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Abstract - This work introduces a new technique for constructing enhanced-distance linear block codes tailored for binary 

vector systems with even dimensions. The approach is based on the theory of completely controllable discrete-time systems, 

where the solution space of such systems is systematically adapted to generate the code structure. As a demonstration, a 

controllable system of order 20 is used to design a (40,20) block-structured linear code, corresponding to an information rate 

of  0.5. To strengthen the error-correcting capability, a specialized mapping method is applied, which increases the minimum 

separation among valid code words by permuting the binary vectors. By widening this distance, the code exhibits improved 

tolerance to transmission errors. Simulation studies show that the suggested design achieves a lower Bit-Error Rate (BER) 

and a smaller probability of undetected errors compared with other block codes having the same parameters. These attributes 

make the scheme highly suitable for applications requiring exceptional reliability, such as deep-space communication, where 

both accuracy and robustness are critical. The results highlight how integrating concepts from control theory with modern 

coding strategies can produce efficient error-correcting codes for demanding communication systems, and they point toward 

future research opportunities in control-based code design for advanced data transmission. 

Keywords - Generator matrix, Discrete-time system, Bounds, Minimum distance, Code word, BER (Bit Error Rate). 

1. Introduction  
Error-Correcting Codes (ECCs) are fundamental tools in 

modern digital communication and storage systems. These 

systems help to identify and fix the errors that may occur 

during data transmission or storage, thereby maintaining the 

accuracy and reliability of the data. Within the broad family 

of error-correcting codes, linear block codes stand out as they 

combine a well-defined algebraic structure with decoding 

procedures that are computationally efficient. A particular 

class of these codes, designed using system theory and 

control principles, has shown significant promise in 

enhancing error-correction capabilities. 

The interplay between linear systems and convolutional 

codes has been explored extensively, providing a rich 

mathematical framework to design efficient coding schemes 

[1]. Building on this foundation, connections between control 

theory and finite rings have further expanded the possibilities 

for designing error-correcting codes with optimal properties 

[2]. Kalman’s seminal work on the general theory of control 

systems [3] has inspired innovative approaches for designing 

codes derived from system-theoretic concepts.  

While linear block codes have been extensively studied, 

most existing designs focus on algebraic or combinatorial 

construction methods without drawing on system-theoretic 

principles. Enhanced-distance codes, which can offer 

stronger error correction, are typically achieved through 

modifications of known code families such as BCH or LDPC. 

However, these approaches rarely exploit the controllability 

properties of discrete-time systems, despite the fact that such 

systems naturally generate structured vector spaces suitable 

for coding. Furthermore, there is limited research on 

integrating control-theoretic state-space models into the 

design of block codes for binary vector systems of even 

length, particularly in ways that systematically increase 

minimum distance for improved error resilience. 

In high-dependability communication environments 

such as deep-space links, error correcting codes must achieve 

low bit error rates and minimize undetected errors under 

severe channel conditions. Existing block code designs with 

similar parameters often fail to provide an optimal balance 

between structural simplicity, high minimum distance, and 

adaptability to even-length binary vector systems. The 

challenge is to develop a construction method that can 
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systematically generate such codes, enhance their error-

correcting capability, and remain computationally feasible 

for practical implementation. 

 

Currently, per the standards of the Consultative 

Committee of Space Data System (CCSDS), the binary 

Golay Code is used for deep space missions, and there is a 

proposal of using the Low-Density Parity Check Code 

(LDPC). The proposed (40, 20) Modified Linear Block Code 

(MLBC) in this research features a minimum code word 

distance of 10, which is better than the (24, 12) Golay code.  

As per history, in Voyager 1 and 2 other spacecrafts, Reed-

Muller Code was replaced by Golay Code with a good code 

rate due to memory constraints. This work presents an error 

correcting code that maintains a code rate of 1/2 while 

offering strong BER characteristics, making it applicable for 

forward error correction in high-frequency radio 

environments. 

 

This research article focuses on the design of even-length 

(n, k) codes using principles derived from completely 

controllable discrete-time systems. By integrating system-

theoretic concepts into the code construction process, the 

proposed methodology aims to achieve a balance between 

computational efficiency and error correction performance.  

 

The paper’s layout is presented as follows: Sections 2, 3, 

and 4 give the literature survey and methodology for 

designing a length-modified linear block code for space links. 

Sections 5 and 6 present experimental, analytical and 

simulation results, comparing the performance of the 

proposed codes with existing schemes. Section 7 provides the 

conclusion of the study and outlines possible avenues for 

future investigation. 

 

2. Literature Survey 
Error-correcting codes have been an integral part of 

communication theory, particularly for their role in ensuring 

data integrity when messages are transmitted through noisy 

channels. The earliest systematic attempts to minimize 

redundancy while maintaining reliability can be traced back 

to Huffman’s well-known coding approach [4]. 

 

Since then, the central concern has been to maximize the 

minimum Hamming distance between codewords, as this 

directly governs how effectively a code can detect and correct 

errors.  

 

This study focuses on constructing enhanced-distance 

linear block codes by systematically exploiting 

controllability properties of discrete-time systems and 

augmenting them with mapping-based strategies. By doing 

so, it aims to provide a robust coding framework that is 

especially suited for environments such as deep-space 

communication, where extremely low error rates are a 

fundamental requirement. 

2.1. Distance-Preserving and Distance-Increasing 

Mappings  

A considerable amount of work has been devoted to the 

design of mappings that preserve or increase code distances. 

The methodology described in [5, 6] provides a means to 

enhance the minimum distance between codewords. Lee [7] 

was among the first to introduce distance-preserving maps of 

odd length, while Lin et al. [8] later demonstrated that such 

techniques could be extended to ternary vectors. These 

studies indicated that suitable mappings could provide 

structural improvements in code design. Chee and 

Purkayastha [9] took this idea further by developing efficient 

decoding strategies for codes built from permutation-based 

mappings.  

 
2.2. Systems-Theoretic Contributions to Coding 

A different but related strand of research has attempted 

to link coding theory with systems and control theory. 

Rosenthal [10] pointed out that several open problems in 

systems theory have direct implications for communication 

and coding. Earlier, Author’s examined the state-transfer 

problem in linear systems, and this idea was later applied to 

the systematic construction of codes. Building upon these 

ideas, Author’s proposed a class of Modified Linear Block 

Codes (MLBCs) that exploit controllability properties of 

discrete-time systems. Their work established methods for 

designing generator matrices and introduced distance-

preserving mappings and efficient decoding algorithms, 

demonstrating the adaptability of control-theoretic 

approaches in achieving high error resilience. 

 

2.3. Algebraic Approaches and Decoding Strategies  

Algebraic methods have remained a dominant research 

direction for decades. References [11-21] present several 

algebraic decoding methods for cyclic and quadratic residue 

codes, making use of approaches like Gröbner bases,      error 

locator polynomials, and the Berlekamp-Massey algorithm. 

These contributions extended decoding capabilities to the 

true minimum distance, going well beyond classical error 

correction limits.  

 
2.4. Specialized Coding for Channel Constraints 

Other researchers have studied coding strategies tailored 

to specific channel models. Tomás, Rosenthal, and 

Smarandache [22] analyzed the decoding of convolutional 

codes over erasure channels, where only partial information 

is available at the receiver. Their results illustrate the 

adaptability of convolutional structures under constrained 

channel conditions.  

 

3. Methodology  
In this work, a 5-bit error correcting Modified Linear 

Block Code (MLBC) has been developed. The code, 

represented as a (40,20) (n, k) system, originates from the 

solution space of a fully controllable discrete-time model. Its 
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generator matrix (G) is organized by permuting codewords, 

and the performance of the design was examined through 

simulation. A promising Bit Error Rate (BER) can be 

obtained for the constructed code. This code can be decoded 

by generally available existing decoding techniques for linear 

block codes. 

 Based on the analytical research of this code, a new 

lemma is developed. The probability of undetected error for 

the designed (40, 20) MLBC demonstrates improved 

performance over conventional block codes.  

The progression of the discrete-time system is 

formulated using the state-space equation, shown here by 

Equation number (1): 

 

In this formulation, x(k) denotes the state vector at the 

discrete instant k, and u(k) corresponds to the input vector. 

A general form of the solution to Equation (1) is 

expressed as follows: 

                                                                                                          

Let us now examine an example of a third-order system, 

as outlined below:  

Let, 

  

 By applying Equation (2) to solve the matrix system in 

Equation (3) across various sampling instances and extending 

the analysis to a 20th-order system, the resulting state at the 

final sampling point is represented as x(20). This corresponds 

to the 20th-order system. Beginning with the initial state, it can 

be demonstrated that the final solution, x(20), is a vector 

consisting entirely of zeros. 

As the system progresses, all subsequent outputs reduce 

to zero, meaning the initial state [11111111111111111111] 

eventually reaches [000000000000000000] at the final 

sampling instant. The vectors x(0), x(1), and x(2) serve as the 

fundamental basis of the system. The vectors x(3) through 

x(19) are used to construct the generator matrix G. In this 

approach to linear block coding, the generator matrix G takes 

the form G = [I ∣ P], with P created by placing the transposed 

vectors x(0) to x(19) as rows and I as the identity matrix. The 

matrix P assumes an upper triangular structure derived from 

the basis vectors. The corresponding parity-check matrix is 

given by H = [Pᵀ ∣ I], which satisfies the standard linear block 

code conditions GᵀH = 0 and HᵀC = 0. 

4. Designing of Basis Vectors for (40,20), (n, k) 

Code 
From the above section of this article, the generator 

matrix for a 20th-order completely controllable discrete-time 

system can be established from the basis vectors of its 

solution space as follows: This established generator matrix 

will have 20 rows and 40 columns, which consists of an 

identity matrix and the solution space obtained from basis 

vectors. 

𝐺 =

[
 
 
 
 
1 0 0 0⋯ 0 1 1 ⋯ 1⋯ 1
0 1 0 0⋯ 0 1 1 ⋯ ⋯ 0
⋮ 0 1 0⋯ 0 1 1 1 0⋯ 0
⋮ ⋮ 0 1⋯ 0 ⋮ ⋮ 0 ⋯ 0
0 ⋮ ⋮ 0⋯ 1 1 0 ⋯ ⋯ 0]

 
 
 
 

  

       It is verified that the condition G·Hᵀ = 0 holds, 

confirming a key property of linear block codes. 

Additionally, when this generator matrix is employed to 

form a linear block code, it can be verified that H·Cᵀ = 0, 

indicating that the resulting code adheres to all fundamental 

principles of linear block codes. Upon evaluating the code's 

error detection capability through minimum distance 

analysis, it is found to detect single-bit errors.  

 

To enhance the error correction performance, 

permutations of the basis vectors in the generator matrix are 

applied using twisting and rotation techniques, while 

keeping the identity portion of the matrix unchanged. By this 

methodology, the designed code is observed in a 5-bit error 

correcting code and gives better Bit Error Rate (BER) 

performance. 

 

5. Analytical Experimentation for the Basis 

Vectors Framework  
First row R1 of the generator matrix for the modified 

matrix is obtained by permutation of rows of the P part of G:                                      
R1(modified)=R1+R18+R18+R14+R15+R15+R13+R11+R5+R7+R3 

 

For further rows of the generator matrix, we propose an 

increased distance mapping algorithm for a length-modified 

matrix, as shown in Figure 1.  

 

 (40, 20) Code is developed with this methodology, 

which can detect up to 10 errors made in the transmission 

system used for high-frequency transmission. Also, it can 

correct 5 errors that occurred in such a transmission. The 

probability of undetected errors is better for this designed 

code than the existing codes. 

 

( 1) ( ) ( )............................(1)x k Ax k bu k  

1

0

( ) (0) ( 1 )..............(2)
k

k j

j

x k A x A bu k j




   

0 1 0 0

( 1) 0 0 1 ( ) 0 ( ).......(3)

6 11 6 1

x k x k u k

   
   

  
   
        



Seema Talmale & B. K. Lande / IJECE, 12(9), 188-193, 2025 

 

191 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Fig. 1 Increased Distance Mapping Algorithm for Designing (40,20), (n, k) MLBC 

 

6. Experimental Simulation and  Results 
The designed (40, 20), (n, k) code is simulated using MATLAB simulation and the BER performance is evaluated. The 

results are shown in Figure 2. 

For designing (40, 20) MLBC, consider 20th 

order UTM established from the solution space 

of a controllable discrete-time system  

Row 1 of modified matrix will be: 

R1(modified)=R1+R18+R18+R14+R15+R15+R13+R11+

R5+R7+R3 

STEP 1:  Get second row :  

By performing a single rightward bit rotation 

on the first row of the modified matrix system 

row 

STEP 2: Get third row: 

By performing a one-bit right rotation on the 

second row 

STEP 3: Carry out this procedure iteratively on 

the next (n–3) rows, equivalent to 17 rows to 

obtain the full nth-order basis vector set of the 

modified upper triangular matrix. 

STEP 4: Carry out MATLAB simulations to 

generate the complete set of code words and 

to determine the minimum distance. 

The calculated minimum separation among 

the code words is dmin=10 
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Fig. 2 Eb/No Vs BER Performance 

 

 
Fig. 3 Comparison of Eb/No Performance of the (40,20) MLBC with 

Other Codes 

  

As illustrated in Figure 3, the bit error rate of the proposed MLBC outperforms that of the currently available codes. 
 

Table 1. Results of a few more designed error correcting codes with the help of permutation and twisting methodology 

Name of the 

Code 

Code length 

parameters 

Rate of designed 

code 

Modulation 

Technique 
dmin 

MLBC (18,9) 0.5 16 QAM 5 

MLBC (34,17) 0.5 16QAM 6 

MLBC (22,11) 0.5 16QAM 6 

MLBC (28,14) 0.5 16QAM 6 

MLBC (30,15) 0.5 16QAM 6 

MLBC (82,18) 0.219 16 QAM 22 

MLBC (79,15) 0.189 16QAM 22 

Hamming Code (31,26) 0.838 16 QAM 3 

Hamming Code (63,57) 0.904 16 QAM 3 

Hamming Code (127,120) 0.944 16 QAM 3 

Hamming Code (255,247) 0.968 16 QAM 3 

MLBC (40,20) 0.5 16 QAM 10 

7. Analytical Findings 
7.1. Lemma 

By considering a discrete-time system of order 20 that is 

fully controllable, it is feasible to derive an error correcting 

code of (n = 40, k = 20) using its solution space. This code 

exhibits the minimum distance of 10. 
 

8. Conclusion 
        Any form of audio or video communication is bound to 

face errors in a fading environment. The main objective of 

constructing error-correcting codes is to solve the issue of 

unreliable communication. In this research, a simple and 

effective error-correcting code is designed with improved 

error-correcting capacity. A novel variant of a linear block 

code based on permutation arrays is developed. Specifically, 

an even-length (40, 20) (n, k) linear block code with 

enhanced error-correcting capability is designed. This 

approach introduces a unique methodology involving 

permutation and twisting of the code words, which can be 

extended to construct longer codes. The resulting codes are 

particularly suitable for high-frequency radio signal 

transmission and reception applications. 
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