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Abstract - The significant increase in ransomware assaults, which peaked over the past decade till 2024, makes it extremely 

concerning for cyber experts to track early detection methods continuously. This ransomware virus remains one of the most 

significant threats governments and businesses must confront. Conventional signature-based anti-ransomware solutions and 

heuristic-based and rule-based methods often struggle to identify ransomware malware, which is ineffective at detecting known 

threats. Various researchers used machine learning techniques for ransomware detection, leading to a lack of reliability in real-

world scenarios and higher computational time costs. To tackle the challenge of ransomware detection, this research work 

focuses on a deep learning-based hybrid model that combines CNN-LSTM, CNN-GRU, and CNN-Bidirectional GRU. Each layer 

effectively trains the parameters to detect malware. The CNN-Bidirectional GRU model achieved a maximum accuracy of 99.8% 

when using the Adam and RMSProp optimizers, with a computational cost of only 0.01 seconds. Using these optimizers, the 

proposed model reached a greater convergence rate, which protects the files against Ransomware. Additionally, comparisons 

were made between traditional machine learning and deep learning methods across various metrics, including training accuracy, 

validation accuracy, training losses and validation losses, to evaluate the overall performance of the proposed methods. 

Keywords - Bidirectional Gated Recurrent Unit (BID-GRU), Convolutional Neural Network (CNN), Cybersecurity, Gated 

Recurrent Unit (GRU), Ransomware malware. 

1. Introduction 
Several sub-families of cyberattacks have previously 

been identified, including crypto, locker, and scareware. In 

recent times, various malware such as Doxware, leakware, and 

Ransomware as a Service (RaaS) have affected cybersecurity 

[1]. Crypto-ransomware encodes files and data on a system 

without affecting normal computer operations, rendering the 

material unreadable and lacking a decryption key. The effects 

of this assault are extremely difficult to retrieve when data 

encryption methods included in crypto-ransomware are used 

appropriately [2]. The main goal of locker malware is to 

prevent computers from operating properly. Victims are 

typically presented with a ransom request via an 

authentication screen that includes a countdown timer to 

expedite their activation. In contrast to crypto-ransomware, 

Locker ransomware attacks are typically preventable by using 

a virus scanner and safe mode restarts [3]. Scare-ware is a type 

of Ransomware that pretends to be a virus or other computer 

issue and uses false advertising to trick people into 

downloading harmful software, even though it does not 

actually damage the victim’s machine [4]. Often, this 

Ransomware floods the screen with pop-up notifications, 

frightening users into downloading software that demands 

payment to restore the issues [5]. 

According to the Analysis conducted by CISCO [6], 

cybercrime activities peaked in January and continued to rise 

for the remainder of the observation period, as depicted in 

Figure 1. The patterns observed in the dropper area and 

Ransomware strongly resembled one another, indicating a 

relationship between the two. Droppers were probably being 

utilized to spread the ransomware payload. Because it 

generates money by locking data and systems captive for 

ransom, Ransomware is still a common danger. Because of its 

great profitability and growing number of ransomware-as-a-

service platforms, even less experienced attackers may 

already start attacks. 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1 Cisco ransomware statistical analysis during 2022-2024 

The cycle of attacks is sustained by organizations’ 

frequently insufficient safeguards and recovery procedures, as 

well as the readiness of numerous parties to give up the 

blackmail [7]. In April 2024, 373 more instances of 

ransomware malware were reported. 

Most of the current research concentrates on 

characterizing ransomware kinds and their technological 

methods. Specifically, there has been less focus on detecting 

new variations early on, when conventional signature-based 

methods cannot offer sufficient security. 

The research gap is to establish an explainable AI model, 

researching ransomware behavioral patterns, or developing a 

machine learning–based detection system. Also, developing a 

thorough strategy that increases resistance, improves early 

detection, and lessens the overall impact of ransomware 

assaults on vital systems by methodically examining various 

attack sub-families. 

The main drawbacks of conventional techniques, 

especially signature-based methods, include altered 

ransomware versions, which are distinct from existing 

malware “fingerprints,” such as file hashes, byte patterns, or 

known payloads, and are impossible to identify. Furthermore, 

rule-based approaches rely on preset rules that need to be 

manually developed and adjusted by professionals; these rules 

cannot change on their own. Heuristic-based approaches, 

which are imprecise for changing threats, leverage statistical 

characteristics or behavioural assumptions to indicate various 

suspicious activities, such as instantaneous file transformation 

or unexpected API access. Such malware causes financial 

losses to organizations, institutions, and software companies. 

It is crucial to use early detection technology, such as a 

proposed hybrid deep learning-based optimization technique, 

to recover with the least amount of danger while remotely 

keeping backups at secure locations to stop [8] the massive 

financial losses that firms suffer as a result of ransomware 

attacks. The main contribution of this research is as follows; 

● The primary goal of this study is to identify ransomware 

malware using the CNN-LSTM, CNN-GRU, and CNN-

Bidirectional GRU approaches in the context of 

developing technologies. 
● Proposed hybrid deep learning optimization methods 

successfully identified ransomware malware. This 

research work utilized datasets that had been collected 

from open sources, of which 80% was used for training 

and 20% for the testing phase to evaluate the CNN-LSTM 

model that had been constructed. 
● Optimization algorithms, such as SGD, RMSProp, and 

Gradient Descent, provide optimal solutions with a 

greater convergence rate for ransomware detection, 

which enhances the effectiveness of the deep learning 

model. 
● Without requiring intricate feature engineering, the 

proposed hybrid deep learning model attained a 99.8% 

accuracy rate with a loss rate of 0.01, reducing 

computational cost. This leads to the detection of 

ransomware malware, which is appropriate for avoiding 

cyberspace. 

By disseminating dangerous software and stealing 

personal data, cybercriminals threaten organizations, 

governments, and individuals globally [8]. Hundreds of 

hackers use harmful software throughout the day to break into 

networks, steal information, and conduct illegal financial 

activities.  

As a result, the scientific community is becoming 

increasingly concerned about the protection of personal data. 

To detect dangerous software and stop it from accessing 

private data, this study uses deep CNN techniques and hybrid 

(CNN-LSTM, CNN-GRU, CNN-BiGRU) models [9]. To 

provide a reliable and efficient method for ransomware 

malware classification and detection, the authors compared 

machine learning, hybrid deep learning models, and 

optimization methods to overcome the challenges faced in 

signature-based, rule-based, and heuristic-based techniques. 
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2. Related Work 
Several methods have been used to identify and 

categorize ransomware malware. The literature contains a 

large number of studies on automatic malware detection, 

Analysis, and categorization [10, 11] and dynamic Analysis 

performed on malware [12] as described in Table 1. However, 

machine learning and deep learning development have created 

many new opportunities for computer malware identification 

and categorization, as done in various research [13]. Aljabri et 

al. [14] detected ransomware malware, including Lockbit, 

Revil, and BlackCat, utilizing 48 features, including memory 

features, with an accuracy rate of approximately 98%. Several 

authors detected ransomware malware via Android 

application Alsoghyer et al. [15], classification based on n-

grams of opcodes [16], malware behaviors identified [17], 

machine learning techniques applied by Bae et al. [18], 

Noorbehbahani et al. [19] and Poudyal et al. Applied static 

level analysis on ransomware features [20] also used k-fold 

cross validation for better malware prediction, Gbenga et al. 

[21] used eight machine learning algorithms, among which 

optimization based Extra Tree and Random Forest chose 

random features for predicting malware, Smurf attack- a kind 

of DDoS malware detected by Revathy et al [22]. Bibi et al. 

[23] performed multifactor feature iterations along with a 

Recurrent Neural Network, an optimization approach carried 

out with ANN by Abdolrasol et al. [24], malware behaviors 

analyzed using a deep Neural Network by Tobiyama et al. [25], 

and image-based malware detected using the CNN-transfer 

learning model by Pant and Bista [26]. Deep learning-based 

feature extraction was unlabelled along with a Pareto 

ensemble classifier for malware classification by Zahoora et 

al. [27]. An Entire Analysis of these review papers uses 

heuristic techniques to find irregularities in system activity or 

concentrates on static or signature-based Analysis to find 

known ransomware families. Even though these methods have 

proven effective against conventional Ransomware, they 

frequently miss new variations, polymorphic strains, or 

assaults Delivered as-a-Service (RaaS), which change quickly 

to avoid detection. Furthermore, a lot of earlier research 

focused on classification accuracy without delving deeper into 

the characteristics or actions of the system that point to 

ransomware activity. This research implemented a deep 

learning based hybrid CNN with LSTM, GRU, and Bi-GRU 

models with parameter tuning, providing greater accuracy, 

less time duration, and the least computational overhead.
 

Table 1. State-of-the-art techniques on ransomware detection 

Survey Year Dataset 
Methodolog

y applied 

Work 

Intention 
Limitations Accuracy FPR 

Preci

sion 

Executio

n time 

TPR/D

etection 

rate 

ROC 

AUC 

[14] 2024 

Ransomw

are 

(lockbit, 

revil, 

blackcat) 

XGBoost 

48 memory 

features are 

extracted 

Leads to 

maximum 

Execution 

time 

97.85% 0.022 97% NA NA 
96.9

% 

[18] 2020 

Signature-

based 

malware 

Decision 

tree model 

Develop a 

protection 

mechanism 

Focused on 

only the 

specific 

operation of 

Ransomware 

98.5% 0.03 98% NA NA NA 

[20] 2018 

Ransomw

are-based 

malware 

Machine 

learning 

techniques 

CF-NCF 

values 

Predicted the 

malware 

falsely 

97% 0.2 96% NA 
96% 

 
NA 

[21] 2021 
Malware 

prediction 

Random 

Forest + 

Extra Tree 

Only 

dynamic 

features 

were 

analyzed 

Maximum 

computation

al overhead 

98.5% 1.4 NA NA 98.09% NA 

[22] 2022 
Smurf 

attack 

Hybrid 

(DT+RF) 

Detect DoS 

malware in 

an efficient 

manner 

Lower 

detection 

rate 

98% NA 
97.3

% 
0.01 

NA 
NA 

[25] 2016 
Ransomw

are 

Deep Neural 

Network 

Predict the 

behaviors 

of malware 

while using 

a website or 

URL 

Maximum 

computation

al time 

period 

96% NA NA NA NA 92% 

[27] 2021 

Zero-day 

ransomwa

re-based 

malware 

Pareto 

ensemble-

based 

estimator 

approach 

Enhance 

accuracy 

and recall. 

Solve 

class 

Focused on 

host-based 

features 

93% NA 
93.4

% 
NA 93% NA 
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imbalance 

[32] 2017 

Ransomw

are data 

samples 

LSTM 

Dynamic 

malware 

analysis 

Applied 

pretrained 

models, a 

large 

quantity of 

API calls, 

hence a 

delay in 

execution 

96.6% NA NA NA NA NA 

[33] 2023 
Ransomw

are 

CNN+Pre-

trained 

transformer 

The 

ensemble 

model 

improves 

model 

performanc

e 

Computation

al 

complexity 

more 

98.9% 99% NA NA 98% NA 

  

The literature survey analysis suggests that machine 

learning models are ineffective at detecting Ransomware, as 

multiple authors failed to assess parameters, including 

detection rate, TPR, and ROC AUC. In addition, traditional 

approaches, primarily signature-based, rule-based, and 

heuristic-based models, were unable to identify suspicious 

activities like file access and modification of API calls. These 

are the challenges faced by various researchers in detecting 

ransomware malware. Hence, this research employed deep 

learning models, optimization techniques, and hyperparameter 

tuning, providing better optimal solutions with less 

computational cost, faster convergence, maximum accuracy, 

and minimum loss. 
 

3. Methodology 
3.1. Data Collection 

The ransomware dataset has been gathered from the open 

resource website GitHub [28], whose link is mentioned below, 

where the contributors obtained examples of ransomware 

samples. In this instance, the metadata comprised 138,047 

input samples, which were further separated into valid (41,323) 

samples classed as Class 1 and ransomware (96,724) records 

classified as Class 0. This indicates that there is an imbalance 

in the data samples, with more ransomware samples than 

benign samples. 
 

3.2. Data Balancing 
This section provides an overview of how ransomware 

samples are distributed via class distribution, applying the 

resampling method by which imbalanced data are balanced 

and fed into the next process. Table 2 reveals that the data is 

unbalanced, causing the employed model to overpredict 

Ransomware, and the precision will be reduced. This leads to 

bias if the model is always trained to predict the majority 

classes. 

 

In this case, the data samples are balanced by 

undersampling Ransomware and oversampling the benign 

samples with the SMOTE technique. The representation of 

class distribution before balancing samples and after 

balancing samples is shown in Figure 2 and Table 2. 

 
Fig. 2 Class distribution before and after balancing 

 

Table 2. Class distribution on ransomware dataset 
Class Count 

Ransomware 96,724 samples 

Benign 41,323 samples 

 

3.2.1. Data Collection 
The input samples were distributed into two classes: class 

0 comprised 1521 samples, and class 1 included two samples. 

Moreover, resampling techniques were applied to mitigate 

class imbalance in ransomware data samples. Deep-learning 

workflows require the use of resampling algorithms to handle 

a variety of issues with data quantity, quality, and dispersion. 

These methods include methodically adjusting the training 

dataset to enhance standardization and overall model 

performance. The reason for using resampling techniques in 

this research is to address the class imbalance among malware 

samples and enhance model generalization via data 

augmentation [29]. To address these issues of class imbalance, 

oversampling minority classes and undersampling the 

majority classes were done[30]. This work carried out an 

Oversampling approach for minority classes: the Synthetic 

Minority Oversampling technique (SMOTE), suitable for 

boosting the number of occurrences in minority classes by 

creating fake samples or replicating preexisting samples. 
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Perform the sampling method for the majority classes: To 

balance the distribution of classes, the number of ransomware 

samples is reduced, which is considered as under-sampling of 

the majority classes. In some cases, there is a chance that 

significant data will be lost when using random 

undersampling methods. Therefore, the authors might not 

have utilized the random under-sampling approach. 

3.2.2. Sample Ransomware Dataset Statistics 
Initially, the malware dataset is imbalanced, with unequal 

distribution of target values among distinct labels. The 

statistics of the ransomware dataset are listed in Table 3, and 

the resampled metadata are listed in Table 4. 

Table 3. Initial dataset statistics 

 1001 1 2 0 0.1 

Count 1523.0 1523.0 1523.0 1523.0 1523.0 

Mean 
16806.

21 
0.3814 2.029 0.296 0.003 

Std 
4882.5

3 
0.4859 3.166 0.456 0.057 

Min 
10002.

0 
0.00 0.0 0.000 0.00 

25% 
10807.

0 
0.00 0.00 0.00 0.00 

50% 
20232.

0 
0.00 0.00 0.00 0.00 

75% 
20754.

0 
1.00 3.00 1.0 0.00 

Max 
21259.

0 
1.00 11.00 1.0 1.00 

 

Table 4. Resampled Dataset statistics 
 1001 1 2 0 0.1 

Count 3042.0 3042.0 3042.0 3042.0 3042.0 

Mean 
18679.

83 
0.19 1.016 0.399 0.001 

Std 
3944.2

6 
0.39 2.459 0.489 0.04 

Min 
10002.

0 
0.00 0.0 0.00 0.00 

25% 
20102.

0 
0.00 0.0 0.00 0.00 

50% 
20228.

5 
0.00 0.0 0.00 0.00 

75% 
21019.

0 
0.00 0.0 1.00 0.00 

Max 
21259.

0 
1.00 1.00 1.00 1.00 

 

3.2.3. Covariance Matrix for Sample Data 
The covariance values between two samples in a random 

vector are described by a specific type of matrix called the 

covariance matrix. The coefficient of variation appears 

between the non-diagonal values, and the variance of every 

value represented along the primary diagonal of the matrix is 

considered as a variance-covariance matrix. The covariance 

matrices for the ransomware samples are listed in Table 5. 

 
Table 5. Covariance matrix 

 10001 0 0.1 

10001 1.0634 -0.0756 0.1127 

0 -0.0756 0.974 -0.022 

0.1 0.1127 -0.0221 0.9621 

 

The covariance between the two variables, X1 and X2, 

can be evaluated using Equation (1). 

𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑃, 𝑄) =
1

𝑛
∑(𝑃𝑖 − 𝑃̅)(𝑄𝑖 − 𝑄̅)       (1)

𝑛

𝑖=1

 

Where n indicates the number of data samples, and 

represents individual sample points,  and  

denote the mean values of P and Q. Moreover, the covariance 

matrix of ransomware metadata with n values is a 

matrix, where every data element 

indicates the covariance between two variables, i and j, as 

denoted in Equation (2). 

 

𝑉𝑎𝑟(𝑃1) 𝐶𝑜(𝑃1,𝑃2)

… 

𝐶𝑜𝑣(𝑃1, 

𝑃𝑛) 

𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 = [𝐶𝑜𝑣 

(𝑃2, 𝑃1) 

𝑉𝑎𝑟(𝑃2)

 … 

𝐶𝑜𝑣(𝑃2, 

𝑃𝑛)] 

𝐶𝑜𝑣(𝑃𝑛, 𝑃1) 𝐶𝑜𝑣(𝑃𝑛, 

𝑃2) 

𝑣𝑎𝑟(𝑃𝑛)          

(2) 

3.2.4. Analysis of Correlated Attributes 

A heatmap is a graphic display of data in which colors 

correspond to different values. Heatmaps are employed 

throughout the deep learning pipeline for ransomware 

detection to aid in comprehending feature correlations, data 

trends, model performance, and system behavior. The 

representation of the heatmap is depicted in Figure 3 to 

analyze the correlated attributes in the given dataset. 

 
Fig. 3 Class distribution before and after balancing 
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Fig. 4 Proposed framework 

 

3.3. Data Preprocessing 
An essential first step in developing efficient ransomware 

detection systems is the preprocessing phase. Deep-based 

models effectively extract and learn relevant features from raw 

data and must be transformed clearly and organized [31]. The 

adaptability, performance, and accuracy of malware detection 

models were enhanced by appropriate preprocessing. The 

cornerstone for developing powerful ransomware detection 

methods involves efficient data preprocessing. This proposed 

detection models can perform and be more reliable if you 

carefully gather, clean, transform, and prefer pertinent data to 

solve issues such as confidentiality and inconsistency. These 

preparatory measures are integrated with suitable deep-based 

CNN methodologies and continual examinations that enhance 

their security against ransomware attacks. 
 

3.3.1. Data Standardization 
The process of converting input samples into a 

standardized appearance that has a mean value of 0 and a 

standard deviation value of 1 is known as data standardization. 

This evolution keeps features with different sizes from 

overwhelming those with greater dimensions, ensuring that 

every feature contributes equally to the model’s learning 

process. Standardization can be described scientifically as 

mentioned in Equation (3). 

 

                     (3)                                               
 

x indicates the input sample, μ specifies the mean value 

of the features, σ is the standard deviation, and z is the 

standardization form. By ensuring that each feature 

contributes evenly, the standardization method enhances the 

convergence rates and overall performance. Standardization 

strengthens accessibility and precision, and supports model 

training in ransomware detection, where data can be high-

dimensional and heterogeneous. Through comprehension and 

application of suitable standardization methods, utilization of 

suitable instruments, and adherence to optimal protocols, the 

efficacy of the ransomware detection method is considerably 

enhanced. 
 

3.3.2. Reordering Method 
A crucial aspect of data preprocessing for malware 

detection is reordering. It places data in a different order, 

structure, or arrangement to improve the efficiency and 

performance of machine learning models that are used to 

detect and categorize harmful software. Rearranging data 

correctly can increase the generalization to new data, decrease 

computing complexity, and improve model accuracy. 
 

3.3.3. Imputation Technique 
The technique of substituting values for incomplete or 

inadequate elements in a dataset is known as data imputation. 

This procedure is vital for preserving the accuracy of the 

statistical Analysis because imprecise data can result in 

imbalanced findings and reduce the reliability of the dataset. 

The above-mentioned techniques used acceptable values 

obtained from patterns found in the existing ransomware data 

to replace missing items. This made it possible to conduct a 

deeper and more precise evaluation. Because several machine 

learning methods are unable to deal with such missing 

numbers directly, resolving these values is crucial to prevent 

biased findings or failure to execute the algorithm. A single 

estimated worth is used in a single imputation to substitute all 

missing data in the ransomware dataset. Compared with 

multiple imputation methods, this method is faster to use. 

They disregard the ambiguity surrounding the imputation 

procedure and instead handle the imputed values as true values. 

Several techniques, such as regression-based and hot-deck 

imputations, are applicable to resolve the missing values; 

however, in this study, mean, median, and mode imputation 

approaches were primarily used. Mode, Median, and Mean 

Imputation: This process involves using the mean, median, or 

mode of the dataset’s accessible data points to fill in the 

missing values. These techniques are simple to use; however, 

they run the risk of adding biases and warping the original 

distribution of the dataset. 
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3.4. Splitting of Data 
Dataset splitting is a crucial stage in the deep learning 

workflow to ensure that the models are trained, verified, and 

tested efficiently to attain outstanding efficiency and 

adaptability. The authors created reliable deep CNN hybrid 

models that function well in ransomware detection by 

comprehending and applying appropriate splitting strategies, 

following best practices, and avoiding typical mistakes. 

Following feature selection, the samples were divided 

between the training and testing phases using an 80:20 ratio. 

In this case, 20 data samples were verified to assess the deep 

learning model performance in ransomware detection and 

categorization from legitimate, while the remaining 80% of 

data samples were trained to forecast Ransomware that 

impacts devices and files. Additionally, the impact of the 

technique was measured using training and testing times. 
 

3.5. Hybrid CNN with Bi-GRU Framework for Ransomware 

Prediction 
Maniath et al. [32] utilized a deep-based Long Short-

Term Memory approach for Ransomware to classify API calls 

into binary classes. Singh et al. [33] employed a 

RANSOMNET+ tool comprising a CNN with pre-trained 

transformers for malware classification. Zhang et al. [34] 

introduced a patch-based CNN for ransomware family 

detection, based on n-grams of opcodes. In this study, a 

hybrid-based CNN and a Bidirectional GRU were employed 

to predict and classify malware in an optimal manner. 

Convolution layers are the hidden layers observed in CNNs. 

Convolution layers, which drive across the input weights and 

change the neuron input on the activation function, are the 

fundamental idea of CNN construction. The hybrid 

framework approach is illustrated in Figure 4. A pooling layer, 

many conv2d layers, and a dropout layer can occasionally 

comprise a convolution layer. This results in a large number 

of conv2d layers being crowded into two layers. A 

classification layer processes the output after it has been 

flattened into a single vector of length.  

 

The model’s accuracy and score were estimated after 

splitting the training into 80% and testing to 20%. The 

outcome of the experiment is a prediction of whether a file is 

malicious. 
 

3.5.1. CNN-LSTM Framework 
In addition to relationships between variables, such as 

reliance, uniformity, and structural stability information in the 

ransomware data gathered, the hybrid CNN-LSTM method 

eliminates the requirement for laborious feature engineering, 

which is necessary for shallow machine learning techniques, 

but may not be able to extract sufficient useful features for the 

task of classification [35]. When trained on the same input, 

CNNs can detect particular characteristics at higher layers and 

select representations from various perspectives. While 

Recurrent Neural Networks (RNNs) are particularly effective 

at collecting sequential data, Convolutional Neural Networks 

(CNNs) are excellent at detecting local spatial correlations. 

The layers used for the hybrid CNN-LSTM model in this study 

are listed in Table 6. 
 

Table 6. Layers in CNN-LSTM 

Layers Filters 
Pool 

size 
Kernel 

size 
Function 

CNN layer 
Conv1D 64 - 3 ReLU 

MaxPooling1

D 
- 2 - - 

Conv1D 128  3 ReLU 
MaxPooling1

D 
- 2 - - 

LSTM layer 
LSTM 100 - - - 

Dropout 0.5 - - - 
LSTM 50 - - - 

Dropout 0.5 - - - 
Dense 1 - - Sigmoid 

 

3.5.2. CNN-GRU Framework 
Gate mechanisms that are particularly well-suited to 

handling time-sequential tasks define the GRU neural network. 

Such Gate devices are simplified in recurrent cells to enhance 

the computational efficiency in an attempt to conserve the 

ransomware prediction performance of the LSTM network. 

As shown in Figure 5, the GRU artificial neural network 

comprises two control gates, known as the reset and update 

gates (Zt). The amount of data that must be erased from the 

hidden state of the preceding instant of time is determined by 

the first gate, also known as the Reset Gate (Rt). Whenever 

the number was near zero, the facts of the prior moment were 

discarded. If the number is close to one, concealed data 

associated with an earlier moment is maintained inside the 

present storage.  

 

 
Fig. 5 Framework for GRU 

 

The update gate (Zt), which is also known as the 

subsequent gate, transfers the quantity of data from the prior 
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instant’s concealed state to the present concealed state. In this 

situation, if the numerical value is close to 0, the data from the 

preceding instant’s concealed state are disregarded; however, 

if the number is close to 1, the data are maintained in the 

present concealed state (Ht-1). The training time of this model 

is greater than that of the LSTM and Bidirectional GRU, 

which leads to greater limitations in the GRU model. 
 

𝑍𝑡 = 𝜎 (𝑊𝑧 ∗ [ℎ𝑡−1, 𝑥𝑡])              (3) 

 

Σ represents the sigmoid function available in the 

activation layer, 𝐻 ̃𝑡 indicates the hidden state, and the 

Activation function, along with the fully connected layer, 

represented as σ. 
 

3.5.3. CNN-Bidirectional GRU Framework 
The proposed hybrid CNN and a Bidirectional GRU is a 

deep neural network that uses a sequence processing approach. 

It consists of two GRUs: one GRU receives input ransomware 

samples in the forward direction and the other receives them 

in the backward direction. This model is suitable for 

classifying ransomware malware and for determining 

malignant data between the source and destination sides in 

both directions—layers in the CNN-bidirectional GRU. The 

layers utilized in the CNN model and the Bidirectional GRU 

are listed in Table 7. 
 

Table 7. Layers in CNN-Bidirectional GRU 

Layers Filters 
Pool 

size 
Kernel 

size 
Function 

CNN layer 
Conv1D 64 3 ReLU - 

MaxPooling1

D 
- - - 2 

Conv1D 128 3 ReLU - 
MaxPooling1

D 
   2 

GRU layer 
GRU 100 - - - 

Dropout 0.5 - - - 
GRU 50 - - - 

Dropout 0.5 - - - 
Dense 1 - Sigmoid - 

 

The Adam optimizer and sigmoid were used as activation 

functions because this is a binary sequence classification issue. 

The highest training accuracy of 99.8% was achieved with 

batch sizes of 64 and a learning rate of 0.01 and 10 epochs. 

 
3.6. Optimization Techniques 

The main purpose of optimization techniques is distinct, 

even though they provide a means of minimizing the loss 

function based on the training dataset using deep learning 

models. Moreover, optimization focuses on identifying an 

appropriate model given a limited quantity of data to reduce 

the training error. To detect and classify ransomware malware 

efficiently, the authors employed optimization approaches 

such as Adam, SGD, and RMSProp by tuning 

hyperparameters in terms of learning rate, batch size and 

epochs. There are several challenges in deep learning 

optimization techniques, such as local and global minima, 

through which errors can be minimized. 
A local minimum may exist for any objective function f(x) if 

the value of f(x) at x is less than the values of f(x)at any other 

points in the vicinity of x.f(x)is the global minimum if its value 

at x is the objective function’s minimum over the whole 

domain. The local and global minima can be represented as 

Equation (4). 

 

f(x) = x ∙ cos cos(πx) for − 1.0 ≤ x ≤ 2.0              (4) 
 

3.6.1. Adam Optimizer 
As predicted, this method is gaining prominence as one 

of the more reliable and successful optimization techniques for 

deep learning. Here, the model is trained with 10 epochs, or 

10 iterations through the training data, using the Adam 

optimizer with a learning rate of 0.01. To provide 

classification probabilities for every malware data point, a 

sequential model was selected to run on the complete dataset. 

Each convolutional layer comprises filter sizes ranging from 

64 to 128. The final samples were placed in two successive 

thick layers using three convolutions. These layers work 

similarly to a multilayer perceptron, producing an output 

vector based on the activation function by multiplying the 

weights of malware samples by the kernel function. A specific 

percentage of the network neurons was dropped using drop 

layers to avoid overfitting the training data. The probability of 

the input samples falling into each of the two classes was 

calculated by the last output layer, SoftMax, and the dense 

layer produced the output in the form of two classes: Class 

0(malignant) and Class 1 (normal). 
 

3.6.2. Stochastic Gradient Descent (SGD) Optimizer 
SGD optimizer suitable to determine the average of the 

loss functions for each case in the training dataset. By 

mentioning that, given a ransomware training dataset of ‘n’ 

samples, the loss function is denoted as fi(y) with respect to 

learning sample indexing ‘i and y indicates the features. The 

objective function of SGD can be estimated using Equation 

(5). 

f(y) =
1

n
∑ fi

n

i=0

(y)                 (5) 

                     
The gradient (∇) of the above function can be calculated 

as mentioned in Equation (6). 

Af(y) =
1

n
∑ Afi

n

i=0

(y)        (6) 

                                                                   
If gradient descent is employed, the computational cost 

for each iteration of an independent variable is O(n), and it 
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increases linearly with n. As a result, gradient descent will cost 

more per iteration when the training dataset is larger. 
Every iteration of SGD lowers the computational expenses. 

Ransomware samples I ∈ {1,…,n} were chosen randomly to 

represent the examples at each stage of stochastic gradient 

descent, and then calculate the descent gradient ∇ fi(y) for 

updating x as in Equation (7). 

y ← y − ɳ∇fi(y)                   (7) 

                                                                               
The learning rate is denoted by η. By observing that the 

gradient descent’s O(n) computational cost decreases to the 

constant O(1) with each iteration. Full gradient estimation can 

be represented as Equation (8). 

𝐸𝑖𝛻𝑓(𝑦) =
1

𝑛
 ∑ 𝛻𝑓𝑖

𝑛

𝑖=0

(𝑦) = 𝛻𝑓(𝑦)           (8) 

 
The SGD optimization algorithm trained the deep 

learning models faster in analyzing system behavior, changes 

in features, and API calls. Through analyzing such abnormal 

behaviors, the models were trained to update model weights 

using small batches of data, thereby reducing the 

computational cost for every iteration while predicting 

ransomware malware with optimal solutions. 
 

3.6.3. RMSProp (Root Mean Square Propagation) 
A potent optimization technique in machine learning 

(RMSprop) determines the system features that best correlate 

with the actual values as well as model predictions. An 

adaptive learning rate optimization approach called RMSprop 

was created to speed up the gradient descent performance. 

This analogy illustrates the optimization of a loss function to 

determine the ideal model parameters for the best match 

between the actual and predicted values. To avoid leakage of 

average weighted samples, this momentum method is suitable 

for obtaining the optimal solution in ransomware malware 

detection, in which a few samples are greater than zero, fixing 

other samples remain static. ‘Consequently, using St (samples 

in the vector state) with a reasonable distribution of Gt 

(gradient squares) enhances the convergence rate in the 

detection and classification of ransomware malware, as in 

Equations (9) and (10). 

𝑆𝑡 ← 𝛾𝑆𝑡−1 + (1 − 𝛾)𝐺𝑡
2         (9) 

 

𝑋𝑡 ← 𝑋𝑡−1 −
ɳ

√𝑆𝑡+∈
ʘ 𝐺𝑡        (10) 

                                                                                                         
3.7. Metrics Evaluation 

There are four distinct quadrants in the generated   

confusion matrix: a) True Negative (Quarter on the Top Left), 

b) top-right quadrant of false positives, c) False Negative 

(quarter on the bottom-left), and d) (Bottom-Right Quadrant) 

True Positive. False indicates a mistake or incorrect prediction, 

whereas true indicates that the values were correctly 

anticipated. After creating a confusion matrix, various metrics 

were evaluated to assess the quality of the model. The 

confusion matrix for the CNN-BiGRU model using the Adam 

optimizer, where True Positive=187, False Positive=96, True 

Negative=13, and False Negative=9, is illustrated in Figure 6. 
 

 
Fig. 6 Confusion matrix (adam optimizer) 

 

Several metrics, namely precision, recall, F-score, and 

accuracy measures, were used to evaluate the overall 

performance of the deep-based CNN-LSTM, CNN-GRU, and 

CB-GRU during both the training and testing stages. The 

ransomware samples that were perfectly categorized fit the 

actual class as Truly Positive (TP), the number of samples 

wrongly distinguished fit the actual value as False Positive FP, 

the predicted value of data perfectly distinguished, which are 

unfit to the class Truly Negative (TN), and the output value of 

ransomware samples wrongly classified unfit to actual values 

as False Negative FN. 
Precision indicates the ratio of truly identified positive 

samples from the predicted positive samples described in 

Equation (11). 

Precision =
Truly predicted as positive

True positive + False Positive
       (11) 

 

Recall: calculated as the ratio of truly predicted samples 

as positive to the combination of true positives and false 

negatives using Equation (12). 

 

Recall =
Truely predicted as positive

True Positive + False Negative
        (12) 

 
Accuracy: Accuracy represents the correct prediction of 

ransomware malware for all input samples. It is defined as the 

total number of correctly predicted samples divided by the 

total number of samples, as described in Equation (13). 

Accuracy 

=
No. of samples predicted truly as Ransomware 

Overall input data samples
  (13) 
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The loss-negative average among ransomware samples 

was evaluated using Equation (14). To predict the entire loss 

while training the parameters, the binary cross-entropy 

function is calculated, as mentioned in Equation (15). 

Log loss =
1

N
∑(log(Pi))           (14)

N

i=1

 

Log loss =
1

N
∑ −(yi x (log(Pi) + (1 − yixlog(1 − Pi))   (15)

N

i=1

 

              
Here, binary classification of ransomware malware was 

found, in which P_i indicates the probability of class 1, 
whereas (1-P_i) represents the probability of class 0. True 

Positive Rate (TPR)- TPR is also called the detection rate, a 

key metric to measure the effectiveness of ransomware 

malware detection. TPR can be calculated as Equation (16). 

 

TPR =
TP

TP + FN
       (16) 

 

TP indicates True Positive, where malware is correctly 

identified as malware, whereas FN indicates False Negative, 

where malware is incorrectly identified as a normal sample. 
 

3.8. Hyperparameter Tuning 
Improper tuning provided the least accuracy, and the 

losses in the features were higher. Therefore, the authors 

performed this study. For each metadata to be tuned to 

estimate the probability accurately, a different set of 

parameters is required. Such tuning consists of two steps: (a) 

fine-tuning hyperparameters, including learning rate, 

activation function, number of nodes in the network, preferred 

optimizer, batch size, and number of epochs, and (b) neural 

network layer tuning. Using a variety of optimization 

approaches, including Adam, RMSProp, and Stochastic 

Gradient Descent optimizers, which are listed in Table 8, the 

hyperparameters, including the input size, batch size, filter 

size, kernel size, number of epochs, learning rate and variation 

in dropout, were adjusted for model development. 
 

Table 8. Hyperparameter tuning via optimizers 

Models 
Input 

size 

Batch 

size 

(Filters, 

Kernel size) 

Learning 

rate 
Epochs Optimizers 

CNN-LSTM 
(100, 

64) 
32 

(64,3) 

(128,3) 
0.01 1-10 

SGD, Adam, 

RMSProp 

CNN-GRU 
(50, 

128) 
64 

(64,3) 

(128,3) 
0.02 1-10 

SGD, Adam, 

RMSProp 

CNN- 

Bidirectional 

GRU 

(100, 

64) 
128 

(64,3) 

(128,3) 
0.03 1-10 

SGD, Adam, 

RMSProp 

4. Experimental Outcomes 
When compared to the SGD optimizer, RMSProp reduces 

the manual tuning of parameters, such as the learning rate and 

batch size. For hybrid models such as CNN-LSTM, CNN-

GRU, and Bidirectional GRU, the input size has 100-time 

steps with 64 features, and then the size is reduced to (50, 128), 

meaning 50-time steps with 128 features in Tables 9 and 10. 

From the table below, Adam optimization approach reaches 

validation accuracy of 59.84, loss 0.6 ms and True Positive 

Rate 60%. 

 

As per Table 10, various metrics are evaluated in which 

training loss reaches 0.7 for both SGD and RMSProp 

optimizers, whereas accuracy reaches approximately 60%, 

with a lower convergence rate and a lesser detection rate of 

11%; hence, the SGD and RMSProp optimizers did not 

achieve better results.

  
Table 9. Detection of ransomware using CNN-LSTM with adam optimizer 

Epoch 
Training 

loss 

Training 

accuracy 
Validation loss 

Validation 

accuracy 
TPR 

1 0.67 60.44 0.66 59.84 58 

2 0.66 61.35 0.67 59.84 52 

3 0.66 61.35 0.67 59.84 57 

4 0.66 61.35 0.67 59.84 52 

5 0.66 61.35 0.67 59.84 54 

6 0.66 61.35 0.67 59.84 60 

7 0.66 61.2 0.66 59.84 58 

8 0.66 61.08 0.66 59.84 54 

9 0.65 62.35 0.66 59.84 54 

10 0.65 61.9 0.66 59.02 55 
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Table 10. Comparison of CNN-LSTM using SGD 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 illustrates the evaluation of ransomware prediction using various metrics. 

 

 
Fig. 7 CNN-LSTM model across optimizers 

 

In terms of metrics, such as accuracy, precision, recall, ROC Metrics evaluation, such as ROC-AUC, and detection rate, 

using the hybrid CNN-LSTM model with Adam, SGD, and RMSProp optimizers. 
 

Table 11. Comparison of CNN-LSTM using RMSProp optimizer 

Epoch 
Training 

loss 

Training 

accuracy 

Validation 

loss 

Validation 

accuracy 

Detection 

rate 

1 0.67 59.8 0.7 59.84 11 

2 0.7 61.4 0.7 59.8 11 

3 0.7 61.4 0.7 59.8 11 

4 0.7 61.4 0.7 59.8 11 

5 0.7 61.4 0.7 59.8 11 

6 0.7 61.4 0.7 59.8 11 

7 0.7 61.35 0.7 59.8 11 

8 0.7 61.35 0.7 59.8 11 

9 0.7 61.35 0.7 59.8 11 

10 0.7 61.35 0.7 59.8 11 

0

0.2

0.4

0.6

0.8

1

Accuracy Precision Recall ROC AUC Detection Rate

v
al

u
es

Metrics

CNN-LSTM Model Metrics Across Optimizers

Adam SGD RMSProp

Epoch 
Training 

loss 

Training 

accuracy 

Validation 

loss 

Validation 

accuracy 
Detection rate 

1 0.686 59.16 0.68 59.02 11 

2 0.68 60.8 0.7 59.02 11 

3 0.7 60.8 0.7 59.8 11 

4 0.7 61.02 0.7 59.8 11 

5 0.7 61.08 0.7 59.84 11 

6 0.7 61.2 0.7 59.8 11 

7 0.7 61.1 0.7 59.8 11 

8 0.7 61.2 0.7 59.8 11 

9 0.7 61.2 0.7 59.8 11 

10 0.7 61.2 0.7 59.8 11 
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4.1. Layers in CNN-Bi-Directional GRU Model using 

Optimizers 
Table 12 and Figure 8 present the training and validation 

performance metrics of the CNN–Bi-Directional GRU model 

over 10 epochs using optimized hyperparameters.

 

Table 12. Layers in the CNN-Bi-directional GRU model using optimizers 

Epoch 
Training 

loss 

Training 

accuracy 

Validation 

loss 

Validation 

accuracy 

Detection 

rate (s) 

1 0.6 68.9 0.6 71.3 99.8 

2 0.5 78.5 0.3 85.3 99.5 

3 0.2 93.9 0.06 98.36 99.7 

4 0.07 97.7 0.02 99.18 99.8 

5 0.01 99.5 0.02 99.18 99.8 

6 0.005 99.8 0.02 100 99.8 

7 0.002 99.8 0.02 99.9 99.8 

8 0.002 99.9 0.02 99.9 99.6 

9 0.001 99.9 0.001 99.8 99.8 

10 0.001 99.9 0.002 99.8 99.8 

 

 
Fig. 8 Metrics evaluation using CNN-BiGRU model 

 

4.2. Experimental Analysis and Statistical Results 
Using the Jupyter notebook integrated development 

platform and the Intel Core I5 1.7GHz processor speed, the 

research was conducted mostly with the TensorFlow 2.3.1 

Keras library. The authors analyzed the ransomware malware 

dataset by performing preprocessing, in which data balancing 

and imputation were performed, splitting the dataset into 

training and testing, building machine learning and deep-

based hybrid models such as CNN-LSTM, CNN-GRU, and 

CNN-Bidirectional GRU. Validation was carried out to detect 

and classify the ransomware malware into benign and 

malignant. Among this hybrid model, CNN-Bidirectional 

GRU with Adam and RMSProp optimization techniques 

achieved a maximum accuracy, precision, recall, and 

detection rate of 100% with the least losses of 0.01, which 

provides a greater solution for predicting malicious attacks in 

a network environment. The evaluation of machine learning 

classifiers with imbalanced data and after resampling the data 

in terms of accuracy, logarithmic loss, and ROC-AUC score 

is described in Table 13.
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Table 13. Assessment of machine learning classifiers 

Model Accuracy Logarithmic Loss ROC-AUC score 

IMBALANCED DATA 

Logistic 

Regression 
88.4 0.62 0.94 

Multilayer 

perceptron 
90.35 0.20 0.94 

Random Forest 92.65 0.24 0.92 

RESAMPLED DATA 

Logistic 

Regression 
85.5 0.72 0.93 

Multilayer 

perceptron 
87.6 0.31 0.94 

Random Forest 89.9 0.38 0.94 

 
However, a machine-based random forest model 

achieved a greater accuracy of 92.65%, and after resampling, 

it was deduced to be 89.9% with 0.38 losses. By focusing on 

the maximum efficiency and least computational time in 

malware detection, the authors employed a deep-based hybrid 

model with optimization approaches to obtain an optimal 

malware detection and classification solution. The statistical 

Analysis conducted during this work, using various hybrid 

models along with three optimization models, is presented in 

Table 14. Predicting the detection rate enables the 

improvement of response time, evaluation of performance, 

and fine-tuning of parameters. 

 
Table 14. Evaluation of a deep-based optimization approach 

Models Accuracy Precision Recall ROC-AUC Detection rate 

CNN-LSTM 63.93 0.333 0.0092 55.97 92% 

CNN-GRU 64.2 63.20 63.00 46.91 11.3 

CNN-Bidirectional 

GRU 
64.26 64.32 63.9 55.3 11.8 

After optimization (CNN-Bi Directional GRU better outcomes) 

CNN-LSTM 

(Adam) 
100% 99.9% 99.9% 100% 98% 

CNN-LSTM 

(SGD) 
64.26 0% 0% 49.32% 95% 

CNN-LSTM 

(RMSProp) 
57.7% 39.36% 33.9% 53.03% 33.94% 

CNN-GRU (Adam) 65.57% 59.09% 11.93% 55.97% 11.93% 

CNN-GRU (SGD) 64.26% 0% 0% 46.91% 65% 

CNN-GRU 

(RMSProp) 
64.26% 0% 0% 55.3% 82.5% 

CNN- Bidirectional 

GRU (Adam) 
99.5% 99.6% 99.6% 99.5% 99.8% 

CNN-Bidirectional 

GRU (SGD) 
74.43% 100% 28.4% 74.7% 28.4% 

CNN-Bidirectional 

RMSProp 
99.6% 99.4% 99.5% 99.8% 99.4% 

 
Variants of Ransomware continue to develop; hence, their 

actions may differ significantly according to the type of attack, 

such as distinct encryption techniques or attack methods. The 

CNN-LSTM and CNN-GRU models cannot predict 

ransomware malware, in which the parameters are trained on 

particular malware traits, which makes it challenging to 

generalize to novel ransomware strains owing to multiplicity. 

This research employed the Adam optimizer, RMSProp 

optimization with CNN-bidirectional GRU, and sigmoid as 

the activation function to resolve the binary sequence 

classification issue. With batch sizes of 32, 64 and 10 epochs, 

the highest training accuracy of 99.4% was achieved. A 

comparison of the hybrid CNN-BiGRU and CNN-LSTM 

models across various optimizers is shown in Figure  9. 
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Fig. 9 Comparison of CNN-BiGRU and CNN-LSTM models 

 

4.3. Comparison of the Proposed Framework with 

Traditional Approaches 
Table 15 shows the assessment of various traditional 

approaches, such as machine learning and deep learning, in 

ransomware detection in terms of various metrics, such as 

validation accuracy, precision, recall, losses, and execution 

time. Various investigators achieved a maximum accuracy of 

99%, while others attained 95% and 97%, respectively, but the 

solutions were not optimized, resulting in a lower convergence 

rate for the ransomware malware prediction. Hence, this 

research work proposes a hybrid optimization approach that 

effectively provides optimal solutions for detecting 

ransomware malware earlier, with fewer losses and a 

maximum accuracy of 99.8%, at a low computational cost. 
 

Table 15. Analysis of ransomware detection done by various investigators 

Investigator Samples Approaches 

Metrics Measure 

Accuracy Precision 
F1-

score 
Loss 

Execution 

Time 

Maniath et al. 

[32] 
Ransomware LSTM 96.67% - - - 2 hours 

Dipendra et 

al. [26] 

Image-based 

malware 

Custom CNN 

Transfer 

learning 

98.7% 98% 99% 
0.07-

0.01 
NA 

Singh et al. 

[33] 

Ransomware 

attack 

Transfer 

learning 
99.1% 99.5% 98.5% 0.03 NA 

Malak et al. 

[14] 

Ranso ware 

samples 

(Lockbit, 

Revil, 

Blackcat) 

XGBoost 97.85% 97.1% 97.5% - NA 

Zahoora et al. 

[27] 

Ransomware 

malware 

detection 

Ensemble model 93% 93% 94% 0.8 18 sec 

Proposed 

CNN 

Detects 

suspicious 

activities 

Hybrid 

(CNN+BiGRU) 

using Adam 

Optimizer 

99.5% 99.4% 99.5% 0.01 10 ms 
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5. Conclusion 
The emphasis on Ransomware among numerous hackers 

has accelerated its progression and led to complex replications 

that can avoid detection by signature-based antivirus software. 

Consequently, it is crucial to deal effectively with both new 

families and new variations in recognized families. This study 

demonstrates that a hybrid deep CNN with a Bi-GRU model 

effectively detects ransomware malware and its families. In 

conclusion, CNN and Bi-GRU together achieved 99.8% 

accuracy with 0.01 loss rate in ransomware malware 

prediction under static conditions, and CNN-bidirectional 

GRU outperformed CNN-GRU and CNN-LSTM. Several 

literature surveys state that model performance was greatly 

impacted by incorrect hyperparameter tuning. To improve 

such performance in ransomware malware detection, 

hyperparameters such as batch size, learning rate, and epochs 

are adjusted in various optimizers like Adam, SGD, and 

RMSProp. Through these hybrid deep learning optimization 

models, cybersecurity experts now have a reliable method to 

combat ransomware threats. In future, interpretability 

frameworks such as SHAP and LIME will be incorporated in 

order to aid security analysts in understanding decisions, and 

expedite reaction activities like highlighting the file 

characteristics or API requests that were most important in the 

identification process. 
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