
SSRG International Journal of Electronics and Communication Engineering Volume 13 Issue 1, 27-45, January 2026

ISSN: 2348-8549/ https://doi.org/10.14445/23488549/IJECE-V13I1P103 © 2026 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

TL-BERT: An Anti-Phishing Model Based on Transfer

Learning and Transformer Mechanisms for Protective

Social Networking

Manoj Kumar Prabakaran1, Abinaya Devi Chandrasekar2, Santhi Selvaraj3, Abinaya Pandiarajan4

1Department of Artificial Intelligence and Data Science, Mepco Schlenk Engineering College

Sivakasi, Virudhunagar, Tamil Nadu, India.
2,3,4Department of Computer Science and Engineering, Mepco Schlenk Engineering College

Sivakasi, Virudhunagar, Tamil Nadu, India.

1Corresponding Author : manojkumarp@mepcoeng.ac.in

Received: 03 November 2025 Revised: 05 December 2025 Accepted: 04 January 2026 Published: 14 January 2026

Abstract - Cybercrimes are growing exponentially in the digital era, and hackers continue to devise sophisticated cyber threats

to gain unauthorized access. Among them, phishing remains one of the most prevalent and deceptive techniques used to exploit

unsuspecting users. Although various preventive measures have been proposed by researchers in the past few decades, phishers

are consistently adopting innovative strategies by deploying different forms of phishing URLs and webpage contents that are

highly complex to detect in a real-time scenario. To address this issue, this work proposes TL_BERT: An anti-phishing model

that integrates Transfer Learning (TL) with the Bidirectional Encoder Representations from Transformers (BERT) architecture.

The model employs TL-adapted Autoencoders for extracting URL-based features and applies the BERT model to capture HTML-

based textual features of a website. Both features are concatenated and classified using a Deep neural Network Model.

Experiments were conducted on the benchmark dataset ISCXURL2016 dataset, which contains 54300 URL samples. The results

indicate that TL_BERT attains a detection accuracy of 99.08% with a false positive rate of 1.01%. The optimized selection of

lightweight architectures makes the proposed model a suitable entity for real-time deployment.

Keywords - Bidirectional Encoder Representations from Transformers, Hypertext Markup Language, Phishing detection,

Transfer Learning, Uniform Resource Locator.

1. Introduction
 Phishing is a type of cyber-attack in which hackers

develop illegitimate websites with the malicious intent of

luring internet users into providing their valuable digital

assets. In general, Uniform Resource Locators (URLs) of

those websites are circulated through email across the internet

society. A naive user who might not be able to discriminate

between a real and fake website might fall into the trap of

entering their private credentials, which might result in

substantial economic and personal loss [1]. Over the years,

hackers have come up with advanced strategies, such as

domain name typo squatting or cybersquatting, in which the

URL being crafted might look almost as close as possible to a

real-world legitimate URL of a famous entity [2]. As per the

report generated by Anti-Phishing Working Group (APWG),

an international consortium that collects phishing-related

fraudulent information, around 9,32,923 phishing attacks have

been observed during the third quarter of 2024 alone. The

most frequently targeted sector seems to be social media

platforms, contributing 30.5% of all kinds of phishing attacks

[3]. Initially, a few large-scale organizations, such as eBay,

adopted the idea of blacklisting to mitigate phishing attacks,

in which those sites that were identified as unsafe by internet

users were recorded and displayed for safety purposes as

blacklisted websites [4]. However, since the number of

phishing URLs is growing at a rapid pace and phishers are

generating a dynamic set of phishing websites, it would be

practically impossible to detect the majority of the phishing

websites using a blacklist due to its static nature [5].

 In order to combat the dynamic nature of phishing URLs,

researchers in the recent past concentrated on deploying

Machine Learning (ML) models to detect the nature of real-

world websites [6]. For this purpose, ML models were trained

and tested using benchmark datasets that comprise a large

number of legitimate and phishing URLs. In this way, models

get to understand the significant nature of URLs instead of just

verifying the existence of a phishing URL in the database, as

in the case of blacklisting. This technique overcomes the

problem of zero-day attacks since ML models understand the

http://creativecommons.org/licenses/by-nc-nd/4.0/

Manoj Kumar Prabakaran et al. / IJECE, 13(1), 27-45, 2026

28

structure of URLs based on their statistical, lexical, and

domain-based features [7]. Extensive research was carried out

in the recent past to identify the optimal set of features in order

to reduce the computational overhead. Although state-of-the-

art anti-phishing frameworks based on ML algorithms [8-10]

have been proposed by researchers in the recent era, there are

few vulnerabilities associated with ML-based phishing

website detection, namely a) Reliance on third-party

assistance for website-based feature extraction, b) Static

features extracted might not always reflect evolving real-

world phishing URLs since the nature of the URLs is changing

significantly. c) ML-based models are not suitable for massive

datasets comprising millions of website URLs [11].

 Hence, in order to overcome the issues prevailing in the

existing ML-based solutions, researchers in the recent past

incorporated a representation learning mechanism for URL

feature extraction instead of manual feature engineering [12-

15]. Adoption of an illustration learning mechanism for

feature extraction using DL based approaches has

significantly overcome the problems associated with manual

feature extraction.

 However, most of the research works incorporating

representation learning mechanisms have adopted only URL-

based feature extraction, and not many such works have been

conducted considering the features relevant to the HTML

contents of a webpage. In order to construct an optimal

phishing detection framework, both the URL and HTML

content of a website shall be taken into consideration since

they might better reveal the nature of the website content.

 Based on an analysis of recent literature, the following

key research gaps are identified in existing anti-phishing

methodologies:

a) Existing machine learning based phishing detection

solutions rely on manual feature engineering techniques

to extract intrinsic URL and HTML characteristics.

However, this task is tedious since it relies significantly

on third-party engineering experts for crafting webpage

features. Also, the handcrafted features do not reflect the

dynamic nature of the real-world phishing webpage.

b) Modern deep learning-based phishing detection solutions

that incorporate representation learning mechanisms

often adopt advanced Neural Network architectures that

automatically extract intrinsic URL and HTML features.

Although this eliminates the reliance on third-party

assistance, the features obtained using such techniques

cannot be inferred, and there is a considerable structural

complexity overhead with respect to the deployed Neural

Network architecture.

c) Most of the existing Deep Learning based anti-phishing

solutions either focus on URL or HTML content of the

webpage. Not many dedicated research solutions have

been proposed that concentrate on both the URL and

HTML content of the webpage for identifying the

authenticity of the webpage.

 The above-identified research gaps highlight the key

limitations associated with the existing anti-phishing solutions

and underline the significance of an optimal phishing

detection framework that shall potentially detect phishing

websites in a real-time environment.

 Hence, this work focuses on building a lightweight and

optimal phishing website detection framework that would

consider the inherent features of both URL and HTML content

of a website into account. The proposed framework, termed

“TL-BERT,” is constructed by combining the merits of two

advanced AI techniques: Transfer Learning (TL) and pre-

trained transformers. Specifically, a lightweight TL-Enabled

AE (TL_AE) model that receives the trained weight

parameters of a pre-trained VAE architecture is utilized for

URL feature extraction, and a base form of BERT model

referred to as BERTBASE architecture is adopted for HTML

feature extraction. Both the URL and HTML feature vectors

obtained from TL_AE and BERT models were then

concatenated and fed as input to the DNN for training and

evaluation.

 The proposed model has been experimented with a

benchmark dataset that comprises both legitimate and

phishing URL samples that widely represent various forms of

real-world URL samples. The experimental results suggest

that the proposed model possesses the ability to detect real-

world phishing URL samples accurately. TL_BERT

significantly eliminates the overhead associated with the

existing manual feature engineering process, as well as

considers both the URL and HTML features of a website for

phishing detection. Adoption of a transfer learning mechanism

and pre-trained transformers for representation learning

makes the model lightweight and more suitable for real-time

deployment.

 The following are the novel contributions of the proposed

TL_BERT framework:

a) Adoption of an advanced transfer learning mechanism for

automatic URL feature extraction. In particular, a

dedicated autoencoder model has been utilized to capture

high-level latent space representation of the URL features

effectively.

b) Preprocessing intrinsic HTML text content by the

adoption of a unique HTML preprocessing mechanism

that involves web scraping, cleaning, splitting, and

organizing the content.

c) Adoption of pre-trained BERT transformer architecture to

automatically extract context-aware text embedding

vectors. To optimize the overall framework, a lightweight

BERTBASE model has been utilized.

d) Implementing a unique concatenation layer in order to

combine the extracted URL and HTML features

Manoj Kumar Prabakaran et al. / IJECE, 13(1), 27-45, 2026

29

 In summary, the proposed framework examines both

URL and HTML features of a website for the detection of

phishing websites. The model is constructed with the intention

of deploying it as a browser add-on application, and hence,

suitable measures have been taken to keep it lightweight and

at the same time optimal for real-time deployment.

 The rest of the chapters are organized as follows: Section

2 explains the literature survey conducted with respect to

recent state-of-the-art anti-phishing solutions proposed by

researchers across the globe. Section 3 details the proposed

TL-BERT framework with the materials and methods adopted

to construct the framework. Section 4 provides a detailed

overview of the experimentations conducted and the results

observed with respect to various metrics. Section 5 provides

the conclusion of the entire research work being carried out.

2. Related Works
 Phishing website detection has been one of the prominent

research categories due to the extensive growth of social

engineering attacks and the ever-growing, complicated attack

mechanisms. Phishing attacks allow hackers to easily trap

internet users into entering a fake website and gaining

unauthorized access to their valuable assets. Also, the

deployment of phishing attacks shall be easily done through

the propagation of fake URLs via email and SMS, which shall

reach millions of users within a few minutes. Over the years,

the growth of phishing attacks has doubled significantly,

resulting in substantial economic and personal losses. Hence,

to mitigate the impact of phishing attacks, a wide array of anti-

phishing solutions has been proposed by researchers that shall

be broadly categorized based on their detection and learning

mechanisms.

Initially, researchers incorporated a static blacklisting

based phishing detection mechanism that allows users to

report a webpage based on its authenticity. This technique was

succeeded by Machine learning based solutions that learns

discriminative URL and HTML patterns of a website to detect

the nature of the website. Most recently, advanced Deep

Learning-based architectures have gained significance due to

their ability to automatically extract intrinsic URL and HTML

features without manual feature engineering.

 This section provides a detailed review of the existing

anti-phishing solutions, categorized into blacklisting, machine

learning-based approaches, and representation learning

oriented deep learning-based mechanisms.The strengths and

limitations of each anti-phishing technique are thoroughly

discussed to showcase the significant research gaps addressed

by the proposed framework.

2.1. Phishing Website Detection using Blacklisting

 This section discusses the various anti-phishing

mechanisms proposed by researchers in the recent past in

order to overcome the impact of phishing attacks in real-world

scenarios. One such earlier attempt made was the adoption of

the blacklisting technique, in which a list of malicious website

URLs was collected and maintained through the usage of

various tools and techniques, namely automated web crawlers,

user reports, security research, etc. Those blacklisted URLs

were frequently updated and acted as a fundamental source for

phishing attack detection [4].

 Due to the simplicity of the blacklisting mechanism,

many organizations deployed anti-phishing applications based

on the idea of blacklisting, in which the users of those

applications are warned when they try to access a website that

appears in the blacklisted database. In particular, blacklisting

was implemented in two unique ways: a) Server-side

Blacklisting and b) Client-side Blacklisting. In the case of

server-side blacklisting, the inherent features of suspicious

URLs were kept in the server. Hence, the client shall send a

query to the server in order to identify the malicious nature of

a website. Some of the popular existing server-side

blacklisting tools are as follows: i) eBay toolbar [16] ii)

Netcraft Toolbar [17] iii) Web of Trust (WOT) [18], iv)

TrustBar.

 Similarly, client-side blacklisting was adopted by top

MNC companies such as Google, Microsoft, etc., in which the

client keeps the list of malicious websites in its local database

instead of maintaining it on the server. Some of the popular

client-side blacklisting tools are as follows: i) Google Safe

Browsing [19], ii) McAfee Site Advisor [20], iii) Microsoft

Smart Screen Service [21], iv) Websense Threat Seeker

Network [22],

 These toolbars provide security against malicious

phishing websites by verifying the requested URL with the set

of blacklisted URLs available in the local database as well as

on the server. Although blacklisting provides assistance in

effectively detecting phishing websites, it is pretty impractical

to maintain an updated list due to the growing number of new

phishing websites generated by phishers. In particular, it took

12 hours for 47% to 83% of phishing URLs to appear on the

phishing websites [23]. It is a significant delay since nearly

63% of the phishing websites might victimize many users

within the initial couple of hours. Henceforth, blacklisting is

always susceptible to zero-day attacks, which is considered to

be a significant drawback.

2.2. Phishing Website Detection using Machine Learning

Algorithms
 Hence, in order to mitigate the drawbacks associated with

blacklisting techniques, various researchers concentrated on

deploying Machine Learning (ML) models for phishing

website detection. In contrast to the blacklisting technique,

ML-based approaches incorporated both URL and HTML-

based feature extraction mechanisms that shall further be used

to train and evaluate a model to classify the nature of real-

world websites [24] effectively.

Manoj Kumar Prabakaran et al. / IJECE, 13(1), 27-45, 2026

30

 In relevance to phishing website detection based on URL

features, many research works were carried out during the past

decade that focused on two main components of a traditional

URL, namely Lexical/Statistical and Domain-based feature

sets [25].

 One such significant work was proposed by Gupta et al

[26] in which the ISCXURL-2016 dataset was adopted for

experimentation. In this work, nine lexical website features

that represent the structural aspect of a website URL were

considered for training and evaluation. Among the different

classifiers, Random Forest achieved the maximum detection

accuracy of 99.57%.

 A similar work was conducted by Sajjad et al [27] that

primarily focused on the behaviors and qualities of website

URL by analyzing the lexical and domain-based features of a

phishing website. In particular, the proposed approach utilizes

the following URL-based characteristics, namely protocol

scheme, hostname, path area, entropy, suspicious words, etc.,

to analyze the nature of a particular website. Six different

datasets were chosen for experimentation, and 30 URL-based

features were considered for training and evaluating the

adopted ML classifiers. The experimental outcome showcases

the superiority of the proposed framework, which exhibited

higher accuracies of 96.25% and 94.65% on Kaggle datasets,

respectively.

 Apart from experimenting with standalone ML

classifiers, a unique approach was proposed by Abdul et al

(10) in the recent past that proposed a hybrid LSD model

combining three unique ML classifiers, namely Linear

Regression, Support Vector Machine, and Decision trees.

Around 11000 URLs are collected from the Kaggle dataset

that comprises 33 unique URL attributes representing the

structural and domain attributes of phishing websites. The

proposed method achieved 98.12% accuracy, demonstrating

the effectiveness of URL feature extraction and the hybrid

mechanism.

 In addition to URL feature extraction, various research

works were conducted to detect phishing websites that relied

on actual webpage content and Hyper Text Markup Language

(HTML) based features.

 One of the earlier and effective attempts to detect

phishing websites by extracting HTML content-based traits

was proposed by Jain and Gupta [28], which is an entirely

client-side solution that extracts 12 HTML-based hyperlink-

specific features that represent the characteristics of a

webpage’s content. Various Machine learning algorithms,

namely SMO, Naive Bayes, Logistic regression, Random

Forest, Support Vector Machine (SVM), etc., have been

experimented with. Among the different classifiers, logistic

regression achieved a maximum accuracy of 98.42%.

 Apart from experimenting with hyperlink-based features,

a noteworthy research work has been conducted by

Adebowale et al [29] that proposed an intelligent web-

phishing detection using the integrated features of Images,

Frames, and text. The model achieves a maximum detection

accuracy of 98.3%. Another significant study relevant to

HTML-based phishing website detection was carried out by

Purwanto et al [30], which adopts a parameter-free similarity

measure that examines the HTML of webpages and computes

their similarity with known phishing websites, in order to

classify them. The experimental results have shown that the

model achieved an AUC score of 98.68% and a 0.58% false

positive rate, respectively.

 In addition to implementing phishing website detection

with respect to URL and HTML-based features separately, a

few researchers in the recent past proposed anti-phishing

frameworks that consider both the URL and HTML content of

a webpage [31]. One of the earlier attempts combining both

URL and HTML features of a webpage for phishing detection

has been proposed by Yuan et al [32], which incorporated both

lexical features of a URL and links and contents in its

webpage. Experimentations were carried out with a number of

machine learning models, among which the Deep Forest

model exhibited the maximum accuracy of 98.3%.

 Aljofey et al [33] proposed an anti-phishing approach

similar to [32] that integrates URL, hyperlink information, and

textual content of a website. Integration of features enhanced

the detection accuracy of the adopted XGBoost classifier,

resulting in 96.76% with a lower false positive rate of 1.39%.

 As per the studies conducted with respect to phishing

website detection implemented using machine learning, it

shall be inferred that it is more effective in comparison to the

traditional blacklisting techniques. However, there are certain

inherent limitations associated with ML-based phishing

website detection, namely reliance on engineering experts to

generate handcrafted URL and HTML features, static feature

sets that do not reflect the ever-growing dynamic nature of a

phishing website, and the model’s inability to handle a

massive volume of datasets [11].

2.3. Phishing Website Detection using Deep learning

Algorithms: Automatic Feature Extraction using

Representation Learning Mechanism
 In order to overcome the limitations associated with

existing ML-based anti-phishing solutions, researchers came

up with the idea of adopting a representation learning

mechanism in which both URL and HTML features were

automatically extracted without the reliance on human

intervention. In order to achieve this, various researchers

adopted traditional Deep Learning algorithms for feature

extraction as well as classification.

Manoj Kumar Prabakaran et al. / IJECE, 13(1), 27-45, 2026

31

 Yang et al [34] proposed a multi-dimensional feature-

driven anti-phishing solution that incorporates the idea of a

representation learning mechanism for automatic URL feature

extraction. In this work, two significant DL models, namely

Convolutional Neural Network (CNN) and Long Short-Term

Memory (LSTM), were incorporated to extract URL features

of a website automatically. Along with those features,

statistical URL, webpage code, and text features were

combined and fed as input to the classifier. The model

exhibited a superior detection accuracy of 98.99%.

 A unique approach combining both the URL and HTML-

based automatic feature extraction mechanism has been

proposed by Opara et al [15], referred to as Web Phish, that

accepts URL and HTML source code as input and vectorizes

them using a tokenizer utility class. Both the URL and HTML

embedding vectors were concatenated and passed through the

convolutional layers for classification. The proposed model

achieved an average accuracy of 98% for three Fully

Connected layers.

 Although the adoption of traditional deep learning

models, such as CNN, VAE, LSTM, etc., possesses the ability

to extract intrinsic URL and HTML features of a website

automatically, they lack the aptitude to measure the

importance of the extracted features [35]. In order to overcome

this, a few researchers in the recent past started incorporating

transformer-oriented attention mechanisms through which

features are weighed such that the most important features are

selected and fed to the classifiers for training and evaluation.

 Xiao et al [36] proposed a novel deep learning network

that combines the efficacy of CNN and the Multi-Head Self

Attention Mechanism (MHSA) for effective detection of

phishing websites. The experimental results proved that the

adoption of an attention mechanism in the process of weighing

the extracted feature vectors significantly enhanced the

detection ability of the classifiers, displaying an overall

accuracy of 99.84%.

 A similar kind of approach referred to as “CCBLA” was

proposed by Zhu et al [37] that adopted Bi-LSTM along with

CNN and attention mechanism in order to perform phishing

website detection. The proposed model proved to be a

lightweight entity displaying accurate phishing URL detection

with minimal time consumption.

 As per the studies conducted, it shall be inferred that

attention-enhanced Deep Learning Models provided better

detection outcomes in comparison to traditional deep learning

models; however, these models typically required training

from scratch, and they might struggle to generalize across

diverse phishing patterns. Henceforth, researchers began

experimenting with pre-trained transformer models and their

variants, which are already trained with a vast data corpus,

with the intention of proposing anti-phishing solutions that

offer high performance with minimal fine-tuning and strong

transfer learning abilities.

 Maneriker et al [38] proposed URLTran that adopts

pretrained transformer architectures for improving phishing

detection. In this work, an existing transformer architecture is

fine-tuned and pre-trained using URL data. Also, publicly

available pretrained models such as BERT and RoBERTa

were fine-tuned on the URL classification task. A cloze-style

masked language modeling objective is applied to the BERT

architecture. Each of these fine-tuned pretrained transformers

was analyzed, and the best among them was finally selected

as URLTran_BERT. The proposed URLTran produces an

actual positive rate of 86.80% which is quite optimal.

 Haynes et al [39] proposed a lightweight URL-based

phishing detection using two state-of-the-art pre-trained

transformers, namely BERT and ELECTRA. The

experimental results confirm that the adopted deep

transformers performed exceptionally well, producing

detection accuracy values of 96.1% and 96.3% respectively.

This work signifies the fact that the adoption of pre-trained

transformers for phishing website detection enhances the

detection outcome as well as minimizes the amount of time

taken for training and validation.

 Apart from individually adopting pre-trained

transformers for phishing detection, an integrated approach

combining deep learning classifiers along with pre-trained

transformers has been proposed recently by Do et al [40],

referred to as RasNet-TCMA-MPNet. In this work, in order to

analyze the unique nature of phishing website URLs, RasNet

combines keras embeddings with ResNet. In addition,

Temporal Convolutional Neural Network (TCN) has been

incorporated along with Multi-Head Self-Attention for the

optimization of feature extraction. Also, in order to examine

the natural language structure of webpage URLs, MPNet has

been utilized. The proposed model exhibited a maximum

detection accuracy of 99.71%. However, this work only

focuses on the URL part of a phishing website and does not

concentrate on the features associated with the webpage

content.

3. Materials and Methods

 In order to address the aforementioned limitations, an

optimal lightweight phishing detection framework has been

proposed that integrates the idea of transfer learning with a

transformer-based architecture that concentrates on both the

URL and HTML features of a phishing website. The proposed

TL-BERT framework employs a TL-Enabled Autoencoder

(TL-AE) model to automatically extract inherent raw URL

features and Bidirectional Encoder Representation from

Transformers (BERT) to generate context-aware HTML text

embeddings. Both the URL and HTML features obtained from

the TL-enabled AE and BERT models were concatenated and

then fed as input to a traditional Deep Neural Network (DNN)

Manoj Kumar Prabakaran et al. / IJECE, 13(1), 27-45, 2026

32

model for training and evaluation. Figure 1 depicts the

architecture of the proposed TL-BERT model.

 The proposed model is constructed by integrating two

intelligent approaches for feature extraction and a neural

network model for classification:

i) A traditional Auto Encoder (AE) model constructed based

on a transfer learning mechanism that is dedicated to

automatic feature extraction from preprocessed raw URL

inputs.

ii) Bidirectional Encoder Representations from

Transformers (BERT) is a transformer-based deep

learning model deployed for extracting valuable features

from preprocessed HTML-based web content.

3.1. URL Feature Extraction using Autoencoders

 According to a study conducted by [41], it can be inferred

that AE models are well-suited for dimensionality reduction

and feature extraction processes. Hence, considering the

reconstruction ability of the AE model, a special form of AE

architecture has been adopted, which incorporates transfer

learning techniques to automatically extract raw URL

features.

3.1.1. URL Preprocessing

 The input URLs, which are in the form of text data, have

been converted into fixed-size numerical vectors based on the

One Hot Encoding (OHE) mechanism. OHE converts every

character in a URL string into a fixed-size vector

representation. For each character in the URL string, a vector

is produced with respect to [42], which states that a Uniform

Resource Locator (URL) of a website shall be formed based

on 84 unique characters, including alphabets, digits, and

special symbols. Hence, a corpus is generated with those 84

characters, each individually indexed.

 For every character in the URL, an OHE vector of size 84

is generated, which contains 83 ‘0’ values, and based on the

index position with respect to the corpus, a ‘1’ value is

generated in accordance. Since neural network models expect

the input vectors to be of uniform size, i.e., all URLs should

have equivalent N * M dimensions, where N denotes the

length of the URL and M represents feature representation

size, based on [43], the M value is set to 84 uniformly. In

contrast, N is determined by calculating the average length of

all the URLs in the input dataset.

Fig. 1 Proposed TL-BERT architecture

 Around 50000 URLs are available in the dataset, of which

the average lengths of all the URLs were found to be 72.

Hence, the N value is fixed to be 72 in this work.

For those URLs whose length is shorter than 72, the remaining

positions of the vector will be padded with 0s, and for those

whose length exceeds 72, trimming is done to trim off those

extra characters in the URL. Finally, after preprocessing the

input URLs, a numerical vector of dimension N *M is

obtained, where N = 72 and M = 84, respectively.

3.1.2. Autoencoders as Feature Extractors

 Figure 2 depicts the detailed workflow of the proposed

feature extraction module. The preprocessed numerical

vectors of individual URLs are collectively fed as input to the

Manoj Kumar Prabakaran et al. / IJECE, 13(1), 27-45, 2026

33

feature extraction module. As already suggested, a traditional

AE model is employed for the process of URL feature

extraction. An autoencoder model [44] is a variant of Neural

Network Architecture that encompasses three main layers: a)

encoder, b) latent space, and c) decoder. The basic principle

behind the AE model is to receive input data and produce an

output that is a reconstructed form of the input data.

 The AE model is structured by stacking three layers

sequentially, namely the encoder layer, the latent space, and

the decoder layer. The encoder part of the AE model is

structured as follows: It consists of an input layer, three hidden

layers, and an output layer. The number of units in the input

layer of the encoder is set to be 84, since it should match the

preprocessed URL vector dimension.

 Hidden layer 1 consists of 80 neuron units, followed by

hidden layer 2 containing 70 units and hidden layer 3 holding

64 units, respectively. The number of units in the latent space

layer of AE is set to be 20. The decoder part of AE is

constructed in the reverse manner with respect to the encoder

part of the model, as shown in Figure 2.

 The primary steps involved in training an AE model are

as follows:

1. The preprocessed URL vectors are fed as input to the

encoder layer, where the data gets forwarded to the

intermediate hidden layers and finally to the output layer.

2. The output of the encoder part is a dimensionally reduced

input vector, which gets stored in the latent space or

bottleneck layer of the architecture.

3. The units in the latent space region are then forwarded as

input to the decoder part of the model. Here, the vectors

are decompressed by passing through a set of hidden

layers to the output layer.

4. The output layer produces a URL vector that is of the

same dimension as the original input vector.

5. Reconstruction error is calculated based on the difference

between the input vector and the reconstructed output

vector. Based on the loss value obtained, the weights of

the decoder and encoder are adjusted during the

backpropagation process.

6. Once the reconstruction loss is optimally minimized, the

training process is halted.

 After the completion of training, the dimensionally

reduced latent space vectors shall be extracted and provided

as one of the inputs to the classification layer in the TL-BERT

model. The latent space vectors are taken into account since

they contain dimensionally reduced abstract higher-level

representations of the input data.

 However, instead of training an AE model using a bunch

of real-world URLs from scratch, a special technique is

adopted that eases the training process of the model, such that

valiant features are extracted at less computational cost and in

a limited time duration.

Fig. 2 Detailed workflow of the feature extractor module

 In order to speed up the training duration of the model, an

advanced machine learning technique referred to as Transfer

Learning (TL) is adopted. In TL [45], a pre-trained model that

has been exposed to a massive dataset for a unique task shall

be used as the initiating point to train a particular model.

Instead of making use of one of the existing pre-trained

models, a self-built Neural Network Model that has already

been trained with a vast number of real-world URLs is

incorporated as an initiator to train the AE architecture. The

architecture utilizes a Variational Autoencoder (VAE)

framework. Specifically, the encoder weights from the pre-

trained VAE model described in are transferred to the AE

encoder in this study to leverage previously optimized feature

extraction capabilities. VAE model, in particular, was trained

with a custom dataset consisting of 1 48 960 URL samples,

out of which 74,480 are real-world phishing URLs and the

remaining 74,480 are generated adversarial phishing samples.

For generating the adversarial URL samples, a special form of

generative modeling technique referred to as Generative

Adversarial Network (GAN) is implemented. The GAN

model was being trained for around 5000 epochs to generate

fake phishing samples, which in turn were combined with real-

world phishing URLs collected from benchmark datasets to

train the VAE architecture.

 Considering the merits of the constructed VAE model

with respect to the number of training samples and its

Manoj Kumar Prabakaran et al. / IJECE, 13(1), 27-45, 2026

34

exposure to adversarial URL inputs, a transfer learning

mechanism is adopted in which the encoder part of the VAE

architecture is completely transferred, along with the updated

weights to the proposed AE model.

 The encoder part of the VAE model, comprising an input

layer, three hidden layers, an output layer, and the latent space

layer, is entirely replicated along with the updated weights in

the AE architecture. For training the TL-enabled AE model,

around 50,000 URL samples are collected from benchmark

datasets. The number of epochs is set to be 50. The learning

rate is fixed at 0.001. The Adam optimizer is used as the

optimization technique. The mean square error is used as the

loss function to calculate the reconstruction error. The encoder

part is frozen for the initial 35 epochs, and only the decoder

part undergoes back propagation, i.e., the weights are adjusted

only for the decoder layer units initially. For the remaining 15

epochs, both the encoder and decoder units undergo weight

updates.

3.2. HTML Feature Extraction using Pre-Trained

Transformers
 Numerous existing solutions [28-30] in relevance to

HTML-based phishing website detection have been proposed

by various researchers in the recent past, which dictated the

significant role of HTML features in the classification

outcome. Considering the merits of the automatic HTML

feature extraction technique as well as the complexities

associated with representation learning, a transformer-based

model is deployed to automatically extract context-based text

embedding of webpage content.

3.2.1. HTML Preprocessing

 The following steps are performed to preprocess the

webpage content into a clean format before being fed to the

transformer model for feature extraction.

 Initially, web scraping is done by implementing

BeautifulSoup, a Python library that shall be imported

from the BS4 package. This enables us to parse HTML

documents in a user-friendly manner.

 Once the HTML documents are parsed, the source code

content of the respective webpage will be retrieved. From

the source code, script and style tags are ripped off, and

the relevant text contents are extracted alone using the

get_text () method associated with the BS library.

 After extracting the text content, those texts are broken

into separate lines by removing leading and trailing

spaces on each sentence and further split into individual

chunks.

 Finally, a dictionary is generated with a key as URL and

values in the form of a nested list comprising line-by-line

text extracted from chunks using the splitlines () method.

 In order to make each entry in the dictionary of uniform

length, suitable threshold values, say ‘T are identified that

set the fixed length for all the webpage text content. Based

on the experimentation conducted, the T value was fixed

to be 500. Hence, those website contents whose text

length exceeded the T value were trimmed off, and those

having a length shorter than the T value were padded with

additional 0’s for compensation.

 Once the preprocessing stage is finished, a dictionary is

obtained with key and value pairs, where key denotes the

individual URLs in the dataset and values represent the

preprocessed webpage content organized in the form of a

multi-dimensional list with uniform length.

 To extract the intrinsic features of a webpage context with

respect to contextual embedding, this work incorporates

BERT (Bidirectional Encoder Representations from

Transformers). This pre-trained language model uses the

Transformer architecture [46]. In particular, BERTBASE, a pre-

trained model that comprises 12 encoders stacked together

linearly, has been implemented. The encoder part of the model

constitutes a feed-forward network layer containing 768

neuron units and 12 attention heads.

Fig. 3 BERTBASE architecture

The working principle of a BERT model is as follows:

 Initially, the model receives input in the form of text

tokens. Here, each word or sentence in a text shall be

considered an individual token.

 The first input token for any form of input is a [CLS]

token that refers to classification.

Encoder

12

Encoder

2

Encoder

1

Add &

Normalization

Add &

Normalization

Multi head

attention

Feed

Forwa

rd

Layer

768

Neur

on

units

12

atten

tion

head

BERT

BASE

ENCOD

ER

Manoj Kumar Prabakaran et al. / IJECE, 13(1), 27-45, 2026

35

 Followed by the input token, either a sequence of words

or a sentence, depending on the requirement, shall be fed

as input to the model, which would flow up through the

stack of encoders in the respective BERT model.

 In each layer, there are ‘n’ numbers of self-attention heads

that apply a self-attention mechanism to calculate the

attention weights of each token and further pass the

attention score calculated through the FFN layer.

 The FFN layer finally hands over the obtained output data

to the next encoder in the stack.

 Each input token produces an output vector of a different

size depending on the BERT variant.

 Figure 3 depicts the architecture of the adopted BERTBASE

along with the internal structure of the encoder part associated

with the model.

 The BERTBASE model has been implemented using the

TensorFlow library, which is available in Python. The model

has been downloaded from the following URL:

https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-

4_H-512_A-8 , and a respective preprocessing URL that

indulges in text preprocessing has been downloaded from

https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3.

Algorithm 1 explains the steps involved in extracting HTML

features using the BERT model.

 Figure 4 represents the detailed representation of HTML

feature extraction using the adopted BERT model. Initially,

the preprocessed HTML data, which is in the form of a

dictionary, is fed as input to the BERTBASE model for feature

extraction. The dictionary contains a key-value pair where the

key points to a particular URL in the input dataset and the

value denotes the preprocessed textual web content organized

as a multi-dimensional list.

 The keys in the dictionary are iterated, and the text values

of a particular URL are fed line by line as input to the BERT

model. This model comprises a sequence of 12 encoders. The

preprocessed HTML feature vectors were passed sequentially

onto all 12 encoders with a CLS and SEP tag at the initial

layer. For each line, a contextual embedding vector of size 512

is generated.

 Since the length of the webpage content ‘T’ was fixed

uniformly as 500, an output vector of dimension 500 * 512

will be generated for each website URL available in the input

dataset. The obtained HTML features based on the BERT

model play a vital role in phishing website detection since

those features are based on the context in which a particular

text is present.

Algorithm 1 HTML feature extraction using BERT

 from bs4 import BeautifulSoup

 html = fetch_html_from_url(url)

 soup = BeautifulSoup(html, 'html.parser')

 text_content = soup.get_text()

cleaned_content=

remove_unwanted_elements(text_content)

 lines = split_into_lines(cleaned_content)

 data_dict = {url: lines}

 return data_dict

 //Generating feature vectors using BERT

 HTML_vectors=[]

 for key in data_dict:

 output_vector = []

for layer in bert_model.encoders:

attention_weights = self_attention_mechanism(token,

layer)

 attention_scores = ffn_layer(attention_weights)

output = attention_scores

output_vector.append(output)

HTML_vectors.append(output_vector)

3.3. Deep Neural Network (DNN) Model for Classification

 The final layer of the proposed TL-BERT architecture

incorporates a Deep Neural Network (DNN) model that is

tasked with classifying legitimate and phishing websites.

DNN receives its input from the feature vectors extracted from

both the AE and BERT models. Both the URL and HTML

feature vectors were concatenated and produced as a

combined numerical vector for the DNN model for URL

prediction.

Fig. 4 HTML feature extraction using BERT

Manoj Kumar Prabakaran et al. / IJECE, 13(1), 27-45, 2026

36

 The extracted URL feature vector is of dimension N * M,

where N = 72 and M = 20, respectively. HTML feature vectors

obtained through the BERT model are of dimension L * Z,

where L = 500 and Z = 512. Before feeding these features into

the classifier for prediction, they need to be flattened into a

single input vector of dimension [Ui, Xi, Yi], where Ui

denotes a particular URL in the input dataset, Xi is calculated

as 572, which is obtained by adding N and L values. In

contrast, Yi is set to 532 by summing up M and Z values.

 The flattened vector [Ui, Xi, Yi] shall be produced as

input to the proposed DNN model for URL classification. The

adopted DNN model is structured as follows: It consists of an

input layer, four hidden layers, and an output layer. The

number of units in the input layer is fixed at 532,

corresponding to the dimension of the input URL vector. Four

hidden layers comprise 512, 256, 128, and 64 neuron units.

The output layer contains two units for binary classification

purposes. Figure 5 depicts the detailed representation of the

classification layer.

Fig. 5 Classification layer

 Initially, the input dataset is split into training and testing

samples. The ratio of training and testing data was fixed at

80:20. The DNN model undergoes supervised training in

which it receives a combined URL and HTML features along

with its label values. The number of training epochs was set to

50, and the learning rate of the model was fixed at 0.001.

 The input vectors were passed through the set of hidden

layers and finally to the output layer. The loss value is

estimated by calculating the difference between the predicted

and actual output. A negative log-likelihood loss function has

been adopted to estimate the loss value. Batch normalization

was done based on a dropout mechanism. Furthermore, to

prevent overfitting, a dropout mechanism is implemented,

whereby specific neuron units are randomly dropped during

the training process. Also, to ensure optimal training, the batch

size was fixed at 100. The Adam optimizer was used to

optimize the loss function. At every intermediate layer, the

Rectified Linear Unit (ReLU) was used as the activation

function, except for the output layer, in which the Log-

Softmax function was used as an activation function for

calculating the probabilistic outcome.

 Finally, to ensure the efficient training of DNN without

complex computations, the concept of early stopping was

implemented in order to cease the training process whenever

the validation loss stopped improving. Once the training is

completed, the model is exposed to the testing data samples

for detecting malicious URL samples.

4. Experimental Results and Analysis

4.1. Dataset Description

 Raw URL samples have been collected from the

following two benchmark datasets, namely Alexa Top

Website and ISCX URL 2016, for the purpose of training the

proposed TL-BERT model. The dataset comprises 54300

URL samples extracted from the above-mentioned benchmark

resources. The constructed dataset is a balanced mixture of

legitimate and phishing URL samples.

 The legitimate URL samples were crawled from Alexa

(Source: www.alexa.com), a web traffic analysis company

owned by Amazon that provides information and rankings on

the popularity of websites. It determines website rankings

based on factors such as daily unique visitors, page views, and

average time spent on the site. Also, it provides a list of the

top websites globally and for specific countries, along with

additional analytics and insights. Exactly 29870 URLs were

crawled from the Alexa website during the time period of

March 2023. Phishing samples were collected from the ISCX

URL 2016 dataset (Source: https://www.unb.ca/cic/datasets/

url-2016.html), which comprises four variants of phishing

URLs, namely spam, phishing, and defacement URLs. Out of

these 4 variants, 24430 phishing URLs were randomly

collected to form the list of phishing URLs in the dataset.

 The dataset was split into training and testing data, of

which 70% of the input data was considered for training

purposes and the remaining 30% for testing. A total of 16290

URL samples were used for evaluating the proposed model, of

which 8961 were benign, and 7329 were malicious.

 In order to accurately assess the performance of the

proposed model, various measures were taken into

consideration, namely the accuracy curve, loss curve,

confusion matrix, precision, recall, F1 score, True Positive

Rate (TPR), True Negative Rate (TNR), False Positive Rate

(FPR), False Negative Rate (FNR), and Area Under the ROC

(AUC-ROC) curve.

 The experimental setup comprises Google Colab Pro, a

cloud-based Jupyter notebook environment, which provides a

seamless and setup-free platform for conducting the

experiments. Google Colab Pro offers several advantages,

including access to powerful hardware resources and GPU

acceleration. Specifically, the experiments made use of the

Tesla V100 PCIe GPU accelerator, which is known for its high

performance in deep learning tasks. This GPU has a staggering

14 TFLOPS (Tera Floating-Point Operations Per Second) of

computational power, allowing for efficient and fast model

http://www.alexa.com/

Manoj Kumar Prabakaran et al. / IJECE, 13(1), 27-45, 2026

37

training and evaluation. Additionally, the Tesla V100 boasts a

substantial memory bandwidth of 900 GB/sec, enabling

smooth data transfer and processing. To complement the

powerful GPU, Google Colab Pro provided generous system

specifications. The setup included a sizable 125GB HDD,

which allowed for ample storage of datasets, model

checkpoints, and experimental outputs. Moreover, the system

provided 25GB of memory, ensuring sufficient space for

running memory-intensive tasks and accommodating large-

scale models and datasets.

4.2. Design of Experimentation and Result Analysis
 Experiments were conducted in different phases to

analyze the importance of both URL and HTML features in

the effective classification of malicious URLs. In each phase,

the impact of URL and HTML features with respect to

classifier accuracy was analyzed by experimenting with

different feature extraction strategies. The following are the

three phases in which the experiments were carried out:

 Impact analysis of the proposed TL-BERT model with

respect to URL features alone (Phase 1).

 Impact analysis of the proposed TL-BERT model with

respect to HTML features alone (Phase 2).

 Impact analysis of the proposed TL-BERT model with

respect to both the URL and HTML features (Phase 3).

 Lightweightness evaluation of the proposed TL_BERT

model (Phase 4)

 Evaluation of the proposed TL-BERT model against the

existing state-of-the-art anti-phishing approaches that

employed representation learning techniques (Phase 5).

4.2.1. Phase 1- URL Feature Analysis

 In this phase, the HTML feature extractor module of the

proposed framework is excluded, and only the URL feature

extractor and classifier are considered for experimentation.

 Hence, minor alterations have been made with respect to

the dimensions of the features extracted from the TL-assisted

AE model. The classifier’s input layer is composed of 532

units, which were purposefully fixed with respect to the

combined input size of both URL and HTML features. Since

only URL features are dealt with alone in this experiment,

which are of dimension L * 20 (L specifies the uniform length

of a particular URL), it is mandatory to align the URL feature

size with the classifier’s input layer size. Hence, a padding

mechanism is adopted for compensation in which the required

number of zeroes is padded to produce a URL feature vector

of dimension L*532. Although padding is applied, the

inherent features extracted by the extractor remain unchanged.

These features were then fed as input to the classifier for

training and evaluation.

 In this experimental phase, the TL-assisted AE model is

taken into account without changing its structure with respect

to the original proposed TL-BERT model. The performance

of the model designed with respect to URL features alone has

been measured using the following two metrics: accuracy

curve and confusion matrix.

 Figure 6 (a) and 6 (b) represent the accuracy curve and

confusion matrix for the experimented TL-enabled AE-DNN

model. As can be inferred from the results, the model reaches

a maximum accuracy of 97.5%. The number of false positives

acquired was 212 out of the 7329 malicious URL samples, and

the number of false negatives obtained was 196 out of the

8961 benign samples.

(a)

 Actual class

 Benign Phishing

P
re

d
ic

te
d

 c
la

ss

B
en

ig
n

8765 212

P
h

is
h

in
g

196 7117

(b)

Fig. 6 (a) Accuracy curve of TL-Enabled AE-DNN,

(b) Confusion matrix of TL-Enabled AE-DNN.

 The model exhibits a better outcome with the URL

features alone, and this is mainly due to the adoption of

transfer learning techniques in the feature extraction process.

In order to stress the effect of adopting transfer learning in

URL feature extraction, a separate experiment was carried out

in which the role of TL was excluded from the picture. In this

process, the traditional autoencoder was trained from scratch

without leveraging the trained weight initialization technique.

In the TL-disabled AE architecture, both the encoder and

decoder parts of the AE model undergo weight updates during

the entire training process. No weights were transferred from

60

65

70

75

80

85

90

95

100

0 1 2 3 4 5 10 20 30 40 49 50

A
cc

u
a

rc
y

 (
%

)

Epochs

Training Accuracy (%) Testing Accuracy (%)

Manoj Kumar Prabakaran et al. / IJECE, 13(1), 27-45, 2026

38

any pre-trained models. Once the training process is

completed, the latent space feature vectors are fed as input to

the DNN for URL classification.

 The performance analysis of the features extracted with

respect to the traditional AE model is measured based on a

similar metric adopted for the TL-enabled AE model. Figure

7(a) and 7(b) depict the accuracy curve and confusion matrix

for the TL-disabled AE-DNN model.

(a)

 Actual class

 Benign Phishing

P
re

d
ic

te
d

 c
la

ss

B
en

ig
n

8215 476

P
h

is
h

in
g

746
6853

 (b)

Fig. 7 (a) Accuracy curve of TL-Disabled AE-DNN,

(b) Confusion matrix of TL-Disabled AE-DNN.

 As per the results obtained, it can be found that the

detection accuracy of the model reaches a maximum of 92.5%.

However, the number of false positive and false negative

samples was significantly higher when compared with the

previous case. The model acquires a false positive rate of

6.49%, which is quite large.

4.2.2. Phase 2- HTML Feature Analysis

 In the proposed TL-BERT architecture, along with the

HTML embedding vector, the URL feature vectors were

concatenated to produce the input. Instead, in this

experimental phase, the URL features were ignored for

experimental purposes, and only the BERT-generated

embedding vector of dimension 500*512 was taken into

account for analysis. Since the input layer of the DNN model

comprises 532 neuron units, a padding mechanism is adopted

in the HTML embedding vector to compensate for the size of

the DNN input layer. Hence, the additional 20 spaces are

allocated to the BERT embeddings and populated with 0s.

 Apart from adopting the BERT text embedding

mechanism, there are various other real-world text embedding

techniques that can convert real-world text data into fixed-size

numerical vectors. Hence, in this experimental phase, five

different text embedding mechanisms were experimented with

apart from BERT to assess the quality of the text-based

features obtained with respect to individual techniques in the

effective identification of phishing websites, namely Term

Frequency – Inverse Document Frequency.

(TF-IDF), Bag of Words (BoW), Global Vector For Word

representation (Glove), Word2Vec, and Fast Text [47]. Figure

8 describes the detailed performance analysis of each text

embedding technique with respect to precision, recall, F1

score, and accuracy metrics.

 From the experimental results obtained, it can be

observed that out of all the text embedding techniques, the

adopted BERT architecture exhibits the best outcome in terms

of precision, recall, and F1 score. BERT reaches a maximum

F1 score of 0.98, which is the highest among all the other text

embedding techniques. This clearly suggests that context-

aware embedding vectors play a significant role in describing

the nature of the content of a particular website. Apart from

BERT, glove-generated embedding vectors lead to a better

detection accuracy of 96.1%, which is the second highest

among all the experimented models. However, the precision

and recall values obtained for the glove model with respect to

phishing samples were not optimal.

 In contrast, the TF-IDF-based feature vector delivers the

least detection accuracy of 91.5% with a lower precision and

recall value in comparison to other techniques. Both

Word2Vec and FastText produce similar kinds of results,

exhibiting an average F1 score of 0.95. Table 1 summarizes

the performance outcomes of the various text embedding

techniques.

Table 1. Performance outcome of various text embedding techniques

Text

embedding

techniques

Precision Recall
F1-

score

Accuracy

(%)

TF-IDF 0.9135 0.9153 0.9143 91.49

BoW 0.9501 0.9470 0.9483 94.90

Word2Vec 0.9507 0.9501 0.9504 95.10

FastText 0.9568 0.9562 0.9565 95.70

Glove 0.9607 0.9603 0.9605 96.10

BERT 0.9807 0.9808 0.9809 98.10

60

65

70

75

80

85

90

95

100

0 1 2 3 4 5 10 20 30 40 49 50

A
cc

u
ra

cy
(%

)

Epochs

Training Accuracy (%) Testing Accuracy (%)

Manoj Kumar Prabakaran et al. / IJECE, 13(1), 27-45, 2026

39

 The following are the inferences obtained after

experimenting with different text embedding techniques: a)

TF-IDF does not capture the semantic relationships between

words and may struggle to handle out-of-vocabulary words. b)

Both Word2Vec and FastText were memory-intensive and

consumed more data to train. c) Glove is effective at capturing

semantic relationships between words and can handle out-of-

vocabulary words. However, the drawback associated with

Glove is that it is memory-intensive and requires a significant

amount of data. d) BERT captures the contextual meaning of

words by considering the entire input sentence, leading to

better representation of word meanings in natural language

processing tasks.

 Precision Recall F1-score

Benign 0.932321 0.911617 0.921853

Phishing 0.894793 0.919089 0.906778

Accuracy 0.914979 0.914979 0.914979

Macro avg 0.913557 0.915353 0.914315

Weighted

avg
0.915437 0.914979 0.915071

Performance outcome of TF-IDF +

DNN
(a)

 Precision Recall F1-score

Benign 0.941656 0.967191 0.954253

Phishing 0.95851 0.926729 0.942352

Accuracy 0.948987 0.948987 0.948987

Macro avg 0.950083 0.94696 0.948302

Weighted

avg
0.949239 0.948987 0.948898

Performance outcome of BoW +

DNN
(b)

 Precision Recall F1-score

Benign 0.95838 0.96362 0.960993

Phishing 0.95522 0.948833 0.952016

Accuracy 0.956967 0.956967 0.956967

Macro avg 0.9568 0.956227 0.956504

Weighted

avg
0.956958 0.956967 0.956954

Performance outcome of FastText +

DNN
(c)

 Precision Recall F1-score

Benign 0.953042 0.95804 0.955535

Phishing 0.948366 0.942284 0.945315

Accuracy 0.950952 0.950952 0.950952

Macro avg 0.950704 0.950162 0.950425

Weighted

avg
0.950938 0.950952 0.950937

Performance outcome of Word2Vec

+ DNN
(d)

 Precision Recall F1-score

Benign 0.96286 0.966298 0.964576

Phishing 0.958613 0.954428 0.956516

Accuracy 0.960958 0.960958 0.960958

Macro avg 0.960737 0.960363 0.960546

Weighted

avg
0.960949 0.960958 0.96095

Performance outcome of Glove +

DNN
(e)

 Precision Recall F1-score

Benign 0.982918 0.98248 0.982699

Phishing 0.97859 0.979124 0.978857

Accuracy 0.98097 0.98097 0.98097

Macro avg 0.980754 0.980802 0.980778

Weighted

avg
0.980971 0.98097 0.98097

Performance outcome of BERT +

DNN
(f)

Fig. 8 Precision, recall, F1 score, and accuracy of various text

embedding techniques. Panels show, (a) TF-IDF, (b) BoW, (c) FastText,

(d) Word2Vec, (e) GloVe, and (f) BERT.

 In a nutshell, it can be summarized that the adoption of

BERT to generate context-aware embedding of HTML text

content results in optimal phishing website detection in

comparison to all the other text embedding mechanisms.

4.2.3. Phase 3- Analysis of Proposed TL-BERT Model

 The core objective of this research is to deploy an AI-

assisted phishing website detection mechanism that optimally

identifies malicious URLs in a real-world environment. To

enhance the detection ability of the proposed model, this

research intends to enrich the detector with both the URL and

HTML features of a particular website. In the previous two

phases of experimental analysis, URL and HTML features

were individually experimented with to study their impact on

the model’s classification ability. In this phase, the core task

is to analyse the proposed TL-BERT model, which actually

combines both URL and HTML features obtained by

employing the TL-enabled AE and BERT models. The

following experiments have been carried out in phase 3 of the

experimental analysis:

 Initially, the proposed TL-BERT model is experimented

with the input dataset, and the detection ability of the

model is assessed using accuracy and a loss curve.

 To further showcase the optimality of the TL-BERT

architecture, additional experiments were conducted to

compare the performance outcomes of the model with

those of the models constructed in the previous two

phases (TL-AE DNN and BERT + DNN). The outcomes

were analysed using the following metrics: TPR, TNR,

FPR, and FNR.

Manoj Kumar Prabakaran et al. / IJECE, 13(1), 27-45, 2026

40

 In order to validate the combined effect of URL and

HTML in website classification, a study is conducted

by constructing an AuC-ROC curve that examines the

classification ability of the model with respect to URL,

HTML, and URL+HTML.

 Figure 9 demonstrates the accuracy and loss curve

obtained for the proposed TL-BERT model, and the results

clearly suggest that the proposed model performed

predominantly well, reaching a maximum accuracy of

99.08%. Although the model struggled to classify the URLs in

the initial epochs of the training process, it can be witnessed

that after a very few epochs, the model adapted in accordance.

This is mainly due to the adoption of pre-trained models to

extract URL and HTML features.

 Additional experiments were conducted to evaluate the

performance of the proposed model with respect to the models

constructed in the previous two phases. Table 2 presents the

performance analysis of the models in all three phases,

specifically with respect to TPR, TNR, FPR, and FNR.

Table 2. Performance analysis of TL-BERT with respect to phase 1 and phase 2 models

Proposed models
True Positive Rate

(TPR)

False Positive

Rate (FPR)

True Negative Rate

(TNR)

False Negative Rate

(FNR)

TL-AE + DNN 97.81% 2.89% 97.11% 2.19%

BERT + DNN 98.25% 2.09% 97.91% 1.75%

TL-BERT+DNN 99.15% 1.01% 98.99% 0.85%

 With respect to the URL features (TL-AE+DNN),

although the classifier exhibits a decent TPR and TNR value,

there is a significant increase in the FPR value, and this is

mainly because focusing only on URL features might lead the

model to misclassify specific malicious URLs as legitimate

ones. As can be observed, the TL-AE model reached an FPR

of 2.89%, which is the highest among the experimented

models.

 In the case of HTML features (BERT+DNN), the

performance outcome was better when compared with the URL

features. The model exhibits lower FPR and FNR values of 2.09

and 1.75%, respectively. This outcome is achieved on the basis

of the context-aware embedding mechanism that leads the

classifier to understand the contextual information of HTML text

content to precisely identify malicious websites. As can be

witnessed from Table 2, the proposed TL-BERT architecture

displayed an excellent outcome in terms of correctly identifying

benign and malicious URLs. The model acquired the lowest FPR

and FNR values of 1.01% and 0.85%, which is considered to be

quite decent for the quantity of URLs taken for evaluation.

(a)

(b)

Fig. 9 (a) Accuracy curve of the TL-BERT Model,

(b) Loss curve of TL-BERT Model.

 Figure 10 shows the AuC-ROC curve of the proposed model

for both TL-AE and BERT. This analysis was done to ensure

the trade-off between sensitivity and specificity of the

experimental models.

 The ROC curve clearly suggests that the proposed TL-

BERT model delivers the maximum AuC score of 0.98, which

is almost closer to 1. This shows the ability of the model to

effectively classify benign and malicious websites.

 Combining the merits of both URL and HTML features

results in effective identification of URLs with a lower false

positive rate and higher detection accuracy.

60

65

70

75

80

85

90

95

100

0 1 2 3 4 5 10 20 30 40 49 50

A
cc

u
ra

cy
 (

%
)

Epochs
Training Accuracy (%) Testing Accuracy (%)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 2 4 6 8 10 15 20 25 30 35 40 45 49 50

L
o

ss

Epochs

Final Loss

Manoj Kumar Prabakaran et al. / IJECE, 13(1), 27-45, 2026

41

Fig. 10 AuC-ROC curve of the experimented models

4.2.4. Phase 4- Light-Weightedness Evaluation of the

Proposed TL_BERT Model

 In this phase, a special experiment has been conducted to

analyze the optimality and lightweightedness associated with

the proposed model. In order to evaluate the model, the

following metrics have been chosen, namely Training

time/epoch, Inference time/sample, memory usage, and

detection accuracy.

 For performing a fair evaluation, the following similar

kinds of architectures have been derived that are slightly

modified versions of the proposed TL_BERT architecture.

The following are those modified phishing detection

architectures constructed for this experimentation:

a) VAE + BERTbase: In this configuration, instead of the TL-

adopted AE model, a pretrained VAE architecture is

employed to initialize the encoder, which is then

integrated with the BERTbase model. However, BERTbase

is utilized in the proposed model.

b) AE(w/o TL) + BERTbase: A similar design to TL_BERT

except that both the encoder and decoder part of the AE

model is trained from scratch without the adoption of a

transfer learning mechanism

c) VAE + BERTlarge: This structure involves the

combination of Variational autoencoders and BERTlarge, a

special form of BERT architecture that produces 1024

embedding vectors.

d) AE (w/o TL) + BERTlarge: In this case, BERTlarge, along

with traditional autoencoders implemented without a TL

mechanism, is fused

 All of the above constructed models are evaluated against

the proposed TL_BERT architecture. In particular, DNN is

deputed as the classifier with a similar configuration as

TL_BERT for all the experimented models in this phase. The

core objective of this experimentation is to assess the

lightweightedness of the model, which shall be measured with

respect to training time and inference, as well as the optimality

that is validated using detection accuracy. Table 3 shows the

Runtime and resource efficiency comparison of TL_BERT

with the experimentally structurally modified phishing

detection framework.

Table 3. Runtime and resource efficiency comparison of TL_BERT framework

Model variant

Training time/

Epoch

(seconds)

Inference time/sample

(milliseconds)
Memory usage

Accuracy

(%)

VAE + BERTbase 65 24 1.1 GB 98.72

AE(w/o TL) +

BERTbase
58 21 950 MB 98.31

VAE + BERTlarge 95 39 2.5 GB 98.88

AE(w/o TL) +

BERTbase
78 33 2.3 GB 98.42

Proposed TL_BERT

model
42 18 900 MB 99.08

 As can be observed from Table 3, the proposed model

consumed the minimal training time duration of 42 seconds

and an inference time of 18 milliseconds, which is the most

optimal among all the experimented models.

 Also, the amount of memory consumed by each architecture

significantly differed according to its structural complexities,

with vast amounts of memory being consumed by two

architectures that adopted BERTlarge, averaging around 2.4 GB.

The least amount of memory has been utilized by the model,

consuming 900MB respectively. With lower training time,

faster inference speed, and optimal memory usage, this model

exhibited a significant advantage for real-time deployment. In

addition to the lightweight nature of TL_BERT, TL_BERT

achieved the maximum detection accuracy of 99.08%

outperforming all the experimented variants.

 This experimental analysis concludes that the proposed

model is both lightweight and optimal and is well-suited for

real-time deployment.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T
ru

e
P

o
si

ti
v

e
ra

te

False positive rate

TPR: TL-BERT+DNN (Red)

TPR: BERT+DNN (Green)

TPR: TL+DNN (Yellow)

Manoj Kumar Prabakaran et al. / IJECE, 13(1), 27-45, 2026

42

4.2.5. Phase 5 – Comparison of TL-BERT with Current Anti-

Phishing Solutions

In this phase, the proposed TL-BERT model has been

compared against the current state-of-the-art anti-phishing

approaches. In particular, unique anti-phishing models that

deploy representation learning techniques to identify

malicious URLs have been identified for this experimentation.

In fact, the proposed TL-BERT model incorporates a

representation learning technique in which both URL and

HTML features are automatically extracted, excluding the

process of manual feature engineering. Hence, it would be

more appropriate to compare the proposed model with those

approaches that deploy automatic feature extraction

mechanisms. Seven significant phishing detection solutions

proposed in the recent past have been considered for

comparative evaluation.

 Table 4 demonstrates the details of those approaches

along with their performance analysis. The results projected in

Table 4 were in accordance with the evaluation values as

provided in the respective papers.

Table 4. Comparison of TL-BERT with current anti-phishing methods

State-of-the-art Phishing

detection approaches
Feature set Precision (%) Recall (%)

F1 score

(%)

Accuracy

(%)

PDRCNN URL 97.33 93.78 95.52 95.6

HTML Phish HTML 97 98 97 98

WebPhish
URL and

HTML
98 98 98 98

PhishDet
URL and

HTML
96.40 96.44 96.42 96.42

Web2Vec

URL, HTML,

and

DOM Structure

98.69 98.26 98.47 99.05

MFPD
URL and

HTML
99.41 98.57 99 98.88

Proposed TL_BERT model
URL and

HTML
99.06 99.07 99.07 99.08

 Precise Phishing Detection with Recurrent Convolutional

Neural Network (PDRCNN) [48] is an anti-phishing

technique that employs bi-directional LSTM and CNN, which

in particular rely only on the URL of a particular website.

Although it is a faster and lighter mechanism, it exhibits an

average recall value of 93.78%. HTML Phish [49] is a CNN-

based phishing webpage classification technique that relies

only on the HTML webpage content for classification.

 Out of the seven research works, the following solutions,

WebPhish [12], Phish Det [15], and Multi-dimensional

Features driven by Deep learning (MFPD) [34], adopted both

URL and HTML features for phishing website detection. All

of those approaches employed different means to

automatically extract URL and HTML features in order to

identify malicious websites optimally. In particular, MFPD

outperforms all the other models, reaching a maximum

accuracy of 98.88% and a higher F1 score of 99%. This is

mainly because the model adopted multi-dimensional URL

and web page features that are both statistical and

automatically driven. The only limitation of MFPD is the

model’s reliance on manually crafted URL and HTML

statistical features, along with other extracted features.

Web2Vec [14] is a phishing website detection model that not

only focuses on URL and HTML features but also considers

the DOM structure of the webpage, which makes the model

quite expensive. The model is hybrid in nature, combining the

merits of CNN and bi-directional LSTM, which tends to

produce the highest accuracy among the experimented

models, reaching a value of 99.05%.

 The proposed TL-BERT model achieves a maximum

accuracy of 99.08% with a notable F1 score. Compared to

other models, the proposed model is lightweight and less

computationally intensive. Notably, the model leverages the

training overhead associated with other models since only pre-

trained models for feature extraction have been incorporated.

4.3. Discussion

 The performance of the TL_BERT framework in

comparison to the existing state-of-the-art solutions can be

attributed to its effective adoption of advanced transfer

learning and pre-trained transformer-based contextual

learning. Unlike the existing traditional machine learning

solutions that implement manual feature engineering, the

proposed model leverages a transfer learning adopted

autoencoder and a pre-trained BERT model to automatically

extract significant URL and HTML features of a phishing

website. In comparison to the modern deep learning based

solutions, namely CNN-LSTM, CNN-GRU, and other hybrid

frameworks, TL-BERT exhibits better detection outcomes in

terms of precision, recall, and accuracy metrices. The core

reason behind the stability of TL_BERT lies in the underlying

structure of the proposed framework, which comprises two

Manoj Kumar Prabakaran et al. / IJECE, 13(1), 27-45, 2026

43

lightweight infrastructures: a transfer learning-adopted

lightweight autoencoder model and a base version of a pre-

trained BERT model. This makes the model lightweight and

optimal, making it less prone to structural complexities and

huge training time overhead. This highlights the dominance of

the proposed TL_BERT with respect to the existing anti-

phishing solutions, making it much more suitable for real-time

deployment in an attack-prone environment.

5. Conclusion
 The core objective is to build a lightweight, optimal

model that accurately detects malicious websites with minimal

false alarm rates. In order to meet the fundamental objective,

a transfer learning enabled autoencoder model has been

constructed for the role of automatic URL extraction. The

choice of adopting the TL mechanism is to minimize the

complexity associated with training the AE model for URL

feature extraction. Since the weight parameters of a pre-

trained VAE architecture were transferred to the proposed

traditional AE model, only the decoder part will undergo

training. Hence, the complexity associated with training the

AE for feature extraction is eliminated, leading to a

lightweight infrastructure. Also, for the role of extracting

HTML features from the website, a transformer-based BERT

model is adopted that generates fixed-size context-aware text

embedding vectors through a post-preprocessing mechanism.

However, to reduce the complexity associated with this

process, BERTBASE, a special variant of the BERT

architecture, is adopted, which is a lightweight architecture

capable of generating 512 vectors. The choice of BERTBASE

instead of a BERTLARGE architecture is to reduce the overall

structural complexity of the proposed framework. Both the

generated URL and HTML feature vectors were concatenated

and given to the output layer for classification. This technique

of adopting a based AE model and a base variant of BERT

architecture helps us to ensure that TL-BERT remains

lightweight while maintaining high detection accuracy. The

proposed experimental results show that the TL-BERT

framework achieved a maximum accuracy of 99.08% with a

1.01% false rate. The training time associated with both URL

and HTML feature extraction modules was significantly

reduced due to the use of transfer learning and pre-trained

models, making the model faster and lighter.

 Additionally, the core objective of this research is to build

browser-based add-on software, in which the proposed TL-

BERT model will be deployed for real-time detection of

phishing websites. Once deployed, the model’s ability shall be

periodically analyzed by setting up a feedback loop that logs

the details of misclassified results. This mechanism enables us

to continuously monitor the model’s performance after

deployment, facilitating further training and fine-tuning.

Acknowledgments

 The authors would like to thank Mepco Schlenk

Engineering College for their valuable support and

encouragement throughout this research work.

References
[1] Ike Vayansky, and Sathish Kumar, “Phishing – Challenges and Solutions,” Computer Fraud & Security, vol. 2018, no. 1, pp. 15-20, 2018.

[CrossRef] [Google Scholar] [Publisher Link]

[2] Janos Szurdi et al., “The Long “Taile” of Typosquatting Domain Names,” Proceedings of the 23rd USENIX Security Symposium, San

Diego, CA, pp. 191-206, 2014. [Google Scholar] [Publisher Link]

[3] Anti-Phishing Working Group, “Phishing Activity Trends Report, 3rd Quarter 2024,” Unifying the Global Response to Cybercrime, pp.

1-11, 2024. [Publisher Link]

[4] Tara Baniya, Dipesh Gautam, and Yoohwan Kim, “Safeguarding Web Surfing with URL Blacklisting,” 2015 12th International

Conference on Information Technology - New Generations, Las Vegas, NV, USA, pp. 157-162, 2015. [CrossRef] [Google Scholar]

[Publisher Link]

[5] Steve Sheng et al., “An Empirical Analysis of Phishing Blacklists,” Proceedings of the 6th Conference on Email and Anti-spam (CEAS),

Mountain View, California USA, pp. 1-10, 2009. [CrossRef] [Google Scholar] [Publisher Link]

[6] Ammar Odeh, Ismail Keshta, and Eman Abdelfattah, “Machine Learning Techniques for Detection of Website Phishing: A Review for

Promises and Challenges,” 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), NV, USA, pp.

813-818, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[7] Shamshair Ali et al., “Comparative Evaluation of AI-Based Techniques for Zero-Day Attacks Detection,” Electronics, vol. 11, no. 23, pp.

1-25, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[8] Manu J. Pillai et al., “Evasion Attacks and Defense Mechanisms for Machine Learning-Based Web Phishing Classifiers,” IEEE Access,

vol. 12, pp. 19375-19387, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[9] Naya Nagy et al., “Phishing URLs Detection Using Sequential and Parallel ML Techniques: Comparative Analysis,” Sensors, vol. 23, no.

7, pp. 1-17, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[10] Abdul Karim et al., “Phishing Detection System through Hybrid Machine Learning Based on URL,” IEEE Access, vol. 11, pp. 36805-

36822, 2023. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1016/S1361-3723(18)30007-1
https://doi.org/10.1016/S1361-3723(18)30007-1
https://www.sciencedirect.com/science/article/abs/pii/S1361372318300071
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+long+%E2%80%98Taile%E2%80%99+of+typosquatting+domain+names&btnG=
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/szurdi
https://apwg.org/apwg-q3-report-phishers-target-victims-in-new-intrusive-and-menacing-ways
https://doi.org/10.1109/ITNG.2015.30
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Safeguarding+web+surfing+with+URL+blacklisting&btnG=
https://ieeexplore.ieee.org/abstract/document/7113465
https://doi.org/10.1184/R1/6469805
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%09S.+Sheng+An+empirical+analysis+of+phishing+blacklists&btnG=
https://kilthub.cmu.edu/articles/journal_contribution/An_Empirical_Analysis_of_Phishing_Blacklists/6469805?file=11898359
https://doi.org/10.1109/CCWC51732.2021.9375997
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine+learning+techniques+for+detection+of+website+phishing%3A+A+review+for+promises+and+challenges&btnG=
https://ieeexplore.ieee.org/abstract/document/9375997
https://doi.org/10.3390/electronics11233934
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Comparative+evaluation+of+AI-based+techniques+for+zero-day+attacks+detection&btnG=
https://www.mdpi.com/2079-9292/11/23/3934
https://doi.org/10.1109/ACCESS.2023.3342840
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Evasion+attacks+and+defense+mechanisms+for+machine+learning-based+web+phishing+classifiers&btnG=
https://ieeexplore.ieee.org/abstract/document/10359515
https://doi.org/10.3390/s23073467
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Phishing+URLs+detection+using+sequential+and+parallel+ML+techniques%3A+comparative+analysis&btnG=
https://www.mdpi.com/1424-8220/23/7/3467
https://doi.org/10.1109/ACCESS.2023.3252366
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5BA.+Karim+Phishing+detection+system+through+hybrid+machine+learning+based+on+URL&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5BA.+Karim+Phishing+detection+system+through+hybrid+machine+learning+based+on+URL&btnG=

Manoj Kumar Prabakaran et al. / IJECE, 13(1), 27-45, 2026

44

[11] Alsharif Abuadbba et al., “Towards Web Phishing Detection Limitations and Mitigation,” arXiv Preprint, pp. 1-12, 2022. [CrossRef]

[Google Scholar] [Publisher Link]

[12] Subhash Ariyadasa, Shantha Fernando, and Subha Fernando, “Combining Long-Term Recurrent Convolutional and Graph Convolutional

Networks to Detect Phishing Sites Using URL and HTML,” IEEE Access, vol. 10, pp. 82355-82375, 2022. [CrossRef] [Google Scholar]

[Publisher Link]

[13] Chenguang Wang, and Yuanyuan Chen, “TCURL: Exploring Hybrid Transformer and Convolutional Neural Network on Phishing URL

Detection,” Knowledge-Based Systems, vol. 258, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[14] Subhash Ariyadasa, Subha Fernando, and Shantha Fernando, “Detecting Phishing Attacks Using a Combined Model of LSTM and CNN,”

International Journal of Advanced and Applied Sciences, vol. 7, no. 7, pp. 56-67, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[15] Chidimma Opara, Yingke Chen, and Bo Wei, “Look Before You Leap: Detecting Phishing Web Pages by Exploiting Raw URL and

HTML Characteristics,” Expert Systems with Applications, vol. 236, pp. 1-13, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[16] Stay safe on eBay, eBay. [Online]. Available: https://pages.ebay.com/securitycenter/

[17] Netcraft Anti-Phishing Toolbar, Netcraft. [Online]. Available: https://toolbar.netcraft.com

[18] WOT: Web of Trust – Website Reputation and Security, Web of Trust. [Online]. Available: https://www.mywot. com

[19] Google Safe Browsing: Protecting Users from Phishing and Malware, Google Security Blog. [Online]. Available:

https://safebrowsing.google.com

[20] McAfee SiteAdvisor: Website Safety Ratings and Security Analysis, McAfee Security. [Online]. Available: https://www.mcafee.com/en-

in/safe-browser/mcafee-webadvisor.html

[21] Microsoft Defender SmartScreen: Protection against Phishing and Malware, Microsoft Security. [Online]. Available:

https://learn.microsoft.com/en-us/windows/security/operating-system-security/virus-and-threat-protection/microsoft-defender-

smartscreen/

[22] Forcepoint ThreatSeeker, Forcepoint. [Online]. Available: https://www.forcepoint.com/product/feature/threatseeker

[23] Mahmoud Khonji, Youssef Iraqi, and Andrew Jones, “Phishing Detection: A Literature Survey,” IEEE Communications Surveys &

Tutorials, vol. 15, no. 4, pp. 2091-2121, 2013. [CrossRef] [Google Scholar] [Publisher Link]

[24] Lizhen Tang, and Qusay H. Mahmoud, “A Survey of Machine Learning-Based Solutions for Phishing Website Detection,” Machine

Learning and Knowledge Extraction, vol. 3, no. 3, pp. 672-694, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[25] Doyen Sahoo, Chenghao Liu, and Steven C.H. Hoi, “Malicious URL Detection using Machine Learning: A Survey,” arXiv Preprint, pp.

1-37, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[26] Brij B. Gupta et al., “A Novel Approach for Phishing URLs Detection Using Lexical Based Machine Learning in a Real-Time

Environment,” Computer Communications, vol. 175, pp. 47-57, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[27] Sajjad Jalil, Muhammad Usman, and Alvis Fong, “Highly Accurate Phishing URL Detection Based on Machine Learning,” Journal of

Ambient Intelligence and Humanized Computing, vol. 14, no. 7, pp. 9233-9251, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[28] Ankit Kumar Jain, and B.B. Gupta, “A Machine Learning Based Approach for Phishing Detection Using Hyperlinks Information,” Journal

of Ambient Intelligence and Humanized Computing, vol. 10, pp. 2015-2028, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[29] M.A. Adebowale et al., “Intelligent Web-phishing Detection and Protection Scheme using Integrated Features of Images, Frames and

Text, Frames and Text,” Expert Systems with Applications, vol. 115, pp. 300-313, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[30] Rizka Widyarini Purwanto et al., “PhishSim: Aiding Phishing Website Detection with a Feature-Free Tool,” IEEE Transactions on

Information Forensics and Security, vol. 17, pp. 1497-1512, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[31] Sultan Asiri et al., “A Survey of Intelligent Detection Designs of HTML URL Phishing Attacks,” IEEE Access, vol. 11, pp. 6421-6443,

2023. [CrossRef] [Google Scholar] [Publisher Link]

[32] Huaping Yuan et al., “Detecting Phishing Websites and Targets Based on URLs and Webpage Links,” 2018 24th International Conference

on Pattern Recognition (ICPR), Beijing, China, pp. 3669-3674, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[33] Ali Aljofey et al., “An Effective Detection Approach for Phishing Websites Using URL and HTML Features,” Scientific Reports, vol. 12,

pp. 1-19, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[34] Peng Yang, Guangzhen Zhao, and Peng Zeng, “Phishing Website Detection Based on Multidimensional Features Driven by Deep

Learning,” IEEE Access, vol. 7, pp. 15196-15209, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[35] Wenhao Li et al., “A State-of-the-Art Review on Phishing Website Detection Techniques,” IEEE Access, vol. 12, pp. 187976-188012,

2024. [CrossRef] [Google Scholar] [Publisher Link]

[36] Xi Xiao et al., “CNN–MHSA: A Convolutional Neural Network and Multi-Head Self-Attention Combined Approach for Detecting

Phishing Websites,” Neural Networks, vol. 125, pp. 303-312, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[37] Erzhou Zhu et al., “CCBLA: A Lightweight Phishing Detection Model Based on CNN, BiLSTM, and Attention Mechanism,” Cognitive

Computation, vol. 15, pp. 1320-1333, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[38] Pranav Maneriker et al., “URLTran: Improving Phishing URL Detection Using Transformers,” MILCOM 2021 - 2021 IEEE Military

Communications Conference (MILCOM), San Diego, CA, USA, pp. 197-204, 2021. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.48550/arXiv.2204.00985
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Towards+Web+Phishing+Detection+Limitations+and+Mitigation&btnG=
https://arxiv.org/abs/2204.00985
https://doi.org/10.1109/ACCESS.2022.3196018
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Combining+Long-Term+Recurrent+Convolutional+and+Graph+Convolutional+Networks+to+Detect+Phishing+Sites+Using+URL+and+HTML&btnG=
https://ieeexplore.ieee.org/abstract/document/9848472
https://ieeexplore.ieee.org/abstract/document/9848472
https://doi.org/10.1016/j.knosys.2022.109955
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=TCURL%3A+Exploring+Hybrid+Transformer+and+Convolutional+Neural+Network+on+Phishing+URL+Detection&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0950705122010486
https://doi.org/10.21833/ijaas.2020.07.007
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Detecting+Phishing+Attacks+Using+a+Combined+Model+of+LSTM+and+CNN&btnG=
https://www.science-gate.com/IJAAS/2020/V7I7/1021833ijaas202007007.html
https://doi.org/10.1016/j.eswa.2023.121183
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Look+Before+You+Leap%3A+Detecting+Phishing+Web+Pages+by+Exploiting+Raw+URL+and+HTML+Characteristics&btnG=
https://www.sciencedirect.com/science/article/pii/S0957417423016858
https://pages.ebay.com/securitycenter/
https://safebrowsing.google.com/
https://doi.org/10.1109/SURV.2013.032213.00009
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Phishing+Detection%3A+A+Literature+Survey&btnG=
https://ieeexplore.ieee.org/abstract/document/6497928
https://doi.org/10.3390/make3030034
https://scholar.google.com/scholar?q=A+Survey+of+Machine+Learning-Based+Solutions+for+Phishing+Website+Detection&hl=en&as_sdt=0,5
https://www.mdpi.com/2504-4990/3/3/34
https://www.mdpi.com/2504-4990/3/3/34
https://doi.org/10.48550/arXiv.1701.07179
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Malicious+URL+Detection+Using+Machine+Learning%3A+A+Survey&btnG=
https://arxiv.org/abs/1701.07179
https://doi.org/10.1016/j.comcom.2021.04.023
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Novel+Approach+for+Phishing+URLs+Detection+Using+Lexical+Based+Machine+Learning+in+a+Real-Time+Environment&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0140366421001675
https://doi.org/10.1007/s12652-022-04426-3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Highly+Accurate+Phishing+URL+Detection+Based+on+Machine+Learning&btnG=
https://link.springer.com/article/10.1007/s12652-022-04426-3
https://doi.org/10.1007/s12652-018-0798-z
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Machine+Learning+Based+Approach+for+Phishing+Detection+Using+Hyperlinks+Information&btnG=
https://link.springer.com/article/10.1007/s12652-018-0798-z
https://doi.org/10.1016/j.eswa.2018.07.067
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Intelligent+Web-Phishing+Detection+and+Protection+Scheme+Using+Integrated+Features+of+Images%2C+Frames+and+Text&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0957417418304925
https://doi.org/10.1109/TIFS.2022.3164212
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=PhishSim%3A+Aiding+Phishing+Website+Detection+with+a+Feature-Free+Tool&btnG=
https://ieeexplore.ieee.org/abstract/document/9745933
https://doi.org/10.1109/ACCESS.2023.3237798
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Survey+of+Intelligent+Detection+Designs+of+HTML+URL+Phishing+Attacks&btnG=
https://ieeexplore.ieee.org/abstract/document/10019269
https://doi.org/10.1109/ICPR.2018.8546262
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Detecting+Phishing+Websites+and+Targets+Based+on+URLs+and+Webpage+Links&btnG=
https://ieeexplore.ieee.org/abstract/document/8546262
https://doi.org/10.1038/s41598-022-10841-5
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Effective+Detection+Approach+for+Phishing+Websites+Using+URL+and+HTML+Features&btnG=
https://www.nature.com/articles/s41598-022-10841-5
https://doi.org/10.1109/ACCESS.2019.2892066
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=P.+Yang%2C+G.+Zhao%2C+and+P.+Zeng+Phishing+Website+Detection+Based+on+Multidimensional+Features+Driven+by+Deep+Learning&btnG=
https://ieeexplore.ieee.org/abstract/document/8610190
https://doi.org/10.1109/ACCESS.2024.3514972
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+State-of-the-Art+Review+on+Phishing+Website+Detection+Techniques&btnG=
https://ieeexplore.ieee.org/abstract/document/10788671
https://doi.org/10.1016/j.neunet.2020.02.013
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=CNN%E2%80%93MHSA%3A+A+Convolutional+Neural+Network+and+Multi-Head+Self-Attention+Combined+Approach+for+Detecting+Phishing+Websites&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0893608020300587
https://doi.org/10.1007/s12559-022-10024-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%09E.+Zhu+CCBLA%3A+A+Lightweight+Phishing+Detection+Model+Based+on+CNN%2C+BiLSTM%2C+and+Attention+Mechanism&btnG=
https://link.springer.com/article/10.1007/s12559-022-10024-4
https://doi.org/10.1109/MILCOM52596.2021.9653028
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=URLTran%3A+Improving+Phishing+URL+Detection+Using+Transformers&btnG=
https://ieeexplore.ieee.org/abstract/document/9653028

Manoj Kumar Prabakaran et al. / IJECE, 13(1), 27-45, 2026

45

[39] Katherine Haynes, Hossein Shirazi, and Indrakshi Ray, “Lightweight URL-Based Phishing Detection Using Natural Language Processing

Transformers for Mobile Devices,” Procedia Computer Science, vol. 191, pp. 127-134, 2021. [CrossRef] [Google Scholar] [Publisher

Link]

[40] Nguyet Quang Do et al., “An Integrated Model Based on Deep Learning Classifiers and Pre-Trained Transformer for Phishing URL

Detection,” Future Generation Computer Systems, vol. 161, pp. 269-285, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[41] Mayu Sakurada, and Takehisa Yairi, “Anomaly Detection Using Autoencoders with Nonlinear Dimensionality Reduction,” Proceedings

of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis, Gold Coast Australia QLD Australia, pp. 4-11, 2014.

[CrossRef] [Google Scholar] [Publisher Link]

[42] T. Berners-Lee, L. Masinter, and M. McCahill, “Uniform Resource Locators (URL),” IETF RFC 1738, pp. 1-25, 1994. [CrossRef] [Google

Scholar] [Publisher Link]

[43] Allen Chieng Hoon Choong, and Nung Kion Lee, “Evaluation of Convolutionary Neural Networks Modeling of DNA Sequences Using

Ordinal Versus One-Hot Encoding Method,” 2017 International Conference on Computer and Drone Applications (IConDA), Kuching,

Malaysia, pp. 60-65, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[44] Dor Bank, Noam Koenigstein, and Raja Giryes, Autoencoders, Machine Learning for Data Science Handbook: Data Mining and

Knowledge Discovery Handbook, pp. 353-374, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[45] Shuteng Niu et al, “A Decade Survey of Transfer Learning (2010–2020),” IEEE Transactions on Artificial Intelligence, vol. 1, no. 2, pp.

151-166, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[46] Jacob Devlin et al., “BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding,” Proceedings of the 2019

Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-

HLT), Minneapolis, Minnesota, pp. 4171-4186, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[47] Mustafa Nabeel Salim, and Ban Shareef Mustafa, “A Survey on Word Representation in Natural Language Processing,” AIP Conference

Proceedings: 1st Samarra International Conference for Pure And Applied Sciences, Samarra, Iraq, vol. 2394, no. 1, 2022. [CrossRef]

[Google Scholar] [Publisher Link]

[48] Weiping Wang et al., “PDRCNN: Precise Phishing Detection with Recurrent Convolutional Neural Networks,” Security and

Communication Networks, vol. 2019, pp. 1-15, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[49] Chidimma Opara, Bo Wei, and Yingke Chen, “HTMLPhish: Enabling Phishing Web Page Detection by Applying Deep Learning

Techniques on HTML Analysis,” 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, pp. 1-8, 2020.

[CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1016/j.procs.2021.07.040
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Lightweight+URL-Based+Phishing+Detection+Using+Natural+Language+Processing+Transformers+for+Mobile+Devices&btnG=
https://www.sciencedirect.com/science/article/pii/S1877050921014368
https://www.sciencedirect.com/science/article/pii/S1877050921014368
https://doi.org/10.1016/j.future.2024.06.031
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Integrated+Model+Based+on+Deep+Learning+Classifiers+and+Pre-Trained+Transformer+for+Phishing+URL+Detection&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167739X24003315
https://doi.org/10.1145/2689746.2689747
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Anomaly+Detection+Using+Autoencoders+with+Nonlinear+Dimensionality+Reduction&btnG=
https://dl.acm.org/doi/abs/10.1145/2689746.2689747
https://doi.org/10.17487/RFC1738
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Uniform+Resource+Locators+%28URL%29&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Uniform+Resource+Locators+%28URL%29&btnG=
https://www.rfc-editor.org/info/rfc1738
https://doi.org/10.1109/ICONDA.2017.8270400
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Evaluation+of+Convolutionary+Neural+Networks+Modeling+of+DNA+Sequences+Using+Ordinal+Versus+One-Hot+Encoding+Method&btnG=
https://ieeexplore.ieee.org/abstract/document/8270400
https://doi.org/10.1007/978-3-031-24628-9_16
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%09D.+Bank%2C+N.+Koenigstein%2C+and+R.+Giryes+Autoencoders&btnG=
https://link.springer.com/chapter/10.1007/978-3-031-24628-9_16
https://doi.org/10.1109/TAI.2021.3054609
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Decade+Survey+of+Transfer+Learning+%282010%E2%80%932020%29&btnG=
https://ieeexplore.ieee.org/abstract/document/9336290
https://doi.org/10.18653/v1/N19-1423
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%09J.+Devlin%2C+M.+W.+Chang%2C+K.+Lee%2C+and+K.+Toutanova+BERT%3A+Pre-Training+of+Deep+Bidirectional+Transformers+for+Language+Understanding&btnG=
https://aclanthology.org/N19-1423/
https://doi.org/10.1063/5.0121147
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Survey+on+Word+Representation+in+Natural+Language+Processing&btnG=
https://pubs.aip.org/aip/acp/article-abstract/2394/1/050006/2821770/A-survey-on-word-representation-in-natural
https://doi.org/10.1155/2019/2595794
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=PDRCNN%3A+Precise+Phishing+Detection+with+Recurrent+Convolutional+Neural+Networks&btnG=
https://onlinelibrary.wiley.com/doi/full/10.1155/2019/2595794
https://doi.org/10.1109/IJCNN48605.2020.9207707
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=HTMLPhish%3A+Enabling+Phishing+Web+Page+Detection+by+Applying+Deep+Learning+Techniques+on+HTML+Analysis&btnG=
https://ieeexplore.ieee.org/abstract/document/9207707

