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Abstract - In recent years, Automated dental caries detection using intraoral radiographs has attained increasing potential to 

assist dentists in early diagnosis and treatment planning. Traditional research primarily relies on general-purpose 

Convolutional Neural Networks (CNNs) such as VGG16 or ResNet, which have demonstrated reasonable performance in 

medical imaging tasks. The major challenge remains in accurately identifying carious lesions in the occurrence of anatomical 

noise, restorations and poor image contrast, which often leads to high false positive rates. This research proposes a novel 

hybrid architecture called ResXformer to address these limitations. Initially, the data is collected from diverse clinical sources 

and pre-processed to enhance the poor contrast. A depth-wise separable CNN backbone extracts fine-grained features with 

reduced computational cost. Later, a residual cross-attention fusion mechanism allows bidirectional information flow between 

the CNN and Transformer branches, enhancing spatial and contextual learning. Further, an adaptive focal-margin loss is 

introduced that penalizes ambiguous predictions based on per-sample logit variance, reducing false positives near 

restorations. Together, these steps create a robust, lightweight model tailored for accurate and interpretable dental caries 

detection in clinical practice. 

Keywords - Adaptive Focal-Margin Loss, Convolutional Neural Networks, Dental Caries Detection, Intraoral Radiographs, 

Residual Cross-Attention Fusion Network. 

1. Introduction  
Tooth decay or dental caries is among the most common 

chronic diseases affecting people of all age groups around the 

world [1]. Detection of caries early and accurately is 

paramount for obtaining timely treatment to prevent serious 

oral health issues [2, 3]. Intraoral radiographs, particularly 

bitewing radiographs, are widely accepted in clinical 

application for identifying and detecting carious lesions on 

the interproximal surfaces of teeth that would otherwise not 

be visible through visual examination [4]. Artificial 

Intelligence (AI) based tools, specifically those using deep 

learning techniques, have been utilized in dental translational 

research and clinical practice for the automated detection of 

caries in dentistry in order to minimize the error potential of 

human-based queuing and observations and to boost clinician 

workflow or throughput potentially [5, 6]. While the 

development of automated detection of caries has made 

significant improvements over the last few years, it remains 

challenging [7]. Several inherent characteristics of dental X-

ray images are responsible for posing significant obstacles to 

the automated detection of caries. Low-contrast structures, 

overlapping anatomical structures, radiographic artifacts, 

restorations, and dental hardware cause difficult-to-detect 

artifacts [8, 9]. These subtle differences in noise and artifacts 

can create difficulties for generalized deep learning models 

to correctly classify carious tooth structure from non-carious 

tooth structure [10].  

 

Traditional CNN-based models such as VGG16 and 

ResNet have been successfully applied to general medical 

imaging but have not been optimized for dental radiographs' 

heterogeneous texture and spatial structural characteristics 

[11]. Moreover, the existing models are not fine-tuned for 

different textures and fine-grained spatial features with 

respect to dental radiographs. Increased false-positive rates, 

particularly within or around metallic restorations or 

compromised radiographic contrast, are caused by inferring 

structural information of the teeth based on an acceptable 

pattern within the neighboring, but potentially different 

structure [12]. The major research gap is that the existing 

models are not complex and optimized for dental 

radiographs, capable of both local and global relationships in 
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noisy images, which increases the false negatives in 

classification.  The motivation for this research is to create a 

model architecture specific to its intended domain that 

overcomes the limitations of traditional CNNs by 

incorporating local and global context [13]. The primary goal 

is to create a model to improve classification performance 

while maintaining trust and interpretability in a clinical 

setting [14]. A reliable architecture that balances lightweight 

computation with fine-grained feature representation would 

enable scaling up for real-time, real-world applications in 

dental diagnoses [15]. The major contributions of the 

research are listed as below: 

 To introduce ResXformer, a hybrid architecture that 

combines depth-wise separable CNN layers with a 

Transformer attention mechanism with residual cross-

attention [16]. This enables bi-directional flow of 

information, strengthening spatial accuracy and global 

comprehension. 

 A contextual encoding approach by Transformer blocks 

is used for the extraction of CNN features, and the 

representation of the data is improved by modelling non-

local interactions [17]. 

 To introduce a novel adaptive focal-margin loss that 

dynamically penalizes penalties based on the 

characteristics of the hard-to-classify sample and 

minimizes false positives [18].   

 

The current research manuscript is organized as follows: 

Section 2 discusses the literature review, Section 3 explains 

the proposed methodology, Section 4 illustrates the 

experimental results, and Section 5 gives the research 

conclusion. 

 

2. Literature Review  
Some of the existing research works that are applied for 

the dental caries diagnosis are discussed: Haihua Zhu et al. 

[19] suggested a new U-shape DL framework with a 

complete-scale axial attention mechanism, called CariesNet, 

aimed at the segmentation of shallow, moderate and deep 

dental caries in panoramic X-ray images. This included skip 

connection and encoder-decoder designs in its architecture, 

increasing the Sensitivity of segmenting tiny lesions. 

However, the model showed issues with under-represented 

lesions, and it is only tested on panoramic radiographs, which 

cannot be generalized.  

 

Tareq, A et al. [20] presented the fused YOLO model 

incorporating transfer learning, such as VGG16 and 

DenseNet, to detect dental cavitations from unstandardized 

smartphone images. An experiment was performed on an 

augmented dataset of 1,703 images with an effective 

diagnostic accuracy. The approach has flexibility in handling 

non-standardized images, which is favorable for remote 

diagnosis; however, it requires high-quality images with 

similar performance in different areas of clinical practice.  

Yi Liu et al. [21] presented the Oral-Mamba system, a 

DL framework that is constituted of Mamba blocks integrated 

into a modified U-Net framework, to detect dental caries, 

calculus and gingivitis using intraoral photographic images. 

The model had improved accuracy in caries detection, which 

was much faster than the standard U-Net models. The 

drawback comprises a lack of data diversity and limitations 

of generalization to the unknown clinical setting.  

 

Geetha Chandrashekar et al. [22] suggested a 

collaborative learning framework that integrates self-trained 

models (Mask R-CNN and Faster R-CNN) in dental image 

segmentation and identification tasks on panoramic dental 

radiographs. The collaborative model increased the reliability 

and accuracy, particularly in scenarios where orthodontic 

tools or the absence of teeth are involved. However, the 

system was effective only in the segmentation of overlapping 

teeth and dental implants.  

 

Mehmet Boztuna et al. [23] developed an automated 

periapical lesion detection system through DL based on U2-

Net architecture. Research focused on diagnosing periapical 

periodontitis through panoramic radiographs due to the 

variable lesion manifestations that made manual evaluation 

subjective. The model enhanced the segmentation accuracy 

and detected periapical lesions. However, the system requires 

additional panoramic radiographs for better generalization.  

 

Ahmed, W.M. et al. [24] employed CNN to identify the 

different caries types from dental images of multiple datasets. 

Bitewings radiographs with a resolution of 1876×1402 pixels 

were gathered, segmented, and anonymized using a dental 

caries analysis software application. The strategy used 

supervised learning algorithms trained for semantic 

segmentation tasks. This approach achieved a superior 

classification result, establishing itself as a sensitive and 

precise approach that excels in all evaluated classes. 

However, the model requires huge computation, making it 

very hard to apply in real-time and widely if not supported by 

adequate hardware.  

 

Ragodos, R. et al. [25] trained the Deep Neural Network 

(DNN) to recognize 10 dental abnormalities, hypoplasia, and 

microdontia on the large intraoral images dataset and 

impacted teeth, particularly in children with Orofacial 

Clefting (OFC). This multi-class classification technique got 

an efficient F1 score nearly similar to that of experienced 

dentists in detecting seven of the anomalies. The study 

emphasized that the model was particularly rapid and 

accurate in detecting anomalies, but low effective for 

particular anomalies and requires extensive data annotation. 

Tareq, A et al. [26] presented the fused YOLO model 

incorporating transfer learning, such as VGG16 and 

DenseNet, to detect dental cavitations from unstandardized 

smartphone images [27]. An experiment was performed on 

an augmented dataset of 1,703 images with an effective 
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diagnostic accuracy. The approach has flexibility in handling 

non-standardized images, which is favorable for remote 

diagnosis; however, it requires high-quality images with 

similar performance in different areas of clinical practice. 

3. Proposed Work 
This section explains the proposed methodology for 

precise dental caries diagnosis. Initially, the data is collected 

from diverse clinical sources and pre-processed to enhance 

the poor contrast. A depth-wise separable CNN backbone 

extracts fine-grained features with reduced computational 

cost. Later, a ResXformer allows bidirectional information 

flow between the CNN and Transformer branches, enhancing 

spatial and contextual learning. Further, an adaptive focal-

margin loss is introduced that penalizes ambiguous 

predictions based on per-sample logit variance, reducing 

false positives near restorations.  

3.1. Dataset and Pre-Processing 

A total of 4,875 dental radiographic images were 

collected and used in this research. The images are separated 

into a training set with 2,242 images, a validation set with 600 

images and a testing set with 600 images. The training set 

images consist of 28,014 labels, the validation set consists of 

3,567 labels and the test set consists of 3,463 labels. The input 

image that shows original caries and augmented caries is 

illustrated in Figure 1.  

Fig. 1 Original dental caries input image 

The Frost filter is an effective non-linear filter that is 

effectively used in removing speckle noise that is present in 

medical images, such as ultrasound and X-ray radiographs. 

Multi-scaled analysis is done using pixel-based local mean 

and standard deviation data. When a pixel with an intensity 

value significantly varies from the mean value of the region 

it is located in, it will be replaced by an intensity value that 

will be calculated by adding up the weight values of the 

neighboring pixels. The filter reduces noise by operating 

them without destroying edges or detailed information 

required in a medical and dental diagnostic application. As a 

noise filter, the Frost filter application is effective with a 

digital periapical image, thus enhancing its performance in 

recognition and description of the lesions. This type of image 

enhancement has essential advantages in the bone 

repositioning process following periapical surgeries, as it 

allows clinicians to find out where it happens. 

3.2. Feature Extraction  

Depth-wise separable convolution is a low-cost, efficient 

alternative to conventional convolutional layers, saving more 

computation and memory at the cost of no performance loss. 

This is done by separating the convolution into two parts, 

depth-wise and point-wise; the former applies one spatial 

filter to each of the input channels and later a 1×1 

convolution to project the depth-wise-filtered outputs across 

channels. Such separation reduces the number of parameters 

and floating-point operations. If the standard convolution 

cost is expressed mathematically as in Equation (1), then the 

cost of depth-wise separable convolution becomes as in 

Equation (2) 

 Coststd=k2×M×N×F2                               (1) 

CostDWSC=k2×M×F2+M×N×F2              (2) 

Where, k2 is the kernel size, M and N are the input and 

output channels, and F2 is the spatial resolution of the feature 

map. This computation cost reduction is suitable for dental 

caries detection, where the inference speed and model 

efficiency are crucial. The depth-wise separable CNN 

architecture is particularly effective for intraoral dental 

radiographs. The poor quality of dental imaging is a factor 

that gives it low levels of contrast, insignificant variations in 

texture and superimposition of anatomical structures. The 

capacity of depth-wise convolution to focus on and maintain 

specific spatial elements in every channel assures the 

conservation of the fine lesion textures. The second point-

wise convolution allows the network to merge such local 

patterns in the channels, which will allow more reliable 

classifications of caries areas. Each separable convolution 

block usually comprises a Batch Normalization and Gaussian 

Error Linear Unit (GELU) activation to enhance learning 

stability and feature refinement more effectively by 

permitting non-linear transformation to be learned. Then, 

selective pooling is used to downsample the feature maps and 

maintain spatial saliency.  

Following the utilization of the CNN backbone, the 

extracted lightweight feature maps, such as a tensor of shape 

128× H 4⁄ × W 4⁄  are passed to a transformer. This is used 

to learn longer-range dependencies that the CNN alone 

cannot and generalizes its local features over the full dental 

arch. These features informed at a global level are then 

combined with the original CNN outputs by way of cross-

attention modules or residual links. Lastly, a prediction head 

that has been trained using an adaptive focal-margin loss is 

used as a way of tightening decision boundaries and 

minimizing false positive errors, particularly in the area of 

ambiguity, such as restorations and shadows [28]. Therefore, 
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the depth-wise separable CNN will not only be the basis for 

efficient and accurate extraction of features but also ensure 

the subsequent use of a hybrid CNN architecture for precise 

dental diagnosis.  

3.3. Global Context Modelling via Transformer 

After the semantic and special features are extracted by 

the depth-wise separable CNN, the second step is the 

contextual encoding by Transformer blocks. As much as 

CNNs are perfectly suited to learn local patterns using 

convolution, they are naturally incapable of modelling long-

range relationships and global contextual relationships in an 

image. Such a limitation is particularly important in the case 

of any dental radiographs, where pathological elements of 

interest, such as caries, can cover many regions of the image, 

or some less-obvious context can play a role in informing a 

diagnosis. To overcome this, a Transformer encoder is 

introduced to the extracted CNN features and improves the 

data's representation by modelling such non-local 

interactions. A transformer works by first encoding the input 

tensor into a series of patch embeddings, which are further 

enriched with multi-head self-attention operations. For a 

given input feature map X∈RC×H×WThe sequence is reshaped 

into the set of N flattened patches, each of which is linearly 

projected into a fixed-dimensional embedding. The self-

attention mechanism computes attention scores as in 

Equation (3) 

Attention (Q, K,V)=softmax (
QKT

√dK
) V  (3) 

Where Q, K, V are the query, key and value matrices 

derived from the input embeddings and dK is the 

dimensionality of the key vectors. The formulation then 

enables every patch to consider the rest of the patches within 

the image, incorporating spatially distant but semantically 

correlated information. This is particularly effective in dental 

imaging. As an illustration, lesions at an occlusal surface can 

be more conspicuous in the light of the general orientation of 

teeth, distribution of density, or proximity of other 

restorations.  

Transformers make the model recognize these larger-

scale spatial relations, resulting in a more informative and 

accurate representation of features. The application of 

positional encodings also ensures that the spatial structure 

does not disintegrate during the attention mechanism, which 

is necessary to preserve the anatomical fidelity [29]. After the 

global context has been incorporated in the feature 

representations, they are combined back with the CNN 

features by means of residual or cross-attention, or sent to 

segmentation or classification heads. The Transformer blocks 

integration ensures that the network will no longer be 

confined to local analysis, but the image as a whole can be 

understood, which is essential to robust and clinically sound 

diagnosis of dental caries. 

3.4. Residual Cross-Modality Attention Fusion Network 

(ResXformer) 
The next inevitable step is featuring integration with 

ResXformer, which is necessary to successfully combine 

local and global features after contextual encoding is done 

using Transformer blocks. Whereas CNNs would be useful 

regarding local textures in high-resolution, and Transformers 

would be more advantageous in providing global contextual 

relationships, they both may excel in different ways. It is 

possible to simply concatenate their outputs and lose some 

information due to information redundancy. Hence, the 

mechanism of fusion needs to enable both modalities to go 

back and forth, enrich one another's features and pose spatial 

integrity, which is paramount in the precise detection of 

carious lesions in complex dental radiographs.  

In the residual cross-attention fusion module, the CNN 

stream and Transformer stream feature maps, as cross-

attention directions, are considered as sets of query-key-

values. The CNN features act as the queries. QCNN In the first 

path, querying the transformers key and values KTR, VTR, 

which enables the integration of global semantics into 

localized spatial descriptors as in Equation (4) 

               ZCNN=softmax (
QCNNKTR

T

√dk
) VTR  (4) 

On the opposite pathway, the Transformer stream takes 

its features as queries to perfect world knowledge with the 

high-res spatial features of the CNN, as in Equation (5) 

ZTR=softmax (
QTRKCNN

T

√dk
) VCNN  (5) 

This reciprocal querying only gets the features that are 

not just comprehensive but are also contextually filtered. To 

stabilize this fusion process and reduce destabilization 

through layers, residual connections are used in both streams 

regularly. Such skip connections allow the original 

activations to be reused and make it easy to have the gradient 

flow throughout training. It is important to get detailed 

features of dental areas susceptible to restorations, fillings, or 

anatomical noise. A mechanism of bidirectional fusion is 

beneficial in clinical imaging, particularly when used to 

perform tasks such as caries segmentation or detection. Once 

the fusion is done, the output is directed to a prediction 

module in which fine-grained boundaries are drawn with 

increased conviction [30]. In this way, the remaining cross-

attention merge works as a connection between the two 

representational spaces and indeed balances the advantages 

of both building blocks of architecture. 

3.5. Adaptive Focal-Margin Loss 
The model will enter the prediction phase when local and 

global features are aligned using ResXformer, generating the 

final output.  In order to ensure that this process is 



Sheetal Kulkarni & N. Rama Rao / IJECE, 12(9), 194-202 2025 

198 

maximized, an optimization of the training stage is done 

using an advanced loss known as adaptive focal-margin loss 

that eliminates the use of conventional loss functions such as 

cross-entropy. The designed standard focal loss solves the 

class imbalance problem by down-weighting easy examples 

and committing learning to more difficult, misclassified 

cases. Adaptive focal-margin loss takes this further to add a 

running margin per sample and allows it to move as 

confidence and variance of batch predictions vary. The main 

one is the formulation that mixes logit distance penalties and 

a focal variant of scaling as in Equation (6) 

Li=-αi(1-pt,i)
γi

log(σ-1(pt,i)-mi)  (6) 

Where, pt,i is the predicted probability for the target 

class, γi It is a focusing parameter that increases with the 

prediction error δi=|yi-pi|and mi is a sample-specific margin 

derived from the logit variance across the mini batch. This 

loss penalizes predictions that are both wrong and uncertain, 

particularly in the dental radiograph, because some of these 

regions are deceptively similar to the carious tissue [31]. The 

obtained final output images are shown in Figure 2. The 

confusion matrix for the true and predicted caries is 

illustrated in Figure 3.  

 
Fig. 2 Various sample output images if caries are predicted 

 
Fig. 3 Confusion matrix for true and predicted caries lesions 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Workflow of the proposed ResXformer model for dental caries detection 
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The model uses this adaptive loss in such a way that the 

number of false positives is decreased significantly, 

particularly in areas of the image where the noise levels are 

high, which can refer to fillings, shadows, or artifacts. It also 

adapts the Sensitivity of the model to the complexity of the 

presented training examples, which will be necessary in 

medical imaging, where insignificant distinctions may now 

hold diagnostic significance. Adaptive focal-margin loss 

directs the prediction phase, which can be regarded as a 

precision engine of the whole pipeline, as this ensures clinical 

applicability and trustworthiness of a decision.  

 

In Figure 4, the proposed ResXformer system 

incorporates pre-processing, depth-wise separable CNN, 

Transformer encoder, residual cross-attention fusion, and 

adaptive focal-margin loss to produce effective, efficient, and 

effective dental caries detection. 

4. Experiment Results  
This section examines the suggested methods for the 

most recent DL based segmentation approaches. The study 

experiments are executed using Python 3.8 on Windows 10 

on an Intel i5 having 16GB RAM, 6GB GPU, and 1TB SSD. 

The comparison of the proposed ResXformer model with two 

popular baselines, VGG16 and ViT-Base, is given in Table 

1.  

 

The ResXformer performs much better than the two and 

has the highest overall accuracy of 0.91, precision of 0.89, 

recall of 0.8 and F1-score of 0.88. It is also important to note 

that the model gives a much higher PR-AUC of 0.93, which 

indicates a better ability to deal with class imbalance and 

handle uncertain predictions. The graphical representation of 

accuracy scores and loss values is shown in Figure 5.  

Table 1. Comparison with baseline models 

M
o

d
el

 

A
cc

u
ra

cy
 

P
re

ci
si

o
n

 

R
ec

a
ll

 

F
1

-S
co

re
 

P
R

-A
U

C
 

F
P

R
 

(@
9

0
%

 

R
ec

a
ll

) 

P
a

ra
m

s 

(M
) 

In
fe

re
n

ce
 

(m
s)

 

VGG16 0.84 0.79 0.81 0.8 0.78 0.25 138 120 
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Base 
0.86 0.82 0.83 0.82 0.81 0.18 86 95 

ResXfor

mer 
0.91 0.89 0.87 0.88 0.93 0.07 4.5 45 

 

 
Fig. 5 Graphical representation of accuracy scores and loss values 

Moreover, it has a low False Positive Rate (FPR), 

indicating its strength in the clinical scenario where high 

recall is necessary. Notably, ResXformer produces these 

improvements when only 4.5M parameters are used and 

achieves the best inference time of 45 ms, implying it is far 

more efficient than VGG16 (138M, 120ms) and ViT-Base 

(86M, 95ms). These findings not only point out its overall 

excellence in accuracy, but also its applicability in 

application when it comes to dental diagnostics in real time 

scenarios. The tabular form of the results is given in Table 1, 

and the graphical representation of the True Positive Rate 

(TPR) and False Positive Rate (FPR) is shown in Figure 6. 
 

Fig. 6 TPR Vs FPR 
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Table 2. Ablation study 

Variant PR-AUC FPR (@90% Rec) Δ PR-AUC Δ FPR 

Full ResXformer 0.93 0.07 - - 

Without residual cross-attention fusion 0.88 0.13 -0.05 +0.06 

Replacing Adaptive Focal-Margin with 

standard FL 
0.9 0.12 -0.03 +0.05 

Using standard convolutions vs. depth-wise 

separable 
0.91 0.1 - +0.03 

Without curriculum-guided hard-negative 

mining 
0.92 0.09 -0.01 +0.02 

Table 2 shows the results of an ablation study carried out 

to understand the role of each architectural component in 

ResXformer. The substitution of adaptive focal-margin loss 

with regular focal loss is also deteriorating, and its PR-AUC 

is 0.90 with an elevated FPR (0.12), which means that the loss 

formula produces less FPR around ambiguous edges. 

Replacing depth-wise separable convolutions with standard 

convolutions does not change PR-AUC and doesn’t show 

increased FPR, indicating that parameter efficiency is 

maintained at the cost of spatial filtering quality. Finally, 

removing curriculum-guided hard-negative mining also leads 

to a slight drop in performance, evidence that it can be helpful 

in modifying the focus of learning in the model. The study 

generally affirms that every innovation is significant to the 

final model and helps it to be effective. 

Table 3 shows the results of hyperparameter sensitivity 

analysis, demonstrating that the performance of the proposed 

model depends on the configurations of the parameters. By 

using a large variety of values of the base parameter, 

concentrating parameter γ0, margin multiplier and the 

number of Transformer stages, the PR-AUC exhibits high 

scores between 0.90 and 0.94and the FPR has relatively small 

ranges between 0.06 and 0.11. This proves that the model is 

effective, stable, and robust to changes in hyperparameters. 

These findings have justified the reliability of the model 

during other training conditions and that the model can be 

optimized with flexibility without any performance loss. 

Table 3. Hyperparameter sensitivity 

Hyperparameter 
Values 

Tested 

PR-AUC 

Range 

FPR 

Range 

Base focusing γ0 
{1.0, 2.0, 

4.0} 
0.91–0.93 

0.06–

0.09 

Margin scaling 

factor 

{0.5, 1.0, 

1.5} 
0.90–0.93 

0.07–

0.11 

Transformer layers {2, 4, 6} 0.91–0.93 
0.07–

0.10 

Hard-negative 

ratio 

{10%, 

20%, 

30%} 

0.92–0.94 
0.06–

0.08 

Table 4 is the last structure, and this evaluates the 

explainability of the model using the various attribution 

methods. Grad-CAM obtains an Intersection over Union 

(IoU) of 0.72 and a standard deviation of 0.05, whereas 

SHAP alone gets a rather lower average IoU of 0.68 and a 

standard deviation of 0.10. However, the compositional 

explanation that integrates Grad-CAM and SHAP created a 

much better understanding, with a mean IoU of 0.85 and 

reduced variance to 0.04. It means that the more visualisation 

tools are used, the more consistent and correct interpretations 

of the model predictions are obtained. The finding underlines 

the importance of explainability alignment since it has a 

crucial role in obtaining the final output in practical 

applications. 
Table 4. Explainability alignment 

Method Mean IoU Std IoU 

Grad-CAM alone 0.72 0.05 

SHAP alone 0.68 0.06 

Grad-CAM + SHAP 

(composite) 
0.85 0.04 

Table 5 shows the comparative analysis of the research, 

where the existing models, such as MobileNet-v3 + U-Net 

[16], nnU-Net [17], and Ensemble Inception-ResNet-v2 [18], 

are implemented in the proposed simulation. The obtained 

results are then compared with the results of the proposed 

model for a validated state-of-the-art comparison. The results 

are evaluated by means of performance metrics like accuracy, 

recall, and specificity, as shown in Table 5.  

The proposed model was found to be 97.08% accurate, 

95.04% recall, and 99.04% specific in comparison with the 

existing models. Although the accuracy and specificity of 

nnU-Net [17] were very high, it had a relatively lower recall, 

which constrains the Sensitivity of detecting more subtle 

caries lesions. The balance between accuracy and specificity 

of MobileNet-v3 + U-Net [16] was good; however, it was still 

not as effective in recall as the proposed algorithm. Equally, 

Ensemble Inception-ResNet-v2 [18] had competitive recall 

values at the expense of accuracy and specificity. The 

proposed model outperformed these alternatives in all three 

measures, indicating that the model is robust and can 

generalize. 
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Table 5. State-of-the-art comparison to the proposed model 

DL models Accuracy (%) Recall / Sensitivity (%) Specificity (%) 

MobileNet-v3 + U-Net [16] 93.40 81.31 95.65 

nnU-Net [17] 98.6 82.1 100.0 

Ensemble Inception-ResNet-v2 [18] 87.1 85.8 89.3 

Proposed Model 97.08 95.04 99.04 

5. Discussion 
The experimental testing performed on the proposed 

model showed better performance than the traditional deep 

learning approaches. A ResXformer architecture, which 

added depth-wise separable CNN and Transformer encoders 

and adaptive focal-margin loss to enhance the accuracy of 

caries detection. There were great improvements in the new 

system framework in terms of accuracy, recall, specificity 

and Dice scores. Several comparative studies demonstrated 

higher-quality balanced and reliable performance of the 

proposed method over traditional state-of-the-art models, 

including MobileNet-v3 + U-Net [16], U-Net [17], and 

Ensemble Inception-ResNet-v2 [18]. Its practical 

applicability to large-scale deployment systems is more 

robust due to reduced computational wastage as well as 

increased diagnostic reliability in clinical practice. 

6. Conclusion 
The proposed research introduced a new DL 

architecture, ResXformer, which efficiently helps diagnose 

dental caries using intraoral radiographs. The model 

incorporates fine-grained textures and global context, pairing 

with global contextual features through a residual cross-

attention fusion mechanism.  

The model integrated a lightweight depth-wise separable 

CNN with transformer encoders. It also added an adaptive 

focal-margin loss that is more uncertain and adaptively 

down-weights classifications. This limits the number of false 

positives, especially instances of restorations or anatomical 

noise. A large number of experiments prove that ResXformer 

has the highest accuracy, precision, recall and computational 

efficiency compared with traditional architectures, such as 

VGG16 and ViT-Base.  

The entire research gives a very clear, efficient and 

interpretable solution that is applicable to real-time 

implementations of dental diagnostics, which holds great 

potential for increasing early caries detection and lowering 

the subjectivity of dental diagnostics in clinical practice  
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