

of driving situations. ADAS is designed to increase vehicle efficiency and safety with features including autonomous braking, 

adaptive cruise control, and lane-keeping assistance. Thus, data-driven object recognition and localization methods are 

expected to be used in sophisticated driver assistance systems and self-driving automobiles. Specifically, deep neural networks 

demonstrated exceptional performance in object detection and classification from photos, frequently attaining superhuman 

levels of efficiency. The suggested ADAS model obtained 97.6% accuracy, 96.9% precision, 98.8% recall, and 99.3% 

sensitivity. 

Keywords - Electric Vehicles, Deep Learning, Detecting Driver, battery life, Data-driven, Advanced Driver Assistance Systems 

(ADAS).

1. Introduction  
The absence of greenhouse gas emissions from Electric 

Vehicles (EVs) results in reduced operating costs and 

environmental preservation. Contrarily, current research has 

concentrated on ensuring that EVs are comfortable with their 

self-driving capabilities [1]. The energy management and 

car-following control strategies are then learnt by a deep Q-

network, which offers multi-objective hybrid powertrain 

control while keeping the next vehicle a safe distance away 

[2]. It is unavoidable that microgrid components like 

distributed energy resources and EVs will malfunction. EVs 

feature energy conversion chains and a number of electrical 

components. A Fault Diagnosis (FD) approach must be used 

in order to extend their lifespans [3]. However, new 

technologies like edge computing, Connected Vehicles (CV), 

and transportation electrification have prompted engineers, 

researchers, and legislators to work harder to address energy 

and environmental issues related to transportation [4]. Longer 

battery life can be achieved with enhanced and flexible deep 

learning-based velocity predictions control EMS by making 

optimal use of both the battery and supercapacitor, which is 

necessary to improve Battery-supercapacitor HEV's EMS 

performance [5]. Important elements that might impact 

driving safety are the choices and actions of drivers.  

A deep Convolutional Neural Network (CNN)-based 

system for identifying driving actions is created in order to 

comprehend driver behaviours [6]. In order to jointly improve 

the driving process and the energy management of the 

powertrain over short time horizons, the high-level solution 

is utilised by a low-level forecasting controller based on a 

DNN model, which concurrently optimises the powertrain 

energy management and the driving cycle across brief time 

horizons at the low level [7]. 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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In order to demonstrate the features and benefits of each 

sophisticated deep-learning-based intrusion detection 

technique, this study examines ten typical techniques [8]. 

However, there is no fair and quantitative study comparing 

the horizontal performance of deep learning-based detection 

methods. [9].  Furthermore, an "anchor (baseline) based" 

approach was suggested and found to be successful in 

removing the dataset's uneven distribution [10]. Determining 

the potential driving distance and charging time can be aided 

by an accurate SOC estimate. An EV battery's state of charge 

can be predicted using two primary techniques. The first is 

using simulation to anticipate the SOC based on vehicle 

dynamics [11]. Therefore, integrating driving behaviour into 

EMS is necessary to lower the amount of gasoline used and 

prolong the lifespan of power sources. This study suggests an 

EMS for a three-power FCHEV that is based on driving 

behaviour recognition and adaptive Deep Reinforcement 

Learning (DRL) [12].  

1.1. Research Gap 

Although a proposed deep learning-based driver 

identification system performs well, with high accuracy, 

precision, recall, and sensitivity, significant research gaps 

remain unexplored.  First, energy-efficient deployment in 

electric vehicles is crucial, as additional computational or 

hardware needs might have a negative influence on battery 

life and overall system performance.  Second, while the 

model was trained on a real-world dataset, its capacity to 

generalize across different driving situations, weather 

conditions, and cultural driving patterns has not been 

properly investigated.  Third, dynamic elements such as 

fatigue, stress, and emotional state influence human driving 

behavior, but these are not explicitly addressed in the current 

method.  Finally, the robustness of the model in uncommon 

but safety-critical edge cases, such as abrupt obstacles, sensor 

failures, or extreme environmental conditions, has not yet 

been thoroughly examined. These issues include real-time 

processing, latency, and compliance with safety standards, 

which are all related to the smooth integration with advanced 

driver assistance systems. 

The main contributions of the Paper are as follows: 

 Given that EVs frequently have distinctive features like 

silent operation and variable energy efficiency that might 

be enhanced by more sophisticated Advanced Driver 

Assistance Systems (ADAS), this could help to improve 

driver safety and vehicle control in EVs. 

 The approach may improve the EV's performance in real 

time by utilising deep learning techniques, which would 

optimise energy consumption and the driving experience 

as a whole. 

 Real-time processing of data from several sensors may 

be made possible by the deep learning technique, which 

could result in faster and more precise decision-making 

in automotive systems. 

 Because EVs have special features (such as variable 

battery levels and regenerative braking), the approach 

might be modified to maximise these aspects in tandem 

with driver behaviour, guaranteeing improved 

performance. 

 

The Paper is organised as follows: Section 1 introduces 

the topic and explains the need for this endeavour. Section 2 

contains the related works. The Paper's suggested 

methodology is presented in Section 3. The results and 

discussion are in Section 4. Lastly, the conclusion is included 

in Section 5. 

2. Related Works  
Guo et al. (2020) [13]. As far as we are aware, no prior 

effort has been undertaken to use machine learning aided by 

physics to identify EV cyberattacks that take into account 

different driving conditions. We gather both device-level 

(such as the motor drive's current and voltage) and vehicle-

level signals to represent the fleeting physical features of 

EVs. 

Estrada et al. (2023) [14]. Pollutant emissions are mainly 

characterised in this work using Convolutional Neural 

Networks (CNN), which provide great precision for both 

current and cumulative data. Exhaust temperature, torque, 

engine rpm, and air mass flow are examples of conventional 

Internal Combustion Engine (ICE) metrics that are utilised as 

input parameters. Due to their low complexity and speed, the 

suggested CNNs are kept to a minimum. 

Chen et al. (2019) [15]. This study examines a 

Convolutional Neural Network (CNN)-based driving cycle 

prediction technique. In order to predict the different types of 

driving cycles, CNN first divides the driving cycle data into 

6 categories using the k-shape clustering algorithm, which is 

also compared with the k-means methodology, which is 

commonly used for driving cycle clustering. 

Xu et al. (2022) [16]. Introduces a supervised learning 

study on driving cycle pattern identification. Training data is 

shown in two dimensions. It is difficult to identify driving 

cycles, though. Pattern recognition is becoming more popular 

in a variety of applications as artificial intelligence advances. 

 Lang et al. (2021) [17]. Examines how AI methods have 

been used in motor FDD recently. Fault classification and 

feature extraction are the two main stages of AI-based FDD. 

The DNN's primary objective is to accurately estimate EV 

range by characterising the non-linear connection between 

input data and outputs.  

Wang et al. (2020) [18]. The suggested approach can 

automatically determine the best control strategy based on 

visual cues. The visual data that is accessible from the 

onboard cameras is taken out using the most advanced object 
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detection technique based on convolutional neural networks. 

In order to produce energy management strategies, a 

continuous DRL model uses the visual data that was 

identified as a state input. 

Julio-Rodriguez et al. (2022) [19]. In order to apply it in 

autonomous driving applications, this work discusses the 

creation of a categorisation system that can help with 

enhanced awareness and precision of the situational context 

of cars. This work's goal is to develop a machine-learning-

based approach for classifying driving environments that 

employs real-time energy consumption measurements and 

dynamic features from Inertial-Measurement-Unit (IMU) 

sensors rather than computer vision. 

Liu et al. (2021) [20]. This area of study is examined and 

re-examined. Furthermore, the EMSs are categorised into 

three groups based on the information currently available on 

driving cycles, and the relevant areas of research are 

explained and analysed, encompassing typical driving cycles. 

Mehedi et al. (2021) [21]. The deep transfer learning-based 

IDS model for IVN described in this Paper performs better 

than a number of currently used models. Among the notable 

achievements are developing a LeNet model based on deep 

transfer learning, assessment of real-world data, and effective 

selection of attributes most appropriate for detecting 

counterfeit CAN signals and precisely distinguishing 

between normal and abnormal behaviours. 

3. Proposed System 
Two varieties of the suggested ADAS approach are 

produced in this research study. The DNN step uses the first 

approach to identify drivers, and the driver assistance method 

is the basis for the second work. All ML and deep learning 

tests were trained and tested by the authors using a Google 

Collaboratory cloud computer, a specialised server with a 

dual-core 2.3 GHz Intel Xeon CPU, 13.3 GB of RAM, and 

56 MB L3 cache. The training takes advantage of 17.1 GB of 

RAM memory with a Tesla P100 GPU to speed up the 

computation of computationally costly calculations. The 

proposed model's general block diagram is shown in Figure 

1. 

 
Fig. 1 Block diagram of the proposed model 

 

3.1. Driver Identification 
Scholars in the domains of intelligent transportation and 

vehicle engineering have conducted extensive studies on 

driver recognition in recent years, leading to numerous 

accomplishments. Accurately and promptly identifying the 

driver and supporting the creation of customised value-added 

services for drivers and traffic safety are the primary goals of 

the driver identification task. The researcher creates the 

driver identification task procedure with varying levels of 

granularity based on the target's requirements.  

3.1.1. Dataset Description 

For the validation, we utilised the 2015 Ocslab driving 

dataset from South Korea for our models. 51 different OBD-

II signals were taken out of the car's ECU using a sampling 

rate of 1 Hz. For a total of 23 hours, 10 drivers alternated 

between operating the car around a 46-kilometre track, 

producing 94380 records. The experiment used a freeway, a 

city route, and a parking area that required careful driving. 

3.1.2. Data Pre-Processing 

All of the characteristics in our categorisation model 

must be carefully prepared before being included in the 

model. A pre-processing method is present in almost all state-

of-the-art models to guarantee that these characteristics can 

guide the model and make categorisation. Therefore, we start 

by standardising the data from the CAN bus. Prior to using 

deep learning models or conventional machine learning 
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techniques on this kind of data. Normalisation is regarded as 

a pre-processing step. The most popular technique for 

normalising data is min-max, which generates new values 

while preserving the ratio and overall distribution of the 

original data. 

3.1.3. Driving Feature Extraction 

The training materials must be detailed to reveal hidden 

aspects in the basic operating signals' time series, which will 

improve the recognizability of the supervisory control system 

that is identified by the driver. This study examines steering 

angle, brake pedal deflection, gas pedal deflection, and 

vehicle speed as driving operating signals. They were 

demonstrated to be a practical option for promoting style 

recognition in contrast to other signals that require detection 

by additional sensors. 

Feature 0: Driving operational signals are initially 

compiled from a driving simulator to form a vector of rows 

[𝑣 𝛾 𝛽 𝛿]. For instance, the symbols 𝑣 and ℎ stand for steering 

angle (rad), short-term sliding window length (60 seconds in 

the time domain), vehicle speed (km/h), gas pedal deflection 

(%), and brake pedal deflection (%), respectively. 

Feature 1: The operational intensity of drivers is 

reflected by adopting the four time-domain elements' 

maximum values. Their values can be computed using time 

and Frequency Domain Extractions. 

A transient sliding window is added to the popular time-

domain extraction technique in order to control the sample 

size and extend the memory period of distinguishing states. 

Every data time step k in the driving operational signals 

dataset is defined as follows: 

(𝜐max,𝛾max,𝛽max,𝛿max⁡⁡)= max(𝜐, 𝛾, 𝛽, 𝛿𝑎𝑏𝑠)
𝑇        (1) 

Where the absolute value of 𝜹 for each element is 

indicated by 𝜹𝑎𝑏𝑠. Feature 2: To represent drivers' 

operational proficiency, the time domain, the four elements' 

maximum ranges are employed. The maximum range of 

drivers with higher operational proficiency is generally 

lower. It is possible to calculate their values using. 

(𝜐rng,𝛾rng,𝛽rng,𝛿rng⁡⁡)= max(𝜐, 𝛾, 𝛽, 𝛿𝑎𝑏𝑠)
𝑇 −

min(𝜐, 𝛾, 𝛽, 𝛿𝑎𝑏𝑠)
𝑇                                                             (2) 

Feature 3: Driving patterns are reflected by adopting the 

average values of the four time-domain elements. 

(𝜐avg,𝛾avg,𝛽avg,𝛿avg⁡⁡)
∑ n(𝜐,𝛾,𝛽,𝛿𝑎𝑏𝑠)

𝑇𝑖=ℎ
𝑖=0

ℎ
                     (3) 

Frequency domain extraction is another popular 

extraction technique used to assess the degree of pre-

processing behaviours. Three major characteristics are 

calculated here using the Discrete (fast) Fourier transform 

(DFT), and the recogniser will be trained using these features. 

3.1.4. Classification of Driver Behavior using DNN 

Deep Neural Network Model Design: The following 

factors can be taken into account when creating a neural 

network model to categorise drivers:  

Features of input: Speed, acceleration, energy use, and 

sensor data (if available) are examples of telemetry data.  

Data pre-processing: includes addressing missing data, 

scaling or normalising features to standardise the input, and 

perhaps enhancing data for training.  

Model architecture: Various neural network types may 

be employed, contingent on the intricacy of the data: 

Feedforward Neural Networks (FNN): When the 

features are highly structured and the task is reasonably easy. 

Recurrent Neural Networks (RNN) or long short-term 

memory (LSTM): If there is a temporal component to the 

data, such as shifts in driving behaviour over time, they may 

be used. 

Convolutional Neural Networks (CNN): When visual 

data is utilised, like pictures or movies captured by in-cabin 

cameras. 

Output Layer: Usually, the last layer is made up of 

several nodes that represent various driver classes or 

categories. 

The DNN's primary objective is to estimate the EV range 

precisely by characterising the non-linear connection 

between input data and output data. In the context of EV 

range estimates, a regression technique that minimises both 

instruction mistakes and errors pertaining to unknown inputs 

is required to estimate path loss for a variety of propagation 

situations. 

The optimal feedforward design for path-loss prediction 

is found in this work by scaling the input features to guarantee 

that every feature makes an equal contribution to the DNN's 

learning process.  

We obtain measurement information from the "GR 

Amsterdam." Figure 2 depicts the network design for a Deep 

Neural Network (DNN) with three hidden components. The 

definition of the multi-layered feedforward vectors and 

weights is comparable to that of the neuron model. 
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Fig. 2 Designing a deep neural network to predict EV range 

 

An architecture with two hidden layers was chosen 

following comparison testing with different setups. This 

structure avoided overfitting and offered high prediction 

accuracy by striking the ideal balance between accuracy and 

computational economy. While deeper structures raised 

processing requirements without significantly improving 

performance, models with fewer layers demonstrated 

decreased accuracy. 

3.1.5. Advanced Driver Assistance System (ADAS) 

Electric cars with advanced driver assistance systems are 

the greatest option for personal transportation since they offer 

a safe, comfortable, and environmentally friendly substitute 

for traditional cars. These vehicles are an excellent option for 

both individuals and families due to their advanced safety 

features and energy-efficient technologies. They can be 

utilised for long-distance trips, errand running, and daily 

commuting. Modern driver aid technologies in electric cars 

make them great options for usage in public transportation 

systems. These cars provide a reliable and safe means of 

getting about cities and towns and can be utilised for bus 

routes, shuttle services and other public transportation 

choices.  

By incorporating state-of-the-art safety measures and 

energy-efficient technologies, these cars can help reduce 

pollution, traffic, and other environmental consequences 

associated with traditional transportation systems. 

Furthermore, modern driver assistance technologies in 

electric cars make them ideal for use in commercial 

transportation. These vehicles can be used for delivery 

services, taxis, and other commercial transportation services 

and provide a safe, efficient, and reasonably priced way to 

move people and goods. The enhanced safety features of 

these vehicles can assist in minimising accidents and other 

safety dangers associated with commercial transportation, 

even though energy-efficient technologies can help reduce 

costs and increase sustainability. 

Electric automobiles with ADAS provide a more 

economical and ecologically friendly alternative to 

traditional diesel-powered delivery trucks. With features like 

regenerative braking, predictive cruise control, and traffic 

sign recognition, these cars can reduce fuel use and speed up 

delivery times. ADAS-equipped electric vehicles can also be 

used by emergency services, providing them with a rapid and 

efficient means of conducting their work. Thanks to features 

like autonomous driving and adaptive cruise control, these 

cars can help emergency responders get where they need to 

go more quickly and safely. 

3.2.  Methods of Analysis 
After that, we used f-measure, Area Under the Curve 

(AUC), accuracy, precision, recall, and other metrics to 

evaluate and contrast the chosen models. To ascertain 

correctness, the confusion matrix can first be determined in 

the manner described below: 

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                                                          (4) 

In this study, accuracy is employed to demonstrate the 

actual performance of each model. In light of this, precision 

makes it possible to quickly and easily depict the 

performance of each individual outcome, facilitating 

comparison. Precision findings are then provided so that the 

user can evaluate the degree of repeatability of a model. This 

might inform the user that if the measurements were made in 

the same conditions, the same outcome would be achieved. 

The following is how it is depicted. 

  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                   (5)                   

Recall is the next metric that we have employed. This is 

sometimes referred to as sensitivity since it attempts to 

provide information on the overall quantity of relevant items 

chosen. It can be shown as follows: It displays the total 

number of relevant examples that were obtained out of all the 

relevant instances that could have been chosen.                               

𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                              (6) 
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The f-measure metric is then included. This can be 

explained by the fact that it provides the outcomes of the 

precision and recall harmonic mean, where recall is 

calculated by dividing the number of accurate positives by 

the precision, where precision is the sum of accurate positives 

divided by the sample size. It has a maximum value of 1 and 

can be quantified as follows: 

 

2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                               (7) 

AUC is the final metric we employed in our 

investigation. To determine how well a model can identify 

actual outcomes, the AUC plots two different metrics. Two 

parameters are plotted on the curve: the recall and the false 

positive rate. The actual positive rate is another name for it. 

An example of how to illustrate these is as follows:              

𝑇𝑅𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
⁡⁡⁡⁡⁡𝐹𝑃𝑅 =

𝐹𝑃

𝐹𝑃+𝑇𝑁
                            (8) 

The AUC curve aggregates a performance metric across 

all potential categorisation thresholds by plotting TPR 

against FPR at various thresholds. The overall architecture of 

the intelligent ADAS is shown in Figure 3. 

 
Fig. 3 Architecture of intelligent ADAS 

 

4. Result and Discussion 
Both execution time and a range of performance metrics 

were used to evaluate our models. We could evaluate our 

structures' speed and performance against other cutting-edge 

techniques. Performance metrics included Cohen's kappa 

values, F1, and AUC. Additionally, the k-fold test for cross-

validation was used as an assessment technique. Performance 

metrics focused on training and prediction time, whereas 

execution speed metrics focused on speed. 

4.1.  Driving Operation Patterns 
Three groups of observable driving signals can be 

distinguished [34]: 1) driving behaviour, such as steering 

angles and pressures on the gas and brake pedals; 2) vehicle 

status, such as engine speed, acceleration, and velocity; and 

3) vehicle position, such as yaw angle, relative lane position, 

and following distance. We concentrate on driving behaviour 

among these driving signals in connection to the operating 

signals for steering angle, brake pedal, gas, and velocity. Six 

individuals' driving-related data are given in Table 1. 

 
Table 1. Driving information of six subjects 

Driver Age 

Time to 

hold a 

driving 

license 

(yrs.) 

Annual 

mileage 

(mile) 

Driving 

geography 

A 28 9 2500 Urban 

B 28 6 3500 Hybrid 

C 25 8 3000 Hybrid 

D 27 10 2000 Hybrid 

E 27 5 6500 Motorway 

F 31 2 1500 Urban 

Driver Vehicle 

Interface 

Context Aware 

Reasoning 

Context 

Repository 

Context 

Representation 

Domain 

Knowledge Base 

 

Context Assimilation 

 

Context Acquisition & Fusion 

 

Environment sensor 

 

Vehicle sensors 

 

Driver sensors 
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Driving operation patterns for 10-minute driving signals 

collected in the simulator with a 5:6 data capacity ratio and a 

10Hz sample frequency are shown in Figure 4. Training is 

done in (a), and testing is done in (b). .6000x4 original signal 

data has been gathered for a single driver. The system's 

resiliency is verified using only testing data from Driver F. 

The pieces of archaic driving operating patterns are clearly 

intertwined. resembling a "yarn ball." Under identical road 

conditions, it is challenging to identify their owners. 

 
Fig. 4 Driving profiles during the designed road condition 

 

 
                                                           (a)                                                                                                                                   (b) 

Fig. 5 Car Range, Data Features.  Scatter plots: (a)Acceleration vs. Car Range; and (b)Battery vs. Car Range. 

 

4.2. Deep Neural Network (DNN) 

An innovative deep learning-based method for 

estimating EV range using actual data was presented in this 

study. Particularly when paired with the Adam and RMS prop 

optimisers, the constructed Deep Neural Network (DNN) 

models demonstrated remarkable performance with an 

amazing R2 score of 0.99. This indicates that accurate EV 

range forecasts are made possible by the deep learning 

architecture's ability to capture the intricate correlations seen 

in the dataset, as illustrated in Figure 5. A number of tactics 

were used throughout the training process to reduce the 

chance of overfitting. With a dropout rate of 0.3, dropout 

layers were added to the architecture of a Deep Neural 

Network (DNN). Selecting a subset of neurons randomly 

during each training cycle keeps the model from being unduly 

reliant on any neuron, promoting improved generalisation to 

new data. 

 

4.3. Performance Evaluation Measures in ADAS 
When evaluating the performance of the proposed 

ADAS, standards such as F1-score, recall, accuracy, and 

precision revealed that CFS selected fewer than 10% of the 
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original features, resulting in the largest dataset reduction. A 

total of 825 features were chosen by RFF, while 840 features 

were chosen by IG and CHI. As can be shown, all of the FS 

techniques greatly reduced the original dataset, which 

included 1508 attributes. Table 2 displays the results of the 

recommended method. 

Both the classification models' and the FS's performance 

will be evaluated. Three distinct ADAS, PCA, and RF 

algorithms are Deep learning and machine learning 

methodologies that are utilised to assess Recurrent Neural 

Networks (RNN) and the proposed DNN, and a variety of 

metrics are used to confirm the results. We looked at ANN 

and RNN for comparison with the suggested model because 

they are primarily utilised for driver tiredness detection 

methods, and their effectiveness on ADAS has not been 

verified. Furthermore, no methods are now in use that have 

evaluated their efficacy based on cutting down on Google 

Colab's features and processing time. As a result, we apply 

the current methods and contrast them with the suggested 

model. The comparative performance of the proposed ADAS 

in terms of accuracy with different features is depicted in 

Figure 6. 

Table 2. Result of classification task: No feature selection was used on 

the data set 

ADAS Precision Recall F1 AUC 

67.78 0.72 0.71 0.72 0.73 

57.31 0.65 0.73 0.69 0.72 

70.16 0.75 0.77 0.76 0.75 

68.58 0.76 0.79 0.76 0.8 

65.45 0.69 0.83 0.74 0.78 

66.10 0.64 0.84 0.76 0.79 

65.02 0.65 0.9 0.75 0.79 

67.16 0.73 0.75 0.74 0.78 
 

 

 
Fig. 6 Graphical representation of the proposed model for driver identification in terms of accuracy with different numbers of features 

 

Table 3. Comparison table 

Reference Techniques Accuracy Precision Recall Sensitivity 

M. Almehdhar et. al (2024) 

[22] 

Intrusion Detection 

Systems (IDS) 

97.2 87.0 NA NA 

Y. Xun et. al (2019) [23] CNN and SVDD Model 92.0 95.0 92.0 92.0 

A. Kavousi-Fard et. al (2020) 

[24] 

Generative Adversarial 

Network (GAN) 

96.0 95.5 96.0 95.6 

H. C. Lin et. al (2022) [25] In-Vehicle Network (IVN) 96.3 95.7 96.8 97.3 

Proposed approach ADAS 97.6 96.9 98.8 99.3 

The recommended DNN performed 97.05% using RF 

and 95.55% using PCA in the accuracy tests, whereas ANN 

and RNN performed roughly 92% and 94%, respectively, 

when used with both PCA and RF. For ANN with PCA, the 

Cohen's kappa value was a pitiful 0.78. In comparison, the 

identical approach employing RF yielded a score of 0.82. In 

contrast, the suggested ADAS approach obtained 0.91 with 

PCA, and the 0.94 RNN achieved 0.85 with PCA and 0.88 

with RF. The RNN with RF had an F1-score of 0.94, whereas 

the ANN with RF had a precision, recall, and an F1-score of 

0.92. 

97.4

97.6

97.8

98

98.2

98.4

98.6

98.8

99

Accuracy (%) Precision (%) Recall (%) F1-measure (%)
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5. Conclusion 
An Optimal Driving Strategy (ODS) that integrates 

driver behaviour detection and driver assistance was 

described in this work using a unique ADAS. A novel 

network that could detect drivers and assess driving conduct 

was constructed using the DNN model. Furthermore, this 

study proposes an intelligent driver support system that uses 

a revolutionary deep learning approach to accurately predict 

an Electric Vehicle's (EV) driving range. The fact that our 

work relies on real-world EV data highlights its significance 

because it increases range prediction accuracy and user 

reliability, both of which reduce driving anxiety. By 

increasing safety and efficiency, Advanced Driver Assistance 

Systems (ADAS) in Electric Vehicles (EVs) can minimise 

traffic accidents and improve energy Management, both of 

which have a substantial positive environmental impact. The 

suggested ADAS model obtained 97.6% accuracy, 96.9% 

precision, 98.8% recall, and 99.3% sensitivity. 
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