SSRG International Journal of Electronics and Communication Engineering
ISSN: 2348-8549/ https://doi.org/10.14445/23488549/1JECE-V1311P103

Volume 13 Issue 1, 27-45, January 2026
© 2026 Seventh Sense Research Group®

Original Article

TL-BERT: An Anti-Phishing Model Based on Transfer
Learning and Transformer Mechanisms for Protective
Social Networking

Manoj Kumar Prabakaran?, Abinaya Devi Chandrasekar?, Santhi Selvaraj®, Abinaya Pandiarajan*

!Department of Artificial Intelligence and Data Science, Mepco Schlenk Engineering College
Sivakasi, Virudhunagar, Tamil Nadu, India.

234Department of Computer Science and Engineering, Mepco Schlenk Engineering College
Sivakasi, Virudhunagar, Tamil Nadu, India.

!Corresponding Author : manojkumarp@mepcoeng.ac.in

Received: 03 November 2025 Revised: 05 December 2025 Accepted: 04 January 2026 Published: 14 January 2026

Abstract - Cybercrimes are growing exponentially in the digital era, and hackers continue to devise sophisticated cyber threats
to gain unauthorized access. Among them, phishing remains one of the most prevalent and deceptive techniques used to exploit
unsuspecting users. Although various preventive measures have been proposed by researchers in the past few decades, phishers
are consistently adopting innovative strategies by deploying different forms of phishing URLs and webpage contents that are
highly complex to detect in a real-time scenario. To address this issue, this work proposes TL_BERT: An anti-phishing model
that integrates Transfer Learning (TL) with the Bidirectional Encoder Representations from Transformers (BERT) architecture.
The model employs TL-adapted Autoencoders for extracting URL-based features and applies the BERT model to capture HTML-
based textual features of a website. Both features are concatenated and classified using a Deep neural Network Model.
Experiments were conducted on the benchmark dataset ISCXURL2016 dataset, which contains 54300 URL samples. The results
indicate that TL_BERT attains a detection accuracy of 99.08% with a false positive rate of 1.01%. The optimized selection of

lightweight architectures makes the proposed model a suitable entity for real-time deployment.

Keywords - Bidirectional Encoder Representations from Transformers, Hypertext Markup Language, Phishing detection,

Transfer Learning, Uniform Resource Locator.

1. Introduction

Phishing is a type of cyber-attack in which hackers
develop illegitimate websites with the malicious intent of
luring internet users into providing their valuable digital
assets. In general, Uniform Resource Locators (URLs) of
those websites are circulated through email across the internet
society. A naive user who might not be able to discriminate
between a real and fake website might fall into the trap of
entering their private credentials, which might result in
substantial economic and personal loss [1]. Over the years,
hackers have come up with advanced strategies, such as
domain name typo squatting or cybersquatting, in which the
URL being crafted might look almost as close as possible to a
real-world legitimate URL of a famous entity [2]. As per the
report generated by Anti-Phishing Working Group (APWG),
an international consortium that collects phishing-related
fraudulent information, around 9,32,923 phishing attacks have
been observed during the third quarter of 2024 alone. The
most frequently targeted sector seems to be social media
platforms, contributing 30.5% of all kinds of phishing attacks

OOE

[3]. Initially, a few large-scale organizations, such as eBay,
adopted the idea of blacklisting to mitigate phishing attacks,
in which those sites that were identified as unsafe by internet
users were recorded and displayed for safety purposes as
blacklisted websites [4]. However, since the number of
phishing URLSs is growing at a rapid pace and phishers are
generating a dynamic set of phishing websites, it would be
practically impossible to detect the majority of the phishing
websites using a blacklist due to its static nature [5].

In order to combat the dynamic nature of phishing URLS,
researchers in the recent past concentrated on deploying
Machine Learning (ML) models to detect the nature of real-
world websites [6]. For this purpose, ML models were trained
and tested using benchmark datasets that comprise a large
number of legitimate and phishing URLSs. In this way, models
get to understand the significant nature of URLSs instead of just
verifying the existence of a phishing URL in the database, as
in the case of blacklisting. This technique overcomes the
problem of zero-day attacks since ML models understand the

Rl 1 his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

http://creativecommons.org/licenses/by-nc-nd/4.0/

Manoj Kumar Prabakaran et al. / 1JECE, 13(1), 27-45, 2026

structure of URLs based on their statistical, lexical, and
domain-based features [7]. Extensive research was carried out
in the recent past to identify the optimal set of features in order
to reduce the computational overhead. Although state-of-the-
art anti-phishing frameworks based on ML algorithms [8-10]
have been proposed by researchers in the recent era, there are
few wvulnerabilities associated with ML-based phishing
website detection, namely a) Reliance on third-party
assistance for website-based feature extraction, b) Static
features extracted might not always reflect evolving real-
world phishing URLSs since the nature of the URLSs is changing
significantly. c) ML-based models are not suitable for massive
datasets comprising millions of website URLs [11].

Hence, in order to overcome the issues prevailing in the
existing ML-based solutions, researchers in the recent past
incorporated a representation learning mechanism for URL
feature extraction instead of manual feature engineering [12-
15]. Adoption of an illustration learning mechanism for
feature extraction using DL based approaches has
significantly overcome the problems associated with manual
feature extraction.

However, most of the research works incorporating
representation learning mechanisms have adopted only URL-
based feature extraction, and not many such works have been
conducted considering the features relevant to the HTML
contents of a webpage. In order to construct an optimal
phishing detection framework, both the URL and HTML
content of a website shall be taken into consideration since
they might better reveal the nature of the website content.

Based on an analysis of recent literature, the following
key research gaps are identified in existing anti-phishing
methodologies:

a) Existing machine learning based phishing detection
solutions rely on manual feature engineering techniques
to extract intrinsic URL and HTML characteristics.
However, this task is tedious since it relies significantly
on third-party engineering experts for crafting webpage
features. Also, the handcrafted features do not reflect the
dynamic nature of the real-world phishing webpage.
Modern deep learning-based phishing detection solutions
that incorporate representation learning mechanisms
often adopt advanced Neural Network architectures that
automatically extract intrinsic URL and HTML features.
Although this eliminates the reliance on third-party
assistance, the features obtained using such techniques
cannot be inferred, and there is a considerable structural
complexity overhead with respect to the deployed Neural
Network architecture.

Most of the existing Deep Learning based anti-phishing
solutions either focus on URL or HTML content of the
webpage. Not many dedicated research solutions have
been proposed that concentrate on both the URL and

b)

c)

28

HTML content of the webpage for identifying the
authenticity of the webpage.

The above-identified research gaps highlight the key
limitations associated with the existing anti-phishing solutions
and underline the significance of an optimal phishing
detection framework that shall potentially detect phishing
websites in a real-time environment.

Hence, this work focuses on building a lightweight and
optimal phishing website detection framework that would
consider the inherent features of both URL and HTML content
of a website into account. The proposed framework, termed
“TL-BERT,” is constructed by combining the merits of two
advanced Al techniques: Transfer Learning (TL) and pre-
trained transformers. Specifically, a lightweight TL-Enabled
AE (TL_AE) model that receives the trained weight
parameters of a pre-trained VAE architecture is utilized for
URL feature extraction, and a base form of BERT model
referred to as BERTease architecture is adopted for HTML
feature extraction. Both the URL and HTML feature vectors
obtained from TL_AE and BERT models were then
concatenated and fed as input to the DNN for training and
evaluation.

The proposed model has been experimented with a
benchmark dataset that comprises both legitimate and
phishing URL samples that widely represent various forms of
real-world URL samples. The experimental results suggest
that the proposed model possesses the ability to detect real-
world phishing URL samples accurately. TL_BERT
significantly eliminates the overhead associated with the
existing manual feature engineering process, as well as
considers both the URL and HTML features of a website for
phishing detection. Adoption of a transfer learning mechanism
and pre-trained transformers for representation learning
makes the model lightweight and more suitable for real-time
deployment.

The following are the novel contributions of the proposed
TL_BERT framework:
a) Adoption of an advanced transfer learning mechanism for
automatic URL feature extraction. In particular, a
dedicated autoencoder model has been utilized to capture
high-level latent space representation of the URL features
effectively.
Preprocessing intrinsic HTML text content by the
adoption of a unique HTML preprocessing mechanism
that involves web scraping, cleaning, splitting, and
organizing the content.
Adoption of pre-trained BERT transformer architecture to
automatically extract context-aware text embedding
vectors. To optimize the overall framework, a lightweight
BERTgase model has been utilized.
Implementing a unique concatenation layer in order to
combine the extracted URL and HTML features

b)

<)

d)

Manoj Kumar Prabakaran et al. / 1JECE, 13(1), 27-45, 2026

In summary, the proposed framework examines both
URL and HTML features of a website for the detection of
phishing websites. The model is constructed with the intention
of deploying it as a browser add-on application, and hence,
suitable measures have been taken to keep it lightweight and
at the same time optimal for real-time deployment.

The rest of the chapters are organized as follows: Section
2 explains the literature survey conducted with respect to
recent state-of-the-art anti-phishing solutions proposed by
researchers across the globe. Section 3 details the proposed
TL-BERT framework with the materials and methods adopted
to construct the framework. Section 4 provides a detailed
overview of the experimentations conducted and the results
observed with respect to various metrics. Section 5 provides
the conclusion of the entire research work being carried out.

2. Related Works

Phishing website detection has been one of the prominent
research categories due to the extensive growth of social
engineering attacks and the ever-growing, complicated attack
mechanisms. Phishing attacks allow hackers to easily trap
internet users into entering a fake website and gaining
unauthorized access to their valuable assets. Also, the
deployment of phishing attacks shall be easily done through
the propagation of fake URLSs via email and SMS, which shall
reach millions of users within a few minutes. Over the years,
the growth of phishing attacks has doubled significantly,
resulting in substantial economic and personal losses. Hence,
to mitigate the impact of phishing attacks, a wide array of anti-
phishing solutions has been proposed by researchers that shall
be broadly categorized based on their detection and learning
mechanisms.

Initially, researchers incorporated a static blacklisting
based phishing detection mechanism that allows users to
report a webpage based on its authenticity. This technique was
succeeded by Machine learning based solutions that learns
discriminative URL and HTML patterns of a website to detect
the nature of the website. Most recently, advanced Deep
Learning-based architectures have gained significance due to
their ability to automatically extract intrinsic URL and HTML
features without manual feature engineering.

This section provides a detailed review of the existing
anti-phishing solutions, categorized into blacklisting, machine
learning-based approaches, and representation learning
oriented deep learning-based mechanisms.The strengths and
limitations of each anti-phishing technique are thoroughly
discussed to showcase the significant research gaps addressed
by the proposed framework.

2.1. Phishing Website Detection using Blacklisting

This section discusses the wvarious anti-phishing
mechanisms proposed by researchers in the recent past in
order to overcome the impact of phishing attacks in real-world

29

scenarios. One such earlier attempt made was the adoption of
the blacklisting technique, in which a list of malicious website
URLs was collected and maintained through the usage of
various tools and techniques, namely automated web crawlers,
user reports, security research, etc. Those blacklisted URLS
were frequently updated and acted as a fundamental source for
phishing attack detection [4].

Due to the simplicity of the blacklisting mechanism,
many organizations deployed anti-phishing applications based
on the idea of blacklisting, in which the users of those
applications are warned when they try to access a website that
appears in the blacklisted database. In particular, blacklisting
was implemented in two unique ways: a) Server-side
Blacklisting and b) Client-side Blacklisting. In the case of
server-side blacklisting, the inherent features of suspicious
URLSs were kept in the server. Hence, the client shall send a
query to the server in order to identify the malicious nature of
a website. Some of the popular existing server-side
blacklisting tools are as follows: i) eBay toolbar [16] ii)
Netcraft Toolbar [17] iii) Web of Trust (WOT) [18], iv)
TrustBar.

Similarly, client-side blacklisting was adopted by top
MNC companies such as Google, Microsoft, etc., in which the
client keeps the list of malicious websites in its local database
instead of maintaining it on the server. Some of the popular
client-side blacklisting tools are as follows: i) Google Safe
Browsing [19], ii) McAfee Site Advisor [20], iii) Microsoft
Smart Screen Service [21], iv) Websense Threat Seeker
Network [22],

These toolbars provide security against malicious
phishing websites by verifying the requested URL with the set
of blacklisted URLSs available in the local database as well as
on the server. Although blacklisting provides assistance in
effectively detecting phishing websites, it is pretty impractical
to maintain an updated list due to the growing number of new
phishing websites generated by phishers. In particular, it took
12 hours for 47% to 83% of phishing URLS to appear on the
phishing websites [23]. It is a significant delay since nearly
63% of the phishing websites might victimize many users
within the initial couple of hours. Henceforth, blacklisting is
always susceptible to zero-day attacks, which is considered to
be a significant drawback.

2.2. Phishing Website Detection using Machine Learning
Algorithms

Hence, in order to mitigate the drawbacks associated with
blacklisting techniques, various researchers concentrated on
deploying Machine Learning (ML) models for phishing
website detection. In contrast to the blacklisting technique,
ML-based approaches incorporated both URL and HTML-
based feature extraction mechanisms that shall further be used
to train and evaluate a model to classify the nature of real-
world websites [24] effectively.

Manoj Kumar Prabakaran et al. / 1JECE, 13(1), 27-45, 2026

In relevance to phishing website detection based on URL
features, many research works were carried out during the past
decade that focused on two main components of a traditional
URL, namely Lexical/Statistical and Domain-based feature
sets [25].

One such significant work was proposed by Gupta et al
[26] in which the ISCXURL-2016 dataset was adopted for
experimentation. In this work, nine lexical website features
that represent the structural aspect of a website URL were
considered for training and evaluation. Among the different
classifiers, Random Forest achieved the maximum detection
accuracy of 99.57%.

A similar work was conducted by Sajjad et al [27] that
primarily focused on the behaviors and qualities of website
URL by analyzing the lexical and domain-based features of a
phishing website. In particular, the proposed approach utilizes
the following URL-based characteristics, namely protocol
scheme, hostname, path area, entropy, suspicious words, etc.,
to analyze the nature of a particular website. Six different
datasets were chosen for experimentation, and 30 URL-based
features were considered for training and evaluating the
adopted ML classifiers. The experimental outcome showcases
the superiority of the proposed framework, which exhibited
higher accuracies of 96.25% and 94.65% on Kaggle datasets,
respectively.

Apart from experimenting with standalone ML
classifiers, a unique approach was proposed by Abdul et al
(10) in the recent past that proposed a hybrid LSD model
combining three unique ML classifiers, namely Linear
Regression, Support Vector Machine, and Decision trees.
Around 11000 URLs are collected from the Kaggle dataset
that comprises 33 unique URL attributes representing the
structural and domain attributes of phishing websites. The
proposed method achieved 98.12% accuracy, demonstrating
the effectiveness of URL feature extraction and the hybrid
mechanism.

In addition to URL feature extraction, various research
works were conducted to detect phishing websites that relied
on actual webpage content and Hyper Text Markup Language
(HTML) based features.

One of the earlier and effective attempts to detect
phishing websites by extracting HTML content-based traits
was proposed by Jain and Gupta [28], which is an entirely
client-side solution that extracts 12 HTML-based hyperlink-
specific features that represent the characteristics of a
webpage’s content. Various Machine learning algorithms,
namely SMO, Naive Bayes, Logistic regression, Random
Forest, Support Vector Machine (SVM), etc., have been
experimented with. Among the different classifiers, logistic
regression achieved a maximum accuracy of 98.42%.

30

Apart from experimenting with hyperlink-based features,
a noteworthy research work has been conducted by
Adebowale et al [29] that proposed an intelligent web-
phishing detection using the integrated features of Images,
Frames, and text. The model achieves a maximum detection
accuracy of 98.3%. Another significant study relevant to
HTML-based phishing website detection was carried out by
Purwanto et al [30], which adopts a parameter-free similarity
measure that examines the HTML of webpages and computes
their similarity with known phishing websites, in order to
classify them. The experimental results have shown that the
model achieved an AUC score of 98.68% and a 0.58% false
positive rate, respectively.

In addition to implementing phishing website detection
with respect to URL and HTML-based features separately, a
few researchers in the recent past proposed anti-phishing
frameworks that consider both the URL and HTML content of
a webpage [31]. One of the earlier attempts combining both
URL and HTML features of a webpage for phishing detection
has been proposed by Yuan et al [32], which incorporated both
lexical features of a URL and links and contents in its
webpage. Experimentations were carried out with a number of
machine learning models, among which the Deep Forest
model exhibited the maximum accuracy of 98.3%.

Aljofey et al [33] proposed an anti-phishing approach
similar to [32] that integrates URL, hyperlink information, and
textual content of a website. Integration of features enhanced
the detection accuracy of the adopted XGBoost classifier,
resulting in 96.76% with a lower false positive rate of 1.39%.

As per the studies conducted with respect to phishing
website detection implemented using machine learning, it
shall be inferred that it is more effective in comparison to the
traditional blacklisting techniques. However, there are certain
inherent limitations associated with ML-based phishing
website detection, namely reliance on engineering experts to
generate handcrafted URL and HTML features, static feature
sets that do not reflect the ever-growing dynamic nature of a
phishing website, and the model’s inability to handle a
massive volume of datasets [11].

2.3. Phishing Website Detection using Deep learning
Algorithms: Automatic Feature Extraction using
Representation Learning Mechanism

In order to overcome the limitations associated with
existing ML-based anti-phishing solutions, researchers came
up with the idea of adopting a representation learning
mechanism in which both URL and HTML features were
automatically extracted without the reliance on human
intervention. In order to achieve this, various researchers
adopted traditional Deep Learning algorithms for feature
extraction as well as classification.

Manoj Kumar Prabakaran et al. / 1JECE, 13(1), 27-45, 2026

Yang et al [34] proposed a multi-dimensional feature-
driven anti-phishing solution that incorporates the idea of a
representation learning mechanism for automatic URL feature
extraction. In this work, two significant DL models, namely
Convolutional Neural Network (CNN) and Long Short-Term
Memory (LSTM), were incorporated to extract URL features
of a website automatically. Along with those features,
statistical URL, webpage code, and text features were
combined and fed as input to the classifier. The model
exhibited a superior detection accuracy of 98.99%.

A unique approach combining both the URL and HTML-
based automatic feature extraction mechanism has been
proposed by Opara et al [15], referred to as Web Phish, that
accepts URL and HTML source code as input and vectorizes
them using a tokenizer utility class. Both the URL and HTML
embedding vectors were concatenated and passed through the
convolutional layers for classification. The proposed model
achieved an average accuracy of 98% for three Fully
Connected layers.

Although the adoption of traditional deep learning
models, such as CNN, VAE, LSTM, etc., possesses the ability
to extract intrinsic URL and HTML features of a website
automatically, they lack the aptitude to measure the
importance of the extracted features [35]. In order to overcome
this, a few researchers in the recent past started incorporating
transformer-oriented attention mechanisms through which
features are weighed such that the most important features are
selected and fed to the classifiers for training and evaluation.

Xiao et al [36] proposed a novel deep learning network
that combines the efficacy of CNN and the Multi-Head Self
Attention Mechanism (MHSA) for effective detection of
phishing websites. The experimental results proved that the
adoption of an attention mechanism in the process of weighing
the extracted feature wvectors significantly enhanced the
detection ability of the classifiers, displaying an overall
accuracy of 99.84%.

A similar kind of approach referred to as “CCBLA” was
proposed by Zhu et al [37] that adopted Bi-LSTM along with
CNN and attention mechanism in order to perform phishing
website detection. The proposed model proved to be a
lightweight entity displaying accurate phishing URL detection
with minimal time consumption.

As per the studies conducted, it shall be inferred that
attention-enhanced Deep Learning Models provided better
detection outcomes in comparison to traditional deep learning
models; however, these models typically required training
from scratch, and they might struggle to generalize across
diverse phishing patterns. Henceforth, researchers began
experimenting with pre-trained transformer models and their
variants, which are already trained with a vast data corpus,
with the intention of proposing anti-phishing solutions that

31

offer high performance with minimal fine-tuning and strong
transfer learning abilities.

Maneriker et al [38] proposed URLTran that adopts
pretrained transformer architectures for improving phishing
detection. In this work, an existing transformer architecture is
fine-tuned and pre-trained using URL data. Also, publicly
available pretrained models such as BERT and RoBERTa
were fine-tuned on the URL classification task. A cloze-style
masked language modeling objective is applied to the BERT
architecture. Each of these fine-tuned pretrained transformers
was analyzed, and the best among them was finally selected
as URLTran_BERT. The proposed URLTran produces an
actual positive rate of 86.80% which is quite optimal.

Haynes et al [39] proposed a lightweight URL-based
phishing detection using two state-of-the-art pre-trained

transformers, namely BERT and ELECTRA. The
experimental results confirm that the adopted deep
transformers performed exceptionally well, producing

detection accuracy values of 96.1% and 96.3% respectively.
This work signifies the fact that the adoption of pre-trained
transformers for phishing website detection enhances the
detection outcome as well as minimizes the amount of time
taken for training and validation.

Apart from individually adopting pre-trained
transformers for phishing detection, an integrated approach
combining deep learning classifiers along with pre-trained
transformers has been proposed recently by Do et al [40],
referred to as RasNet-TCMA-MPNet. In this work, in order to
analyze the unique nature of phishing website URLS, RasNet
combines keras embeddings with ResNet. In addition,
Temporal Convolutional Neural Network (TCN) has been
incorporated along with Multi-Head Self-Attention for the
optimization of feature extraction. Also, in order to examine
the natural language structure of webpage URLS, MPNet has
been utilized. The proposed model exhibited a maximum
detection accuracy of 99.71%. However, this work only
focuses on the URL part of a phishing website and does not
concentrate on the features associated with the webpage
content.

3. Materials and Methods

In order to address the aforementioned limitations, an
optimal lightweight phishing detection framework has been
proposed that integrates the idea of transfer learning with a
transformer-based architecture that concentrates on both the
URL and HTML features of a phishing website. The proposed
TL-BERT framework employs a TL-Enabled Autoencoder
(TL-AE) model to automatically extract inherent raw URL
features and Bidirectional Encoder Representation from
Transformers (BERT) to generate context-aware HTML text
embeddings. Both the URL and HTML features obtained from
the TL-enabled AE and BERT models were concatenated and
then fed as input to a traditional Deep Neural Network (DNN)

Manoj Kumar Prabakaran et al. / 1JECE, 13(1), 27-45, 2026

model for training and evaluation. Figure 1 depicts the
architecture of the proposed TL-BERT model.

The proposed model is constructed by integrating two
intelligent approaches for feature extraction and a neural
network model for classification:

i) Atraditional Auto Encoder (AE) model constructed based
on a transfer learning mechanism that is dedicated to
automatic feature extraction from preprocessed raw URL
inputs.

Bidirectional Encoder Representations from
Transformers (BERT) is a transformer-based deep
learning model deployed for extracting valuable features
from preprocessed HTML-based web content.

i)

3.1. URL Feature Extraction using Autoencoders

According to a study conducted by [41], it can be inferred
that AE models are well-suited for dimensionality reduction
and feature extraction processes. Hence, considering the
reconstruction ability of the AE model, a special form of AE
architecture has been adopted, which incorporates transfer
learning techniques to automatically extract raw URL
features.

3.1.1. URL Preprocessing

The input URLSs, which are in the form of text data, have
been converted into fixed-size numerical vectors based on the
One Hot Encoding (OHE) mechanism. OHE converts every
character in a URL string into a fixed-size vector
representation. For each character in the URL string, a vector
is produced with respect to [42], which states that a Uniform
Resource Locator (URL) of a website shall be formed based
on 84 unique characters, including alphabets, digits, and
special symbols. Hence, a corpus is generated with those 84
characters, each individually indexed.

For every character in the URL, an OHE vector of size 84
is generated, which contains 83 ‘0’ values, and based on the
index position with respect to the corpus, a ‘1’ value is
generated in accordance. Since neural network models expect
the input vectors to be of uniform size, i.e., all URLs should
have equivalent N * M dimensions, where N denotes the
length of the URL and M represents feature representation
size, based on [43], the M value is set to 84 uniformly. In
contrast, N is determined by calculating the average length of
all the URLSs in the input dataset.

URL Feature Extractor URL DNN Architecture
Features
| RAW URL __|
I i I LATENT
Www. Xyz.com Eicpocesing Encoder SPACE Decode! 1
‘Transfer Learning Adopted Autoencoder
For Url Feature Extraction !
Input Hidden Output Layer
INPUT URL Layer Layers
SAMPLES Classifier
—_ HTML Source Code| Preprocessing -
_ <html> Text Line 1 N
Web Scraping <head>...</head> Text Line 2 C
using Beautiful——s| <body> | J [oF—0f ------. 0
Soup Library - ? D
S E Html
: ext Line
body> Features
</htm[>
Html Feature Extraction Using Pretrained Transformers

HTML Feature Extractor

Fig. 1 Proposed TL-BERT architecture

Around 50000 URLSs are available in the dataset, of which
the average lengths of all the URLs were found to be 72.
Hence, the N value is fixed to be 72 in this work.
For those URLs whose length is shorter than 72, the remaining
positions of the vector will be padded with Os, and for those
whose length exceeds 72, trimming is done to trim off those
extra characters in the URL. Finally, after preprocessing the

32

input URLs, a numerical vector of dimension N *M is
obtained, where N = 72 and M = 84, respectively.

3.1.2. Autoencoders as Feature Extractors

Figure 2 depicts the detailed workflow of the proposed
feature extraction module. The preprocessed numerical
vectors of individual URLSs are collectively fed as input to the

Manoj Kumar Prabakaran et al. / 1JECE, 13(1), 27-45, 2026

feature extraction module. As already suggested, a traditional
AE model is employed for the process of URL feature
extraction. An autoencoder model [44] is a variant of Neural
Network Architecture that encompasses three main layers: a)
encoder, b) latent space, and c) decoder. The basic principle
behind the AE model is to receive input data and produce an
output that is a reconstructed form of the input data.

The AE model is structured by stacking three layers
sequentially, namely the encoder layer, the latent space, and
the decoder layer. The encoder part of the AE model is
structured as follows: It consists of an input layer, three hidden
layers, and an output layer. The number of units in the input
layer of the encoder is set to be 84, since it should match the
preprocessed URL vector dimension.

Hidden layer 1 consists of 80 neuron units, followed by
hidden layer 2 containing 70 units and hidden layer 3 holding
64 units, respectively. The number of units in the latent space
layer of AE is set to be 20. The decoder part of AE is
constructed in the reverse manner with respect to the encoder
part of the model, as shown in Figure 2.

The primary steps involved in training an AE model are
as follows:

1. The preprocessed URL vectors are fed as input to the
encoder layer, where the data gets forwarded to the
intermediate hidden layers and finally to the output layer.

2. The output of the encoder part is a dimensionally reduced
input vector, which gets stored in the latent space or
bottleneck layer of the architecture.

3. The units in the latent space region are then forwarded as
input to the decoder part of the model. Here, the vectors
are decompressed by passing through a set of hidden
layers to the output layer.

4. The output layer produces a URL vector that is of the
same dimension as the original input vector.

5. Reconstruction error is calculated based on the difference
between the input vector and the reconstructed output
vector. Based on the loss value obtained, the weights of
the decoder and encoder are adjusted during the
backpropagation process.

6. Once the reconstruction loss is optimally minimized, the
training process is halted.

After the completion of training, the dimensionally
reduced latent space vectors shall be extracted and provided
as one of the inputs to the classification layer in the TL-BERT
model. The latent space vectors are taken into account since
they contain dimensionally reduced abstract higher-level
representations of the input data.

However, instead of training an AE model using a bunch
of real-world URLs from scratch, a special technique is
adopted that eases the training process of the model, such that

33

valiant features are extracted at less computational cost and in
a limited time duration.

RAW URL INPUT

1 °
o 0 °
0

1
Numerical Vector

Encoder

Input Layer
84 Units
Hidden Layer
80 Units
Hidden Layer 2
70 Units

—_— Input Layer
84 l'ml\:

Hidden Layer |
80 Units{

Hidden Layer 2

. ¥

70 Units|
Output Layer

40 Units Output Layer
40 Units|

—
Latent Space
20 Units

Input Layer
40 Units

—_

Hidden Layer 1
70 Units
Hidden Layer 2

80 Units
20 Units
Output Layer
84 Units

—
| |

Utl Feature Vector Of
Dimension 72 20

Fig. 2 Detailed workflow of the feature extractor module

In order to speed up the training duration of the model, an
advanced machine learning technique referred to as Transfer
Learning (TL) is adopted. In TL [45], a pre-trained model that
has been exposed to a massive dataset for a unique task shall
be used as the initiating point to train a particular model.
Instead of making use of one of the existing pre-trained
models, a self-built Neural Network Model that has already
been trained with a vast number of real-world URLs is
incorporated as an initiator to train the AE architecture. The
architecture utilizes a Variational Autoencoder (VAE)
framework. Specifically, the encoder weights from the pre-
trained VAE model described in are transferred to the AE
encoder in this study to leverage previously optimized feature
extraction capabilities. VAE model, in particular, was trained
with a custom dataset consisting of 1 48 960 URL samples,
out of which 74,480 are real-world phishing URLs and the
remaining 74,480 are generated adversarial phishing samples.
For generating the adversarial URL samples, a special form of
generative modeling technique referred to as Generative
Adversarial Network (GAN) is implemented. The GAN
model was being trained for around 5000 epochs to generate
fake phishing samples, which in turn were combined with real-
world phishing URLs collected from benchmark datasets to
train the VAE architecture.

Considering the merits of the constructed VAE model
with respect to the number of training samples and its

Manoj Kumar Prabakaran et al. / 1JECE, 13(1), 27-45, 2026

exposure to adversarial URL inputs, a transfer learning
mechanism is adopted in which the encoder part of the VAE
architecture is completely transferred, along with the updated
weights to the proposed AE model.

The encoder part of the VAE model, comprising an input
layer, three hidden layers, an output layer, and the latent space
layer, is entirely replicated along with the updated weights in
the AE architecture. For training the TL-enabled AE model,
around 50,000 URL samples are collected from benchmark
datasets. The number of epochs is set to be 50. The learning
rate is fixed at 0.001. The Adam optimizer is used as the
optimization technique. The mean square error is used as the
loss function to calculate the reconstruction error. The encoder
part is frozen for the initial 35 epochs, and only the decoder
part undergoes back propagation, i.e., the weights are adjusted
only for the decoder layer units initially. For the remaining 15
epochs, both the encoder and decoder units undergo weight
updates.

3.2. HTML Feature
Transformers

Numerous existing solutions [28-30] in relevance to
HTML-based phishing website detection have been proposed
by various researchers in the recent past, which dictated the
significant role of HTML features in the classification
outcome. Considering the merits of the automatic HTML
feature extraction technique as well as the complexities
associated with representation learning, a transformer-based
model is deployed to automatically extract context-based text
embedding of webpage content.

Extraction using Pre-Trained

3.2.1. HTML Preprocessing

The following steps are performed to preprocess the
webpage content into a clean format before being fed to the
transformer model for feature extraction.

e Initially, web scraping is done by implementing
BeautifulSoup, a Python library that shall be imported
from the BS4 package. This enables us to parse HTML
documents in a user-friendly manner.

e Once the HTML documents are parsed, the source code
content of the respective webpage will be retrieved. From
the source code, script and style tags are ripped off, and
the relevant text contents are extracted alone using the
get_text () method associated with the BS library.

e After extracting the text content, those texts are broken
into separate lines by removing leading and trailing
spaces on each sentence and further split into individual
chunks.

e Finally, a dictionary is generated with a key as URL and
values in the form of a nested list comprising line-by-line
text extracted from chunks using the splitlines () method.

e In order to make each entry in the dictionary of uniform
length, suitable threshold values, say ‘T are identified that
set the fixed length for all the webpage text content. Based

34

on the experimentation conducted, the T value was fixed
to be 500. Hence, those website contents whose text
length exceeded the T value were trimmed off, and those
having a length shorter than the T value were padded with
additional 0’s for compensation.

Once the preprocessing stage is finished, a dictionary is
obtained with key and value pairs, where key denotes the
individual URLs in the dataset and values represent the
preprocessed webpage content organized in the form of a
multi-dimensional list with uniform length.

To extract the intrinsic features of a webpage context with
respect to contextual embedding, this work incorporates
BERT (Bidirectional Encoder Representations from
Transformers). This pre-trained language model uses the
Transformer architecture [46]. In particular, BERTgasg, a pre-
trained model that comprises 12 encoders stacked together
linearly, has been implemented. The encoder part of the model
constitutes a feed-forward network layer containing 768
neuron units and 12 attention heads.

. .
. .
. .
. .
. .
. .
H Add_ &) :
Encoder H - 3
12 H b
. .
l*‘ = L
. .
. .
. .
H Feed I
. Forwa f—3p 768
. rd L Neur
. .
o Laver 1 on
...... »: :
. .
. .
. .
Encoder : 1
2 H b
. .
A - i
. .
. A 1
. .
. .
. .
. .
Encoder H I
1 . : 12
n Multi head _:->
- PR - atten
. .
L] L tion
. .
- - haad
. .
. .
. .
BERT : :
. .
EsssEmEEmEEEEEEEEEE
ENCOD

Fig. 3 BERTgase architecture

The working principle of a BERT model is as follows:

e Initially, the model receives input in the form of text
tokens. Here, each word or sentence in a text shall be
considered an individual token.

e The first input token for any form of input is a [CLS]
token that refers to classification.

Manoj Kumar Prabakaran et al. / 1JECE, 13(1), 27-45, 2026

e Followed by the input token, either a sequence of words
or a sentence, depending on the requirement, shall be fed
as input to the model, which would flow up through the
stack of encoders in the respective BERT model.

e Inecach layer, there are ‘n’ numbers of self-attention heads
that apply a self-attention mechanism to calculate the
attention weights of each token and further pass the
attention score calculated through the FFN layer.

e The FFN layer finally hands over the obtained output data
to the next encoder in the stack.

e Each input token produces an output vector of a different
size depending on the BERT variant.

Figure 3 depicts the architecture of the adopted BERTgase
along with the internal structure of the encoder part associated
with the model.

The BERTgase model has been implemented using the
TensorFlow library, which is available in Python. The model
has been downloaded from the following URL:
https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-
4 H-512_A-8 , and a respective preprocessing URL that
indulges in text preprocessing has been downloaded from
https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3.
Algorithm 1 explains the steps involved in extracting HTML
features using the BERT model.

Figure 4 represents the detailed representation of HTML
feature extraction using the adopted BERT model. Initially,
the preprocessed HTML data, which is in the form of a
dictionary, is fed as input to the BERTgase model for feature
extraction. The dictionary contains a key-value pair where the
key points to a particular URL in the input dataset and the
value denotes the preprocessed textual web content organized
as a multi-dimensional list.

The keys in the dictionary are iterated, and the text values
of a particular URL are fed line by line as input to the BERT
model. This model comprises a sequence of 12 encoders. The
preprocessed HTML feature vectors were passed sequentially
onto all 12 encoders with a CLS and SEP tag at the initial
layer. For each line, a contextual embedding vector of size 512
is generated.

Since the length of the webpage content ‘T’ was fixed
uniformly as 500, an output vector of dimension 500 * 512
will be generated for each website URL available in the input
dataset. The obtained HTML features based on the BERT
model play a vital role in phishing website detection since
those features are based on the context in which a particular
text is present.

Algorithm 1 HTML feature extraction using BERT
from bs4 import BeautifulSoup
html = fetch_html_from_url(url)

35

soup = BeautifulSoup(html, ‘html.parser’)
text_content = soup.get_text()
cleaned_content=
remove_unwanted_elements(text_content)
lines = split_into_lines(cleaned_content)
data_dict = {url: lines}
return data_dict
/IGenerating feature vectors using BERT
HTML_vectors=[]
for key in data_dict:
output_vector =[]
for layer in bert_model.encoders:
attention_weights = self_attention_mechanism(token,
layer)
attention_scores = ffn_layer(attention_weights)
output = attention_scores
output_vector.append(output)
HTML_vectors.append(output_vector)

3.3. Deep Neural Network (DNN) Model for Classification

The final layer of the proposed TL-BERT architecture
incorporates a Deep Neural Network (DNN) model that is
tasked with classifying legitimate and phishing websites.
DNN receives its input from the feature vectors extracted from
both the AE and BERT models. Both the URL and HTML
feature vectors were concatenated and produced as a
combined numerical vector for the DNN model for URL
prediction.

HTML PREPROCESSING
HTML Source
Code extraction
sing 88 Library

1

Text Extraction
and Cleaning

!

. A

¢ TextSplitting)
N B

Dictionary

[[This is Ist Sentence]
[This is 2nd Sentence]

www.abe.con Uniform Length

of 500
Key
[This is 3rd Sentence])

value
!

Sentence 1 Sentence 2

[CLS] Sentencen [SEP]

BERT 1 2 3 501

Rkt
[T

Ll

ENCODER 1 |

o

ENCODER 2

m o

ENCODER 12 |

acalu=n

500*512
Dimensions

r

Content Aware Text Embedding

Fig. 4 HTML feature extraction using BERT

Manoj Kumar Prabakaran et al. / 1JECE, 13(1), 27-45, 2026

The extracted URL feature vector is of dimension N * M,
where N =72 and M = 20, respectively. HTML feature vectors
obtained through the BERT model are of dimension L * Z,
where L =500 and Z = 512. Before feeding these features into
the classifier for prediction, they need to be flattened into a
single input vector of dimension [Ui, Xi, Yi], where Ui
denotes a particular URL in the input dataset, Xi is calculated
as 572, which is obtained by adding N and L values. In
contrast, Yi is set to 532 by summing up M and Z values.

The flattened vector [Ui, Xi, Yi] shall be produced as
input to the proposed DNN model for URL classification. The
adopted DNN model is structured as follows: It consists of an
input layer, four hidden layers, and an output layer. The
number of units in the input layer is fixed at 532,
corresponding to the dimension of the input URL vector. Four
hidden layers comprise 512, 256, 128, and 64 neuron units.
The output layer contains two units for binary classification
purposes. Figure 5 depicts the detailed representation of the
classification layer.

- BB oo
|iretorsy] Ol =3 Bz 2% F

| 089 QP <
HTML Features O ? Q O "

Fig. 5 Classification layer

Initially, the input dataset is split into training and testing
samples. The ratio of training and testing data was fixed at
80:20. The DNN model undergoes supervised training in
which it receives a combined URL and HTML features along
with its label values. The number of training epochs was set to
50, and the learning rate of the model was fixed at 0.001.

The input vectors were passed through the set of hidden
layers and finally to the output layer. The loss value is
estimated by calculating the difference between the predicted
and actual output. A negative log-likelihood loss function has
been adopted to estimate the loss value. Batch normalization
was done based on a dropout mechanism. Furthermore, to
prevent overfitting, a dropout mechanism is implemented,
whereby specific neuron units are randomly dropped during
the training process. Also, to ensure optimal training, the batch
size was fixed at 100. The Adam optimizer was used to
optimize the loss function. At every intermediate layer, the
Rectified Linear Unit (ReLU) was used as the activation
function, except for the output layer, in which the Log-
Softmax function was used as an activation function for
calculating the probabilistic outcome.

Finally, to ensure the efficient training of DNN without
complex computations, the concept of early stopping was

36

implemented in order to cease the training process whenever
the validation loss stopped improving. Once the training is
completed, the model is exposed to the testing data samples
for detecting malicious URL samples.

4. Experimental Results and Analysis
4.1. Dataset Description

Raw URL samples have been collected from the
following two benchmark datasets, namely Alexa Top
Website and ISCX URL 2016, for the purpose of training the
proposed TL-BERT model. The dataset comprises 54300
URL samples extracted from the above-mentioned benchmark
resources. The constructed dataset is a balanced mixture of
legitimate and phishing URL samples.

The legitimate URL samples were crawled from Alexa
(Source: www.alexa.com), a web traffic analysis company
owned by Amazon that provides information and rankings on
the popularity of websites. It determines website rankings
based on factors such as daily unique visitors, page views, and
average time spent on the site. Also, it provides a list of the
top websites globally and for specific countries, along with
additional analytics and insights. Exactly 29870 URLs were
crawled from the Alexa website during the time period of
March 2023. Phishing samples were collected from the ISCX
URL 2016 dataset (Source: https://www.unb.ca/cic/datasets/
url-2016.html), which comprises four variants of phishing
URLSs, namely spam, phishing, and defacement URLs. Out of
these 4 variants, 24430 phishing URLs were randomly
collected to form the list of phishing URLSs in the dataset.

The dataset was split into training and testing data, of
which 70% of the input data was considered for training
purposes and the remaining 30% for testing. A total of 16290
URL samples were used for evaluating the proposed model, of
which 8961 were benign, and 7329 were malicious.

In order to accurately assess the performance of the
proposed model, various measures were taken into
consideration, namely the accuracy curve, loss curve,
confusion matrix, precision, recall, F1 score, True Positive
Rate (TPR), True Negative Rate (TNR), False Positive Rate
(FPR), False Negative Rate (FNR), and Area Under the ROC
(AUC-ROC) curve.

The experimental setup comprises Google Colab Pro, a
cloud-based Jupyter notebook environment, which provides a
seamless and setup-free platform for conducting the
experiments. Google Colab Pro offers several advantages,
including access to powerful hardware resources and GPU
acceleration. Specifically, the experiments made use of the
Tesla V100 PCle GPU accelerator, which is known for its high
performance in deep learning tasks. This GPU has a staggering
14 TFLOPS (Tera Floating-Point Operations Per Second) of
computational power, allowing for efficient and fast model

http://www.alexa.com/

Manoj Kumar Prabakaran et al. / 1JECE, 13(1), 27-45, 2026

training and evaluation. Additionally, the Tesla V100 boasts a
substantial memory bandwidth of 900 GB/sec, enabling
smooth data transfer and processing. To complement the
powerful GPU, Google Colab Pro provided generous system
specifications. The setup included a sizable 125GB HDD,
which allowed for ample storage of datasets, model
checkpoints, and experimental outputs. Moreover, the system
provided 25GB of memory, ensuring sufficient space for
running memory-intensive tasks and accommodating large-
scale models and datasets.

4.2. Design of Experimentation and Result Analysis
Experiments were conducted in different phases to
analyze the importance of both URL and HTML features in
the effective classification of malicious URLSs. In each phase,
the impact of URL and HTML features with respect to
classifier accuracy was analyzed by experimenting with
different feature extraction strategies. The following are the
three phases in which the experiments were carried out:
¢ Impact analysis of the proposed TL-BERT model with
respect to URL features alone (Phase 1).
e Impact analysis of the proposed TL-BERT model with
respect to HTML features alone (Phase 2).
e Impact analysis of the proposed TL-BERT model with
respect to both the URL and HTML features (Phase 3).
o Lightweightness evaluation of the proposed TL_BERT
model (Phase 4)
o Evaluation of the proposed TL-BERT model against the
existing state-of-the-art anti-phishing approaches that
employed representation learning techniques (Phase 5).

4.2.1. Phase 1- URL Feature Analysis

In this phase, the HTML feature extractor module of the
proposed framework is excluded, and only the URL feature
extractor and classifier are considered for experimentation.

Hence, minor alterations have been made with respect to
the dimensions of the features extracted from the TL-assisted
AE model. The classifier’s input layer is composed of 532
units, which were purposefully fixed with respect to the
combined input size of both URL and HTML features. Since
only URL features are dealt with alone in this experiment,
which are of dimension L * 20 (L specifies the uniform length
of a particular URL), it is mandatory to align the URL feature
size with the classifier’s input layer size. Hence, a padding
mechanism is adopted for compensation in which the required
number of zeroes is padded to produce a URL feature vector
of dimension L*532. Although padding is applied, the
inherent features extracted by the extractor remain unchanged.
These features were then fed as input to the classifier for
training and evaluation.

In this experimental phase, the TL-assisted AE model is
taken into account without changing its structure with respect
to the original proposed TL-BERT model. The performance

37

of the model designed with respect to URL features alone has
been measured using the following two metrics: accuracy
curve and confusion matrix.

Figure 6 (a) and 6 (b) represent the accuracy curve and
confusion matrix for the experimented TL-enabled AE-DNN
model. As can be inferred from the results, the model reaches
a maximum accuracy of 97.5%. The number of false positives
acquired was 212 out of the 7329 malicious URL samples, and
the number of false negatives obtained was 196 out of the
8961 benign samples.

100
95
90
85
80
75
70
65
60

Accuarcy (%)

0 1 2 3 4 5 10 20 30 40 49 50
Epochs

=&-Training Accuracy (%) == Testing Accuracy (%)

(€Y
Actual class
Benign Phishing

Predicted class
Benign

Phishing

(b)
Fig. 6 (a) Accuracy curve of TL-Enabled AE-DNN,
(b) Confusion matrix of TL-Enabled AE-DNN.

The model exhibits a better outcome with the URL
features alone, and this is mainly due to the adoption of
transfer learning techniques in the feature extraction process.
In order to stress the effect of adopting transfer learning in
URL feature extraction, a separate experiment was carried out
in which the role of TL was excluded from the picture. In this
process, the traditional autoencoder was trained from scratch
without leveraging the trained weight initialization technique.
In the TL-disabled AE architecture, both the encoder and
decoder parts of the AE model undergo weight updates during
the entire training process. No weights were transferred from

Manoj Kumar Prabakaran et al. / 1JECE, 13(1), 27-45, 2026

any pre-trained models. Once the training process is
completed, the latent space feature vectors are fed as input to
the DNN for URL classification.

The performance analysis of the features extracted with
respect to the traditional AE model is measured based on a
similar metric adopted for the TL-enabled AE model. Figure
7(a) and 7(b) depict the accuracy curve and confusion matrix
for the TL-disabled AE-DNN model.

100
95
90
85
80
75
70
65
60

Accuracy(%o)

0 1 2 3 4 5 10 20 30 40 49 50
Epochs

=8=—Training Accuracy (%) =e=Testing Accuracy (%)

(@
Actual class
Benign

Phishing

476

Predicted class
Benign

Phishing

(b)
Fig. 7 (a) Accuracy curve of TL-Disabled AE-DNN,
(b) Confusion matrix of TL-Disabled AE-DNN.

As per the results obtained, it can be found that the
detection accuracy of the model reaches a maximum of 92.5%.
However, the number of false positive and false negative
samples was significantly higher when compared with the
previous case. The model acquires a false positive rate of
6.49%, which is quite large.

4.2.2. Phase 2- HTML Feature Analysis

In the proposed TL-BERT architecture, along with the
HTML embedding vector, the URL feature vectors were
concatenated to produce the input. Instead, in this
experimental phase, the URL features were ignored for

38

experimental purposes, and only the BERT-generated
embedding vector of dimension 500*512 was taken into
account for analysis. Since the input layer of the DNN model
comprises 532 neuron units, a padding mechanism is adopted
in the HTML embedding vector to compensate for the size of
the DNN input layer. Hence, the additional 20 spaces are
allocated to the BERT embeddings and populated with Os.

Apart from adopting the BERT text embedding
mechanism, there are various other real-world text embedding
techniques that can convert real-world text data into fixed-size
numerical vectors. Hence, in this experimental phase, five
different text embedding mechanisms were experimented with
apart from BERT to assess the quality of the text-based
features obtained with respect to individual techniques in the
effective identification of phishing websites, namely Term
Frequency Inverse Document Frequency.
(TF-1DF), Bag of Words (BoW), Global Vector For Word
representation (Glove), Word2Vec, and Fast Text [47]. Figure
8 describes the detailed performance analysis of each text
embedding technique with respect to precision, recall, F1
score, and accuracy metrics.

From the experimental results obtained, it can be
observed that out of all the text embedding techniques, the
adopted BERT architecture exhibits the best outcome in terms
of precision, recall, and F1 score. BERT reaches a maximum
F1 score of 0.98, which is the highest among all the other text
embedding techniques. This clearly suggests that context-
aware embedding vectors play a significant role in describing
the nature of the content of a particular website. Apart from
BERT, glove-generated embedding vectors lead to a better
detection accuracy of 96.1%, which is the second highest
among all the experimented models. However, the precision
and recall values obtained for the glove model with respect to
phishing samples were not optimal.

In contrast, the TF-IDF-based feature vector delivers the
least detection accuracy of 91.5% with a lower precision and
recall value in comparison to other techniques. Both
Word2Vec and FastText produce similar kinds of results,
exhibiting an average F1 score of 0.95. Table 1 summarizes
the performance outcomes of the various text embedding
techniques.

Table 1. Performance outcome of various text embedding technigues

TEXt. . F1- | Accuracy
embedding | Precision | Recall
X score (%)
techniques
TF-IDF 0.9135 | 0.9153 | 0.9143 91.49
BoW 0.9501 | 0.9470 | 0.9483 94.90
Word2Vec 0.9507 | 0.9501 | 0.9504 95.10
FastText 0.9568 | 0.9562 | 0.9565 95.70
Glove 0.9607 | 0.9603 | 0.9605 96.10
BERT 0.9807 | 0.9808 | 0.9809 98.10

Manoj Kumar Prabakaran et al. / 1JECE, 13(1), 27-45, 2026

The following are the inferences obtained after
experimenting with different text embedding techniques: a)
TF-IDF does not capture the semantic relationships between
words and may struggle to handle out-of-vocabulary words. b)
Both Word2Vec and FastText were memory-intensive and
consumed more data to train. ¢) Glove is effective at capturing
semantic relationships between words and can handle out-of-
vocabulary words. However, the drawback associated with
Glove is that it is memory-intensive and requires a significant
amount of data. d) BERT captures the contextual meaning of
words by considering the entire input sentence, leading to
better representation of word meanings in natural language
processing tasks.

Precision Recall F1-score
0.932321 [0S 0.921853
Phishing 0.894793
Accuracy
Macro avg
Weighted
avg
Performance outcome of TF-IDF +
DNN
(@
Precision Recall F1-score
Benign 0.967191 0.954253
Phishing ELEIFN 0.926729
Accuracy
Macro avg
Weighted
avg
Performance outcome of BoW +
DNN
(b)
Precision Recall F1-score
Benign 0.95838 0.96362 0.960993
Phishing 0.948833
Accuracy
Macro avg
Weighted
avg
Performance outcome of FastText +
DNN
(c)
Precision Recall F1-score
Benign 0.953042 @ 0.95804 0.955535
Phishing 0.942284
Accuracy
Macro avg
Weighted
avg
Performance outcome of Word2Vec
+ DNN

(d

39

Precision Recall F1-score
Benign 0.96286 0.966298 0.964576
Phishing 0.954428
Accuracy
Macro avg
Weighted
avg
Performance outcome of Glove +
DNN
(®)
Precision Recall F1-score
Benign 0.982918 0.98248 0.982699
Phishing 0.97859
Accuracy
Macro avg
Weighted
avg
Performance outcome of BERT +
DNN

®
Fig. 8 Precision, recall, F1 score, and accuracy of various text
embedding techniques. Panels show, (a) TF-IDF, (b) BoW, (c) FastText,
(d) Word2Vec, (e) GloVe, and (f) BERT.

In a nutshell, it can be summarized that the adoption of
BERT to generate context-aware embedding of HTML text
content results in optimal phishing website detection in
comparison to all the other text embedding mechanisms.

4.2.3. Phase 3- Analysis of Proposed TL-BERT Model

The core objective of this research is to deploy an Al-
assisted phishing website detection mechanism that optimally
identifies malicious URLs in a real-world environment. To
enhance the detection ability of the proposed model, this
research intends to enrich the detector with both the URL and
HTML features of a particular website. In the previous two
phases of experimental analysis, URL and HTML features
were individually experimented with to study their impact on
the model’s classification ability. In this phase, the core task
is to analyse the proposed TL-BERT model, which actually
combines both URL and HTML features obtained by
employing the TL-enabled AE and BERT models. The
following experiments have been carried out in phase 3 of the
experimental analysis:

® Initially, the proposed TL-BERT model is experimented
with the input dataset, and the detection ability of the
model is assessed using accuracy and a loss curve.

® To further showcase the optimality of the TL-BERT
architecture, additional experiments were conducted to
compare the performance outcomes of the model with
those of the models constructed in the previous two
phases (TL-AE DNN and BERT + DNN). The outcomes
were analysed using the following metrics: TPR, TNR,
FPR, and FNR.

Manoj Kumar Prabakaran et al. / 1JECE, 13(1), 27-45, 2026

® In order to validate the combined effect of URL and
HTML in website classification, a study is conducted
by constructing an AuC-ROC curve that examines the
classification ability of the model with respect to URL,
HTML, and URL+HTML.

Figure 9 demonstrates the accuracy and loss curve
obtained for the proposed TL-BERT model, and the results
clearly suggest that the proposed model performed
predominantly well, reaching a maximum accuracy of
99.08%. Although the model struggled to classify the URLs in

the initial epochs of the training process, it can be witnessed
that after a very few epochs, the model adapted in accordance.
This is mainly due to the adoption of pre-trained models to
extract URL and HTML features.

Additional experiments were conducted to evaluate the
performance of the proposed model with respect to the models
constructed in the previous two phases. Table 2 presents the
performance analysis of the models in all three phases,
specifically with respect to TPR, TNR, FPR, and FNR.

Table 2. Performance analysis of TL-BERT with respect to phase 1 and phase 2 models

True Positive Rate

Proposed models (TPR)

False Positive
Rate (FPR)

True Negative Rate
(TNR)

False Negative Rate
(FNR)

TL-AE + DNN 97.81% 2.89%

97.11% 2.19%

BERT + DNN 98.25% 2.09%

97.91% 1.75%

TL-BERT+DNN 99.15% 1.01%

98.99% 0.85%

With respect to the URL features (TL-AE+DNN),
although the classifier exhibits a decent TPR and TNR value,
there is a significant increase in the FPR value, and this is
mainly because focusing only on URL features might lead the
model to misclassify specific malicious URLs as legitimate
ones. As can be observed, the TL-AE model reached an FPR
of 2.89%, which is the highest among the experimented
models.

In the case of HTML features (BERT+DNN), the
performance outcome was better when compared with the URL
features. The model exhibits lower FPR and FNR values of 2.09
and 1.75%, respectively. This outcome is achieved on the basis
of the context-aware embedding mechanism that leads the
classifier to understand the contextual information of HTML text
content to precisely identify malicious websites. As can be
witnessed from Table 2, the proposed TL-BERT architecture
displayed an excellent outcome in terms of correctly identifying
benign and malicious URLs. The model acquired the lowest FPR
and FNR values of 1.01% and 0.85%, which is considered to be
quite decent for the quantity of URLSs taken for evaluation.

100
95
90
85
80
75
70
65
60

Accuracy (%)

0 1 2 3 4 5 10 20 30 40 49 50

Epochs
=@ Training Accuracy (%) =@=Testing Accuracy (%)

@

40

0.16
0.14
0.12 == Final Loss
0.1

0.08

Loss

0.06

0.04

0.02

0 2 46 810152025303540454950

Epochs
(b)
Fig. 9 (a) Accuracy curve of the TL-BERT Model,
(b) Loss curve of TL-BERT Model.

Figure 10 shows the AuC-ROC curve of the proposed model
for both TL-AE and BERT. This analysis was done to ensure
the trade-off between sensitivity and specificity of the
experimental models.

The ROC curve clearly suggests that the proposed TL-
BERT model delivers the maximum AuC score of 0.98, which
is almost closer to 1. This shows the ability of the model to
effectively classify benign and malicious websites.

Combining the merits of both URL and HTML features
results in effective identification of URLs with a lower false
positive rate and higher detection accuracy.

Manoj Kumar Prabakaran et al. / 1JECE, 13(1), 27-45, 2026

1 pppl— = =
% 0.8 7'(
[
206
£ 0.4
(5]
2
'_ 0.2

om

0 02 04 06 08 1

False positive rate

———TPR: TL-BERT+DNN (Red)
——-TPR: BERT+DNN (Green)
TPR: TL+DNN (Yellow)

Fig. 10 AuC-ROC curve of the experimented models

4.2.4. Phase 4- Light-Weightedness Evaluation of the
Proposed TL_BERT Model

In this phase, a special experiment has been conducted to
analyze the optimality and lightweightedness associated with
the proposed model. In order to evaluate the model, the
following metrics have been chosen, namely Training
time/epoch, Inference time/sample, memory usage, and
detection accuracy.

For performing a fair evaluation, the following similar
kinds of architectures have been derived that are slightly

modified versions of the proposed TL_BERT architecture.
The following are those modified phishing detection
architectures constructed for this experimentation:

a) VAE + BERTuas: In this configuration, instead of the TL-
adopted AE model, a pretrained VAE architecture is
employed to initialize the encoder, which is then
integrated with the BERTbase model. However, BERTpase
is utilized in the proposed model.

AE(w/o TL) + BERThase: A similar design to TL_BERT
except that both the encoder and decoder part of the AE
model is trained from scratch without the adoption of a
transfer learning mechanism

VAE + BERTag: This structure involves the
combination of Variational autoencoders and BERT jarge, @
special form of BERT architecture that produces 1024
embedding vectors.

AE (w/o TL) + BERT arge: In this case, BERT arge, along
with traditional autoencoders implemented without a TL
mechanism, is fused

b)

c)

d)

All of the above constructed models are evaluated against
the proposed TL_BERT architecture. In particular, DNN is
deputed as the classifier with a similar configuration as
TL_BERT for all the experimented models in this phase. The
core objective of this experimentation is to assess the
lightweightedness of the model, which shall be measured with
respect to training time and inference, as well as the optimality
that is validated using detection accuracy. Table 3 shows the
Runtime and resource efficiency comparison of TL_BERT
with the experimentally structurally modified phishing
detection framework.

Table 3. Runtime and resource efficiency comparison of TL_BERT framework

Training time/ Inference time/sample Accurac
Model variant Epoch - P Memory usage y
(milliseconds) (%)
(seconds)
VAE + BERTpase 65 24 1.1GB 98.72
AE(w/o TL) +
BERTouee 58 21 950 MB 98.31
VAE + BERT jarge 95 39 2.5GB 98.88
AE(w/o TL) +
BERTomee 78 33 2.3GB 98.42
Proposed TL_BERT 42 18 900 MB 99.08
model

As can be observed from Table 3, the proposed model
consumed the minimal training time duration of 42 seconds
and an inference time of 18 milliseconds, which is the most
optimal among all the experimented models.

Also, the amount of memory consumed by each architecture
significantly differed according to its structural complexities,
with vast amounts of memory being consumed by two
architectures that adopted BERT jrge, averaging around 2.4 GB.
The least amount of memory has been utilized by the model,

41

consuming 900MB respectively. With lower training time,
faster inference speed, and optimal memory usage, this model
exhibited a significant advantage for real-time deployment. In
addition to the lightweight nature of TL_BERT, TL_BERT
achieved the maximum detection accuracy of 99.08%
outperforming all the experimented variants.

This experimental analysis concludes that the proposed
model is both lightweight and optimal and is well-suited for
real-time deployment.

Manoj Kumar Prabakaran et al. / 1JECE, 13(1), 27-45, 2026

4.2.5. Phase 5 — Comparison of TL-BERT with Current Anti-
Phishing Solutions

In this phase, the proposed TL-BERT model has been
compared against the current state-of-the-art anti-phishing
approaches. In particular, unique anti-phishing models that
deploy representation learning techniques to identify
malicious URLs have been identified for this experimentation.
In fact, the proposed TL-BERT model incorporates a
representation learning technique in which both URL and
HTML features are automatically extracted, excluding the
process of manual feature engineering. Hence, it would be

more appropriate to compare the proposed model with those
approaches that deploy automatic feature extraction
mechanisms. Seven significant phishing detection solutions
proposed in the recent past have been considered for
comparative evaluation.

Table 4 demonstrates the details of those approaches
along with their performance analysis. The results projected in
Table 4 were in accordance with the evaluation values as
provided in the respective papers.

Table 4. Comparison of TL-BERT with current anti-phishing methods

State-of-the-art Phishing o o F1 score Accuracy
detection approaches Feature set Precision (%0) Recall (%) (%) (%)
PDRCNN URL 97.33 93.78 95.52 95.6
HTML Phish HTML 97 98 97 98
. URL and
WebPhish HTML 98 98 98 98
. URL and
PhishDet HTML 96.40 96.44 96.42 96.42
URL, HTML,
Web2Vec and 98.69 98.26 98.47 99.05
DOM Structure
URL and
MFPD HTML 99.41 98.57 99 98.88
URL and
Proposed TL_BERT model HTML 99.06 99.07 99.07 99.08

Precise Phishing Detection with Recurrent Convolutional
Neural Network (PDRCNN) [48] is an anti-phishing
technique that employs bi-directional LSTM and CNN, which
in particular rely only on the URL of a particular website.
Although it is a faster and lighter mechanism, it exhibits an
average recall value of 93.78%. HTML Phish [49] is a CNN-
based phishing webpage classification technique that relies
only on the HTML webpage content for classification.

Out of the seven research works, the following solutions,
WebPhish [12], Phish Det [15], and Multi-dimensional
Features driven by Deep learning (MFPD) [34], adopted both
URL and HTML features for phishing website detection. All
of those approaches employed different means to
automatically extract URL and HTML features in order to
identify malicious websites optimally. In particular, MFPD
outperforms all the other models, reaching a maximum
accuracy of 98.88% and a higher F1 score of 99%. This is
mainly because the model adopted multi-dimensional URL
and web page features that are both statistical and
automatically driven. The only limitation of MFPD is the
model’s reliance on manually crafted URL and HTML
statistical features, along with other extracted features.
Web2Vec [14] is a phishing website detection model that not
only focuses on URL and HTML features but also considers
the DOM structure of the webpage, which makes the model
quite expensive. The model is hybrid in nature, combining the

42

merits of CNN and bi-directional LSTM, which tends to
produce the highest accuracy among the experimented
models, reaching a value of 99.05%.

The proposed TL-BERT model achieves a maximum
accuracy of 99.08% with a notable F1 score. Compared to
other models, the proposed model is lightweight and less
computationally intensive. Notably, the model leverages the
training overhead associated with other models since only pre-
trained models for feature extraction have been incorporated.

4.3. Discussion

The performance of the TL_BERT framework in
comparison to the existing state-of-the-art solutions can be
attributed to its effective adoption of advanced transfer
learning and pre-trained transformer-based contextual
learning. Unlike the existing traditional machine learning
solutions that implement manual feature engineering, the
proposed model leverages a transfer learning adopted
autoencoder and a pre-trained BERT model to automatically
extract significant URL and HTML features of a phishing
website. In comparison to the modern deep learning based
solutions, namely CNN-LSTM, CNN-GRU, and other hybrid
frameworks, TL-BERT exhibits better detection outcomes in
terms of precision, recall, and accuracy metrices. The core
reason behind the stability of TL_BERT lies in the underlying
structure of the proposed framework, which comprises two

Manoj Kumar Prabakaran et al. / 1JECE, 13(1), 27-45, 2026

lightweight infrastructures: a transfer learning-adopted
lightweight autoencoder model and a base version of a pre-
trained BERT model. This makes the model lightweight and
optimal, making it less prone to structural complexities and
huge training time overhead. This highlights the dominance of
the proposed TL_BERT with respect to the existing anti-
phishing solutions, making it much more suitable for real-time
deployment in an attack-prone environment.

5. Conclusion

The core objective is to build a lightweight, optimal
model that accurately detects malicious websites with minimal
false alarm rates. In order to meet the fundamental objective,
a transfer learning enabled autoencoder model has been
constructed for the role of automatic URL extraction. The
choice of adopting the TL mechanism is to minimize the
complexity associated with training the AE model for URL
feature extraction. Since the weight parameters of a pre-
trained VAE architecture were transferred to the proposed
traditional AE model, only the decoder part will undergo
training. Hence, the complexity associated with training the
AE for feature extraction is eliminated, leading to a
lightweight infrastructure. Also, for the role of extracting
HTML features from the website, a transformer-based BERT
model is adopted that generates fixed-size context-aware text
embedding vectors through a post-preprocessing mechanism.
However, to reduce the complexity associated with this
process, BERTgase, a special variant of the BERT
architecture, is adopted, which is a lightweight architecture

References

capable of generating 512 vectors. The choice of BERTgase
instead of a BERTarce architecture is to reduce the overall
structural complexity of the proposed framework. Both the
generated URL and HTML feature vectors were concatenated
and given to the output layer for classification. This technique
of adopting a based AE model and a base variant of BERT
architecture helps us to ensure that TL-BERT remains
lightweight while maintaining high detection accuracy. The
proposed experimental results show that the TL-BERT
framework achieved a maximum accuracy of 99.08% with a
1.01% false rate. The training time associated with both URL
and HTML feature extraction modules was significantly
reduced due to the use of transfer learning and pre-trained
models, making the model faster and lighter.

Additionally, the core objective of this research is to build
browser-based add-on software, in which the proposed TL-
BERT model will be deployed for real-time detection of
phishing websites. Once deployed, the model’s ability shall be
periodically analyzed by setting up a feedback loop that logs
the details of misclassified results. This mechanism enables us
to continuously monitor the model’s performance after
deployment, facilitating further training and fine-tuning.

Acknowledgments

The authors would like to thank Mepco Schlenk
Engineering College for their valuable support and
encouragement throughout this research work.

(1]

[2

(3]

(4]

(5]

(6]

(71

(8]

[]

[10]

Ike Vayansky, and Sathish Kumar, “Phishing — Challenges and Solutions,” Computer Fraud & Security, vol. 2018, no. 1, pp. 15-20, 2018.
[CrossRef] [Google Scholar] [Publisher Link]

Janos Szurdi et al., “The Long “Taile” of Typosquatting Domain Names,” Proceedings of the 23 USENIX Security Symposium, San
Diego, CA, pp. 191-206, 2014. [Google Scholar] [Publisher Link]

Anti-Phishing Working Group, “Phishing Activity Trends Report, 3 Quarter 2024,” Unifying the Global Response to Cybercrime, pp.
1-11, 2024. [Publisher Link]

Tara Baniya, Dipesh Gautam, and Yoohwan Kim, “Safeguarding Web Surfing with URL Blacklisting,” 2015 12™ International
Conference on Information Technology - New Generations, Las Vegas, NV, USA, pp. 157-162, 2015. [CrossRef] [Google Scholar]
[Publisher Link]

Steve Sheng et al., “An Empirical Analysis of Phishing Blacklists,” Proceedings of the 6™ Conference on Email and Anti-spam (CEAS),
Mountain View, California USA, pp. 1-10, 2009. [CrossRef] [Google Scholar] [Publisher Link]

Ammar Odeh, Ismail Keshta, and Eman Abdelfattah, “Machine Learning Techniques for Detection of Website Phishing: A Review for
Promises and Challenges,” 2021 IEEE 11" Annual Computing and Communication Workshop and Conference (CCWC), NV, USA, pp.
813-818, 2021. [CrossRef] [Google Scholar] [Publisher Link]

Shamshair Ali et al., “Comparative Evaluation of AI-Based Techniques for Zero-Day Attacks Detection,” Electronics, vol. 11, no. 23, pp.
1-25, 2022. [CrossRef] [Google Scholar] [Publisher Link]

Manu J. Pillai et al., “Evasion Attacks and Defense Mechanisms for Machine Learning-Based Web Phishing Classifiers,” IEEE Access,
vol. 12, pp. 19375-19387, 2024. [CrossRef] [Google Scholar] [Publisher Link]

Naya Nagy et al., “Phishing URLs Detection Using Sequential and Parallel ML Techniques: Comparative Analysis,” Sensors, vol. 23, no.
7, pp. 1-17, 2023. [CrossRef] [Google Scholar] [Publisher Link]

Abdul Karim et al., “Phishing Detection System through Hybrid Machine Learning Based on URL,” IEEE Access, vol. 11, pp. 36805-
36822, 2023. [CrossRef] [Google Scholar] [Publisher Link]

43

https://doi.org/10.1016/S1361-3723(18)30007-1
https://doi.org/10.1016/S1361-3723(18)30007-1
https://www.sciencedirect.com/science/article/abs/pii/S1361372318300071
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+long+%E2%80%98Taile%E2%80%99+of+typosquatting+domain+names&btnG=
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/szurdi
https://apwg.org/apwg-q3-report-phishers-target-victims-in-new-intrusive-and-menacing-ways
https://doi.org/10.1109/ITNG.2015.30
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Safeguarding+web+surfing+with+URL+blacklisting&btnG=
https://ieeexplore.ieee.org/abstract/document/7113465
https://doi.org/10.1184/R1/6469805
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%09S.+Sheng+An+empirical+analysis+of+phishing+blacklists&btnG=
https://kilthub.cmu.edu/articles/journal_contribution/An_Empirical_Analysis_of_Phishing_Blacklists/6469805?file=11898359
https://doi.org/10.1109/CCWC51732.2021.9375997
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine+learning+techniques+for+detection+of+website+phishing%3A+A+review+for+promises+and+challenges&btnG=
https://ieeexplore.ieee.org/abstract/document/9375997
https://doi.org/10.3390/electronics11233934
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Comparative+evaluation+of+AI-based+techniques+for+zero-day+attacks+detection&btnG=
https://www.mdpi.com/2079-9292/11/23/3934
https://doi.org/10.1109/ACCESS.2023.3342840
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Evasion+attacks+and+defense+mechanisms+for+machine+learning-based+web+phishing+classifiers&btnG=
https://ieeexplore.ieee.org/abstract/document/10359515
https://doi.org/10.3390/s23073467
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Phishing+URLs+detection+using+sequential+and+parallel+ML+techniques%3A+comparative+analysis&btnG=
https://www.mdpi.com/1424-8220/23/7/3467
https://doi.org/10.1109/ACCESS.2023.3252366
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5BA.+Karim+Phishing+detection+system+through+hybrid+machine+learning+based+on+URL&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5BA.+Karim+Phishing+detection+system+through+hybrid+machine+learning+based+on+URL&btnG=

Manoj Kumar Prabakaran et al. / 1JECE, 13(1), 27-45, 2026

[11] Alsharif Abuadbba et al., “Towards Web Phishing Detection Limitations and Mitigation,” arXiv Preprint, pp. 1-12, 2022. [CrossRef]
[Google Scholar] [Publisher Link]

[12] Subhash Ariyadasa, Shantha Fernando, and Subha Fernando, “Combining Long-Term Recurrent Convolutional and Graph Convolutional
Networks to Detect Phishing Sites Using URL and HTML,” IEEE Access, vol. 10, pp. 82355-82375, 2022. [CrossRef] [Google Scholar]
[Publisher Link]

[13] Chenguang Wang, and Yuanyuan Chen, “TCURL: Exploring Hybrid Transformer and Convolutional Neural Network on Phishing URL
Detection,” Knowledge-Based Systems, vol. 258, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[14] Subhash Ariyadasa, Subha Fernando, and Shantha Fernando, “Detecting Phishing Attacks Using a Combined Model of LSTM and CNN,”
International Journal of Advanced and Applied Sciences, vol. 7, no. 7, pp. 56-67, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[15] Chidimma Opara, Yingke Chen, and Bo Wei, “Look Before You Leap: Detecting Phishing Web Pages by Exploiting Raw URL and
HTML Characteristics,” Expert Systems with Applications, vol. 236, pp. 1-13, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[16] Stay safe on eBay, eBay. [Online]. Available: https://pages.ebay.com/securitycenter/

[17] Netcraft Anti-Phishing Toolbar, Netcraft. [Online]. Available: https://toolbar.netcraft.com

[18] WOT: Web of Trust — Website Reputation and Security, Web of Trust. [Online]. Available: https://www.mywot. com

[19] Google Safe Browsing: Protecting Users from Phishing and Malware, Google Security Blog. [Online]. Available:
https://safebrowsing.google.com

[20] McAfee SiteAdvisor: Website Safety Ratings and Security Analysis, McAfee Security. [Online]. Available: https://www.mcafee.com/en-
in/safe-browser/mcafee-webadvisor.html

[21] Microsoft Defender SmartScreen: Protection against Phishing and Malware, Microsoft Security. [Online]. Available:
https://learn.microsoft.com/en-us/windows/security/operating-system-security/virus-and-threat-protection/microsoft-defender-
smartscreen/

[22] Forcepoint ThreatSeeker, Forcepoint. [Online]. Available: https://www.forcepoint.com/product/feature/threatseeker

[23] Mahmoud Khonji, Youssef Iragi, and Andrew Jones, “Phishing Detection: A Literature Survey,” IEEE Communications Surveys &
Tutorials, vol. 15, no. 4, pp. 2091-2121, 2013. [CrossRef] [Google Scholar] [Publisher Link]

[24] Lizhen Tang, and Qusay H. Mahmoud, “A Survey of Machine Learning-Based Solutions for Phishing Website Detection,” Machine
Learning and Knowledge Extraction, vol. 3, no. 3, pp. 672-694, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[25] Doyen Sahoo, Chenghao Liu, and Steven C.H. Hoi, “Malicious URL Detection using Machine Learning: A Survey,” arXiv Preprint, pp.
1-37, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[26] Brij B. Gupta et al., “A Novel Approach for Phishing URLs Detection Using Lexical Based Machine Learning in a Real-Time
Environment,” Computer Communications, vol. 175, pp. 47-57, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[27] Sajjad Jalil, Muhammad Usman, and Alvis Fong, “Highly Accurate Phishing URL Detection Based on Machine Learning,” Journal of
Ambient Intelligence and Humanized Computing, vol. 14, no. 7, pp. 9233-9251, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[28] Ankit Kumar Jain, and B.B. Gupta, “A Machine Learning Based Approach for Phishing Detection Using Hyperlinks Information,” Journal
of Ambient Intelligence and Humanized Computing, vol. 10, pp. 2015-2028, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[29] M.A. Adebowale et al., “Intelligent Web-phishing Detection and Protection Scheme using Integrated Features of Images, Frames and
Text, Frames and Text,” Expert Systems with Applications, vol. 115, pp. 300-313, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[30] Rizka Widyarini Purwanto et al., “PhishSim: Aiding Phishing Website Detection with a Feature-Free Tool,” IEEE Transactions on
Information Forensics and Security, vol. 17, pp. 1497-1512, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[31] Sultan Asiri et al., “A Survey of Intelligent Detection Designs of HTML URL Phishing Attacks,” IEEE Access, vol. 11, pp. 6421-6443,
2023. [CrossRef] [Google Scholar] [Publisher Link]

[32] Huaping Yuan et al., “Detecting Phishing Websites and Targets Based on URLs and Webpage Links,” 2018 24™ International Conference
on Pattern Recognition (ICPR), Beijing, China, pp. 3669-3674, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[33] Ali Aljofey et al., “An Effective Detection Approach for Phishing Websites Using URL and HTML Features,” Scientific Reports, vol. 12,
pp. 1-19, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[34] Peng Yang, Guangzhen Zhao, and Peng Zeng, “Phishing Website Detection Based on Multidimensional Features Driven by Deep
Learning,” IEEE Access, vol. 7, pp. 15196-15209, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[35] Wenhao Li et al., “A State-0f-the-Art Review on Phishing Website Detection Techniques,” IEEE Access, vol. 12, pp. 187976-188012,
2024. [CrossRef] [Google Scholar] [Publisher Link]

[36] Xi Xiao et al., “CNN-MHSA: A Convolutional Neural Network and Multi-Head Self-Attention Combined Approach for Detecting
Phishing Websites,” Neural Networks, vol. 125, pp. 303-312, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[37] Erzhou Zhu et al., “CCBLA: A Lightweight Phishing Detection Model Based on CNN, BiLSTM, and Attention Mechanism,” Cognitive
Computation, vol. 15, pp. 1320-1333, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[38] Pranav Maneriker et al., “URLTran: Improving Phishing URL Detection Using Transformers,” MILCOM 2021 - 2021 IEEE Military
Communications Conference (MILCOM), San Diego, CA, USA, pp. 197-204, 2021. [CrossRef] [Google Scholar] [Publisher Link]

44

https://doi.org/10.48550/arXiv.2204.00985
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Towards+Web+Phishing+Detection+Limitations+and+Mitigation&btnG=
https://arxiv.org/abs/2204.00985
https://doi.org/10.1109/ACCESS.2022.3196018
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Combining+Long-Term+Recurrent+Convolutional+and+Graph+Convolutional+Networks+to+Detect+Phishing+Sites+Using+URL+and+HTML&btnG=
https://ieeexplore.ieee.org/abstract/document/9848472
https://ieeexplore.ieee.org/abstract/document/9848472
https://doi.org/10.1016/j.knosys.2022.109955
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=TCURL%3A+Exploring+Hybrid+Transformer+and+Convolutional+Neural+Network+on+Phishing+URL+Detection&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0950705122010486
https://doi.org/10.21833/ijaas.2020.07.007
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Detecting+Phishing+Attacks+Using+a+Combined+Model+of+LSTM+and+CNN&btnG=
https://www.science-gate.com/IJAAS/2020/V7I7/1021833ijaas202007007.html
https://doi.org/10.1016/j.eswa.2023.121183
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Look+Before+You+Leap%3A+Detecting+Phishing+Web+Pages+by+Exploiting+Raw+URL+and+HTML+Characteristics&btnG=
https://www.sciencedirect.com/science/article/pii/S0957417423016858
https://pages.ebay.com/securitycenter/
https://safebrowsing.google.com/
https://doi.org/10.1109/SURV.2013.032213.00009
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Phishing+Detection%3A+A+Literature+Survey&btnG=
https://ieeexplore.ieee.org/abstract/document/6497928
https://doi.org/10.3390/make3030034
https://scholar.google.com/scholar?q=A+Survey+of+Machine+Learning-Based+Solutions+for+Phishing+Website+Detection&hl=en&as_sdt=0,5
https://www.mdpi.com/2504-4990/3/3/34
https://www.mdpi.com/2504-4990/3/3/34
https://doi.org/10.48550/arXiv.1701.07179
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Malicious+URL+Detection+Using+Machine+Learning%3A+A+Survey&btnG=
https://arxiv.org/abs/1701.07179
https://doi.org/10.1016/j.comcom.2021.04.023
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Novel+Approach+for+Phishing+URLs+Detection+Using+Lexical+Based+Machine+Learning+in+a+Real-Time+Environment&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0140366421001675
https://doi.org/10.1007/s12652-022-04426-3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Highly+Accurate+Phishing+URL+Detection+Based+on+Machine+Learning&btnG=
https://link.springer.com/article/10.1007/s12652-022-04426-3
https://doi.org/10.1007/s12652-018-0798-z
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Machine+Learning+Based+Approach+for+Phishing+Detection+Using+Hyperlinks+Information&btnG=
https://link.springer.com/article/10.1007/s12652-018-0798-z
https://doi.org/10.1016/j.eswa.2018.07.067
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Intelligent+Web-Phishing+Detection+and+Protection+Scheme+Using+Integrated+Features+of+Images%2C+Frames+and+Text&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0957417418304925
https://doi.org/10.1109/TIFS.2022.3164212
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=PhishSim%3A+Aiding+Phishing+Website+Detection+with+a+Feature-Free+Tool&btnG=
https://ieeexplore.ieee.org/abstract/document/9745933
https://doi.org/10.1109/ACCESS.2023.3237798
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Survey+of+Intelligent+Detection+Designs+of+HTML+URL+Phishing+Attacks&btnG=
https://ieeexplore.ieee.org/abstract/document/10019269
https://doi.org/10.1109/ICPR.2018.8546262
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Detecting+Phishing+Websites+and+Targets+Based+on+URLs+and+Webpage+Links&btnG=
https://ieeexplore.ieee.org/abstract/document/8546262
https://doi.org/10.1038/s41598-022-10841-5
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Effective+Detection+Approach+for+Phishing+Websites+Using+URL+and+HTML+Features&btnG=
https://www.nature.com/articles/s41598-022-10841-5
https://doi.org/10.1109/ACCESS.2019.2892066
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=P.+Yang%2C+G.+Zhao%2C+and+P.+Zeng+Phishing+Website+Detection+Based+on+Multidimensional+Features+Driven+by+Deep+Learning&btnG=
https://ieeexplore.ieee.org/abstract/document/8610190
https://doi.org/10.1109/ACCESS.2024.3514972
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+State-of-the-Art+Review+on+Phishing+Website+Detection+Techniques&btnG=
https://ieeexplore.ieee.org/abstract/document/10788671
https://doi.org/10.1016/j.neunet.2020.02.013
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=CNN%E2%80%93MHSA%3A+A+Convolutional+Neural+Network+and+Multi-Head+Self-Attention+Combined+Approach+for+Detecting+Phishing+Websites&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0893608020300587
https://doi.org/10.1007/s12559-022-10024-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%09E.+Zhu+CCBLA%3A+A+Lightweight+Phishing+Detection+Model+Based+on+CNN%2C+BiLSTM%2C+and+Attention+Mechanism&btnG=
https://link.springer.com/article/10.1007/s12559-022-10024-4
https://doi.org/10.1109/MILCOM52596.2021.9653028
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=URLTran%3A+Improving+Phishing+URL+Detection+Using+Transformers&btnG=
https://ieeexplore.ieee.org/abstract/document/9653028

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

Manoj Kumar Prabakaran et al. / 1JECE, 13(1), 27-45, 2026

Katherine Haynes, Hossein Shirazi, and Indrakshi Ray, “Lightweight URL-Based Phishing Detection Using Natural Language Processing
Transformers for Mobile Devices,” Procedia Computer Science, vol. 191, pp. 127-134, 2021. [CrossRef] [Google Scholar] [Publisher
Link]

Nguyet Quang Do et al., “An Integrated Model Based on Deep Learning Classifiers and Pre-Trained Transformer for Phishing URL
Detection,” Future Generation Computer Systems, vol. 161, pp. 269-285, 2024. [CrossRef] [Google Scholar] [Publisher Link]

Mayu Sakurada, and Takehisa Yairi, “Anomaly Detection Using Autoencoders with Nonlinear Dimensionality Reduction,” Proceedings
of the MLSDA 2014 2" Workshop on Machine Learning for Sensory Data Analysis, Gold Coast Australia QLD Australia, pp. 4-11, 2014,
[CrossRef] [Google Scholar] [Publisher Link]

T. Berners-Lee, L. Masinter, and M. McCahill, “Uniform Resource Locators (URL),” IETF RFC 1738, pp. 1-25, 1994. [CrossRef] [Google
Scholar] [Publisher Link]

Allen Chieng Hoon Choong, and Nung Kion Lee, “Evaluation of Convolutionary Neural Networks Modeling of DNA Sequences Using
Ordinal Versus One-Hot Encoding Method,” 2017 International Conference on Computer and Drone Applications (IConDA), Kuching,
Malaysia, pp. 60-65, 2017. [CrossRef] [Google Scholar] [Publisher Link]

Dor Bank, Noam Koenigstein, and Raja Giryes, Autoencoders, Machine Learning for Data Science Handbook: Data Mining and
Knowledge Discovery Handbook, pp. 353-374, 2023. [CrossRef] [Google Scholar] [Publisher Link]

Shuteng Niu et al, “A Decade Survey of Transfer Learning (2010-2020),” IEEE Transactions on Artificial Intelligence, vol. 1, no. 2, pp.
151-166, 2021. [CrossRef] [Google Scholar] [Publisher Link]

Jacob Devlin et al., “BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding,” Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-
HLT), Minneapolis, Minnesota, pp. 4171-4186, 2019. [CrossRef] [Google Scholar] [Publisher Link]

Mustafa Nabeel Salim, and Ban Shareef Mustafa, “A Survey on Word Representation in Natural Language Processing,” AIP Conference
Proceedings: 1% Samarra International Conference for Pure And Applied Sciences, Samarra, Irag, vol. 2394, no. 1, 2022. [CrossRef]
[Google Scholar] [Publisher Link]

Weiping Wang et al., “PDRCNN: Precise Phishing Detection with Recurrent Convolutional Neural Networks,” Security and
Communication Networks, vol. 2019, pp. 1-15, 2019. [CrossRef] [Google Scholar] [Publisher Link]

Chidimma Opara, Bo Wei, and Yingke Chen, “HTMLPhish: Enabling Phishing Web Page Detection by Applying Deep Learning
Techniques on HTML Analysis,” 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, pp. 1-8, 2020.
[CrossRef] [Google Scholar] [Publisher Link]

45

https://doi.org/10.1016/j.procs.2021.07.040
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Lightweight+URL-Based+Phishing+Detection+Using+Natural+Language+Processing+Transformers+for+Mobile+Devices&btnG=
https://www.sciencedirect.com/science/article/pii/S1877050921014368
https://www.sciencedirect.com/science/article/pii/S1877050921014368
https://doi.org/10.1016/j.future.2024.06.031
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Integrated+Model+Based+on+Deep+Learning+Classifiers+and+Pre-Trained+Transformer+for+Phishing+URL+Detection&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167739X24003315
https://doi.org/10.1145/2689746.2689747
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Anomaly+Detection+Using+Autoencoders+with+Nonlinear+Dimensionality+Reduction&btnG=
https://dl.acm.org/doi/abs/10.1145/2689746.2689747
https://doi.org/10.17487/RFC1738
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Uniform+Resource+Locators+%28URL%29&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Uniform+Resource+Locators+%28URL%29&btnG=
https://www.rfc-editor.org/info/rfc1738
https://doi.org/10.1109/ICONDA.2017.8270400
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Evaluation+of+Convolutionary+Neural+Networks+Modeling+of+DNA+Sequences+Using+Ordinal+Versus+One-Hot+Encoding+Method&btnG=
https://ieeexplore.ieee.org/abstract/document/8270400
https://doi.org/10.1007/978-3-031-24628-9_16
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%09D.+Bank%2C+N.+Koenigstein%2C+and+R.+Giryes+Autoencoders&btnG=
https://link.springer.com/chapter/10.1007/978-3-031-24628-9_16
https://doi.org/10.1109/TAI.2021.3054609
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Decade+Survey+of+Transfer+Learning+%282010%E2%80%932020%29&btnG=
https://ieeexplore.ieee.org/abstract/document/9336290
https://doi.org/10.18653/v1/N19-1423
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%09J.+Devlin%2C+M.+W.+Chang%2C+K.+Lee%2C+and+K.+Toutanova+BERT%3A+Pre-Training+of+Deep+Bidirectional+Transformers+for+Language+Understanding&btnG=
https://aclanthology.org/N19-1423/
https://doi.org/10.1063/5.0121147
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Survey+on+Word+Representation+in+Natural+Language+Processing&btnG=
https://pubs.aip.org/aip/acp/article-abstract/2394/1/050006/2821770/A-survey-on-word-representation-in-natural
https://doi.org/10.1155/2019/2595794
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=PDRCNN%3A+Precise+Phishing+Detection+with+Recurrent+Convolutional+Neural+Networks&btnG=
https://onlinelibrary.wiley.com/doi/full/10.1155/2019/2595794
https://doi.org/10.1109/IJCNN48605.2020.9207707
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=HTMLPhish%3A+Enabling+Phishing+Web+Page+Detection+by+Applying+Deep+Learning+Techniques+on+HTML+Analysis&btnG=
https://ieeexplore.ieee.org/abstract/document/9207707

