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Abstract - Cybercrimes are growing exponentially in the digital era, and hackers continue to devise sophisticated cyber threats 

to gain unauthorized access. Among them, phishing remains one of the most prevalent and deceptive techniques used to exploit 

unsuspecting users. Although various preventive measures have been proposed by researchers in the past few decades, phishers 

are consistently adopting innovative strategies by deploying different forms of phishing URLs and webpage contents that are 

highly complex to detect in a real-time scenario. To address this issue, this work proposes TL_BERT: An anti-phishing model 

that integrates Transfer Learning (TL) with the Bidirectional Encoder Representations from Transformers (BERT) architecture. 

The model employs TL-adapted Autoencoders for extracting URL-based features and applies the BERT model to capture HTML-

based textual features of a website. Both features are concatenated and classified using a Deep neural Network Model. 

Experiments were conducted on the benchmark dataset ISCXURL2016 dataset, which contains 54300 URL samples. The results 

indicate that TL_BERT attains a detection accuracy of 99.08% with a false positive rate of 1.01%. The optimized selection of 

lightweight architectures makes the proposed model a suitable entity for real-time deployment. 

Keywords - Bidirectional Encoder Representations from Transformers, Hypertext Markup Language, Phishing detection, 

Transfer Learning, Uniform Resource Locator. 

1. Introduction 
 Phishing is a type of cyber-attack in which hackers 

develop illegitimate websites with the malicious intent of 

luring internet users into providing their valuable digital 

assets. In general, Uniform Resource Locators (URLs) of 

those websites are circulated through email across the internet 

society. A naive user who might not be able to discriminate 

between a real and fake website might fall into the trap of 

entering their private credentials, which might result in 

substantial economic and personal loss [1]. Over the years, 

hackers have come up with advanced strategies, such as 

domain name typo squatting or cybersquatting, in which the 

URL being crafted might look almost as close as possible to a 

real-world legitimate URL of a famous entity [2]. As per the 

report generated by Anti-Phishing Working Group (APWG), 

an international consortium that collects phishing-related 

fraudulent information, around 9,32,923 phishing attacks have 

been observed during the third quarter of 2024 alone. The 

most frequently targeted sector seems to be social media 

platforms, contributing 30.5% of all kinds of phishing attacks 

[3]. Initially, a few large-scale organizations, such as eBay, 

adopted the idea of blacklisting to mitigate phishing attacks, 

in which those sites that were identified as unsafe by internet 

users were recorded and displayed for safety purposes as 

blacklisted websites [4]. However, since the number of 

phishing URLs is growing at a rapid pace and phishers are 

generating a dynamic set of phishing websites, it would be 

practically impossible to detect the majority of the phishing 

websites using a blacklist due to its static nature [5].  

 

 In order to combat the dynamic nature of phishing URLs, 

researchers in the recent past concentrated on deploying 

Machine Learning (ML) models to detect the nature of real-

world websites [6]. For this purpose, ML models were trained 

and tested using benchmark datasets that comprise a large 

number of legitimate and phishing URLs. In this way, models 

get to understand the significant nature of URLs instead of just 

verifying the existence of a phishing URL in the database, as 

in the case of blacklisting. This technique overcomes the 

problem of zero-day attacks since ML models understand the 
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structure of URLs based on their statistical, lexical, and 

domain-based features [7]. Extensive research was carried out 

in the recent past to identify the optimal set of features in order 

to reduce the computational overhead. Although state-of-the-

art anti-phishing frameworks based on ML algorithms [8-10] 

have been proposed by researchers in the recent era, there are 

few vulnerabilities associated with ML-based phishing 

website detection, namely a) Reliance on third-party 

assistance for website-based feature extraction, b) Static 

features extracted might not always reflect evolving real-

world phishing URLs since the nature of the URLs is changing 

significantly. c) ML-based models are not suitable for massive 

datasets comprising millions of website URLs [11]. 

 Hence, in order to overcome the issues prevailing in the 

existing ML-based solutions, researchers in the recent past 

incorporated a representation learning mechanism for URL 

feature extraction instead of manual feature engineering [12-

15]. Adoption of an illustration learning mechanism for 

feature extraction using DL based approaches has 

significantly overcome the problems associated with manual 

feature extraction. 

 However, most of the research works incorporating 

representation learning mechanisms have adopted only URL-

based feature extraction, and not many such works have been 

conducted considering the features relevant to the HTML 

contents of a webpage. In order to construct an optimal 

phishing detection framework, both the URL and HTML 

content of a website shall be taken into consideration since 

they might better reveal the nature of the website content.  

 Based on an analysis of recent literature, the following 

key research gaps are identified in existing anti-phishing 

methodologies:  

a) Existing machine learning based phishing detection 

solutions rely on manual feature engineering techniques 

to extract intrinsic URL and HTML characteristics. 

However, this task is tedious since it relies significantly 

on third-party engineering experts for crafting webpage 

features. Also, the handcrafted features do not reflect the 

dynamic nature of the real-world phishing webpage. 

b) Modern deep learning-based phishing detection solutions 

that incorporate representation learning mechanisms 

often adopt advanced Neural Network architectures that 

automatically extract intrinsic URL and HTML features. 

Although this eliminates the reliance on third-party 

assistance, the features obtained using such techniques 

cannot be inferred, and there is a considerable structural 

complexity overhead with respect to the deployed Neural 

Network architecture. 

c) Most of the existing Deep Learning based anti-phishing 

solutions either focus on URL or HTML content of the 

webpage. Not many dedicated research solutions have 

been proposed that concentrate on both the URL and 

HTML content of the webpage for identifying the 

authenticity of the webpage. 

  The above-identified research gaps highlight the key 

limitations associated with the existing anti-phishing solutions 

and underline the significance of an optimal phishing 

detection framework that shall potentially detect phishing 

websites in a real-time environment. 

 Hence, this work focuses on building a lightweight and 

optimal phishing website detection framework that would 

consider the inherent features of both URL and HTML content 

of a website into account. The proposed framework, termed 

“TL-BERT,” is constructed by combining the merits of two 

advanced AI techniques: Transfer Learning (TL) and pre-

trained transformers. Specifically, a lightweight TL-Enabled 

AE (TL_AE) model that receives the trained weight 

parameters of a pre-trained VAE architecture is utilized for 

URL feature extraction, and a base form of BERT model 

referred to as BERTBASE architecture is adopted for HTML 

feature extraction. Both the URL and HTML feature vectors 

obtained from TL_AE and BERT models were then 

concatenated and fed as input to the DNN for training and 

evaluation.  

 The proposed model has been experimented with a 

benchmark dataset that comprises both legitimate and 

phishing URL samples that widely represent various forms of 

real-world URL samples. The experimental results suggest 

that the proposed model possesses the ability to detect real-

world phishing URL samples accurately. TL_BERT 

significantly eliminates the overhead associated with the 

existing manual feature engineering process, as well as 

considers both the URL and HTML features of a website for 

phishing detection. Adoption of a transfer learning mechanism 

and pre-trained transformers for representation learning 

makes the model lightweight and more suitable for real-time 

deployment.   

 The following are the novel contributions of the proposed 

TL_BERT framework: 

a) Adoption of an advanced transfer learning mechanism for 

automatic URL feature extraction. In particular, a 

dedicated autoencoder model has been utilized to capture 

high-level latent space representation of the URL features 

effectively. 

b) Preprocessing intrinsic HTML text content by the 

adoption of a unique HTML preprocessing mechanism 

that involves web scraping, cleaning, splitting, and 

organizing the content. 

c) Adoption of pre-trained BERT transformer architecture to 

automatically extract context-aware text embedding 

vectors. To optimize the overall framework, a lightweight 

BERTBASE model has been utilized. 

d) Implementing a unique concatenation layer in order to 

combine the extracted URL and HTML features  
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 In summary, the proposed framework examines both 

URL and HTML features of a website for the detection of 

phishing websites. The model is constructed with the intention 

of deploying it as a browser add-on application, and hence, 

suitable measures have been taken to keep it lightweight and 

at the same time optimal for real-time deployment. 

 The rest of the chapters are organized as follows: Section 

2 explains the literature survey conducted with respect to 

recent state-of-the-art anti-phishing solutions proposed by 

researchers across the globe. Section 3 details the proposed 

TL-BERT framework with the materials and methods adopted 

to construct the framework. Section 4 provides a detailed 

overview of the experimentations conducted and the results 

observed with respect to various metrics. Section 5 provides 

the conclusion of the entire research work being carried out.  

2. Related Works 
  Phishing website detection has been one of the prominent 

research categories due to the extensive growth of social 

engineering attacks and the ever-growing, complicated attack 

mechanisms. Phishing attacks allow hackers to easily trap 

internet users into entering a fake website and gaining 

unauthorized access to their valuable assets. Also, the 

deployment of phishing attacks shall be easily done through 

the propagation of fake URLs via email and SMS, which shall 

reach millions of users within a few minutes. Over the years, 

the growth of phishing attacks has doubled significantly, 

resulting in substantial economic and personal losses. Hence, 

to mitigate the impact of phishing attacks, a wide array of anti-

phishing solutions has been proposed by researchers that shall 

be broadly categorized based on their detection and learning 

mechanisms.   

Initially, researchers incorporated a static blacklisting 

based phishing detection mechanism that allows users to 

report a webpage based on its authenticity. This technique was 

succeeded by Machine learning based solutions that learns 

discriminative URL and HTML patterns of a website to detect 

the nature of the website. Most recently, advanced Deep 

Learning-based architectures have gained significance due to 

their ability to automatically extract intrinsic URL and HTML 

features without manual feature engineering. 

 This section provides a detailed review of the existing 

anti-phishing solutions, categorized into blacklisting, machine 

learning-based approaches, and representation learning 

oriented deep learning-based mechanisms.The strengths and 

limitations of each anti-phishing technique are thoroughly 

discussed to showcase the significant research gaps addressed 

by the proposed framework. 

2.1. Phishing Website Detection using Blacklisting 

 This section discusses the various anti-phishing 

mechanisms proposed by researchers in the recent past in 

order to overcome the impact of phishing attacks in real-world 

scenarios. One such earlier attempt made was the adoption of 

the blacklisting technique, in which a list of malicious website 

URLs was collected and maintained through the usage of 

various tools and techniques, namely automated web crawlers, 

user reports, security research, etc. Those blacklisted URLs 

were frequently updated and acted as a fundamental source for 

phishing attack detection [4].  

 Due to the simplicity of the blacklisting mechanism, 

many organizations deployed anti-phishing applications based 

on the idea of blacklisting, in which the users of those 

applications are warned when they try to access a website that 

appears in the blacklisted database. In particular, blacklisting 

was implemented in two unique ways: a) Server-side 

Blacklisting and b) Client-side Blacklisting. In the case of 

server-side blacklisting, the inherent features of suspicious 

URLs were kept in the server. Hence, the client shall send a 

query to the server in order to identify the malicious nature of 

a website. Some of the popular existing server-side 

blacklisting tools are as follows: i) eBay toolbar [16] ii) 

Netcraft Toolbar [17] iii) Web of Trust (WOT) [18], iv) 

TrustBar.  

  Similarly, client-side blacklisting was adopted by top 

MNC companies such as Google, Microsoft, etc., in which the 

client keeps the list of malicious websites in its local database 

instead of maintaining it on the server. Some of the popular 

client-side blacklisting tools are as follows: i) Google Safe 

Browsing [19], ii) McAfee Site Advisor [20], iii) Microsoft 

Smart Screen Service [21], iv) Websense Threat Seeker 

Network [22],  

 These toolbars provide security against malicious 

phishing websites by verifying the requested URL with the set 

of blacklisted URLs available in the local database as well as 

on the server. Although blacklisting provides assistance in 

effectively detecting phishing websites, it is pretty impractical 

to maintain an updated list due to the growing number of new 

phishing websites generated by phishers. In particular, it took 

12 hours for 47% to 83% of phishing URLs to appear on the 

phishing websites [23]. It is a significant delay since nearly 

63% of the phishing websites might victimize many users 

within the initial couple of hours. Henceforth, blacklisting is 

always susceptible to zero-day attacks, which is considered to 

be a significant drawback.  

2.2. Phishing Website Detection using Machine Learning 

Algorithms 
 Hence, in order to mitigate the drawbacks associated with 

blacklisting techniques, various researchers concentrated on 

deploying Machine Learning (ML) models for phishing 

website detection. In contrast to the blacklisting technique, 

ML-based approaches incorporated both URL and HTML-

based feature extraction mechanisms that shall further be used 

to train and evaluate a model to classify the nature of real-

world websites [24] effectively. 
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 In relevance to phishing website detection based on URL 

features, many research works were carried out during the past 

decade that focused on two main components of a traditional 

URL, namely Lexical/Statistical and Domain-based feature 

sets [25].  

 One such significant work was proposed by Gupta et al 

[26] in which the ISCXURL-2016 dataset was adopted for 

experimentation. In this work, nine lexical website features 

that represent the structural aspect of a website URL were 

considered for training and evaluation. Among the different 

classifiers, Random Forest achieved the maximum detection 

accuracy of 99.57%. 

 A similar work was conducted by Sajjad et al [27] that 

primarily focused on the behaviors and qualities of website 

URL by analyzing the lexical and domain-based features of a 

phishing website. In particular, the proposed approach utilizes 

the following URL-based characteristics, namely protocol 

scheme, hostname, path area, entropy, suspicious words, etc., 

to analyze the nature of a particular website. Six different 

datasets were chosen for experimentation, and 30 URL-based 

features were considered for training and evaluating the 

adopted ML classifiers. The experimental outcome showcases 

the superiority of the proposed framework, which exhibited 

higher accuracies of 96.25% and 94.65% on Kaggle datasets, 

respectively. 

 Apart from experimenting with standalone ML 

classifiers, a unique approach was proposed by Abdul et al 

(10) in the recent past that proposed a hybrid LSD model 

combining three unique ML classifiers, namely Linear 

Regression, Support Vector Machine, and Decision trees. 

Around 11000 URLs are collected from the Kaggle dataset 

that comprises 33 unique URL attributes representing the 

structural and domain attributes of phishing websites. The 

proposed method achieved 98.12% accuracy, demonstrating 

the effectiveness of URL feature extraction and the hybrid 

mechanism. 

 In addition to URL feature extraction, various research 

works were conducted to detect phishing websites that relied 

on actual webpage content and Hyper Text Markup Language 

(HTML) based features.  

 One of the earlier and effective attempts to detect 

phishing websites by extracting HTML content-based traits 

was proposed by Jain and Gupta [28], which is an entirely 

client-side solution that extracts 12 HTML-based hyperlink-

specific features that represent the characteristics of a 

webpage’s content. Various Machine learning algorithms, 

namely SMO, Naive Bayes, Logistic regression, Random 

Forest, Support Vector Machine (SVM), etc., have been 

experimented with. Among the different classifiers, logistic 

regression achieved a maximum accuracy of 98.42%.  

 Apart from experimenting with hyperlink-based features, 

a noteworthy research work has been conducted by 

Adebowale et al [29] that proposed an intelligent web-

phishing detection using the integrated features of Images, 

Frames, and text. The model achieves a maximum detection 

accuracy of 98.3%. Another significant study relevant to 

HTML-based phishing website detection was carried out by 

Purwanto et al [30], which adopts a parameter-free similarity 

measure that examines the HTML of webpages and computes 

their similarity with known phishing websites, in order to 

classify them. The experimental results have shown that the 

model achieved an AUC score of 98.68% and a 0.58% false 

positive rate, respectively. 

 In addition to implementing phishing website detection 

with respect to URL and HTML-based features separately, a 

few researchers in the recent past proposed anti-phishing 

frameworks that consider both the URL and HTML content of 

a webpage [31]. One of the earlier attempts combining both 

URL and HTML features of a webpage for phishing detection 

has been proposed by Yuan et al [32], which incorporated both 

lexical features of a URL and links and contents in its 

webpage. Experimentations were carried out with a number of 

machine learning models, among which the Deep Forest 

model exhibited the maximum accuracy of 98.3%. 

 Aljofey et al [33] proposed an anti-phishing approach 

similar to [32] that integrates URL, hyperlink information, and 

textual content of a website. Integration of features enhanced 

the detection accuracy of the adopted XGBoost classifier, 

resulting in 96.76% with a lower false positive rate of 1.39%. 

 As per the studies conducted with respect to phishing 

website detection implemented using machine learning, it 

shall be inferred that it is more effective in comparison to the 

traditional blacklisting techniques. However, there are certain 

inherent limitations associated with ML-based phishing 

website detection, namely reliance on engineering experts to 

generate handcrafted URL and HTML features, static feature 

sets that do not reflect the ever-growing dynamic nature of a 

phishing website, and the model’s inability to handle a 

massive volume of datasets [11].  

2.3. Phishing Website Detection using Deep learning 

Algorithms: Automatic Feature Extraction using 

Representation Learning Mechanism 
 In order to overcome the limitations associated with 

existing ML-based anti-phishing solutions, researchers came 

up with the idea of adopting a representation learning 

mechanism in which both URL and HTML features were 

automatically extracted without the reliance on human 

intervention. In order to achieve this, various researchers 

adopted traditional Deep Learning algorithms for feature 

extraction as well as classification.  

 



Manoj Kumar Prabakaran et al. / IJECE, 13(1), 27-45, 2026 

31 

  Yang et al [34] proposed a multi-dimensional feature-

driven anti-phishing solution that incorporates the idea of a 

representation learning mechanism for automatic URL feature 

extraction. In this work, two significant DL models, namely 

Convolutional Neural Network (CNN) and Long Short-Term 

Memory (LSTM), were incorporated to extract URL features 

of a website automatically. Along with those features, 

statistical URL, webpage code, and text features were 

combined and fed as input to the classifier. The model 

exhibited a superior detection accuracy of 98.99%. 

 

 A unique approach combining both the URL and HTML-

based automatic feature extraction mechanism has been 

proposed by Opara et al [15], referred to as Web Phish, that 

accepts URL and HTML source code as input and vectorizes 

them using a tokenizer utility class. Both the URL and HTML 

embedding vectors were concatenated and passed through the 

convolutional layers for classification. The proposed model 

achieved an average accuracy of 98% for three Fully 

Connected layers. 

 

 Although the adoption of traditional deep learning 

models, such as CNN, VAE, LSTM, etc., possesses the ability 

to extract intrinsic URL and HTML features of a website 

automatically, they lack the aptitude to measure the 

importance of the extracted features [35]. In order to overcome 

this, a few researchers in the recent past started incorporating 

transformer-oriented attention mechanisms through which 

features are weighed such that the most important features are 

selected and fed to the classifiers for training and evaluation.   

 

 Xiao et al [36] proposed a novel deep learning network 

that combines the efficacy of CNN and the Multi-Head Self 

Attention Mechanism (MHSA) for effective detection of 

phishing websites. The experimental results proved that the 

adoption of an attention mechanism in the process of weighing 

the extracted feature vectors significantly enhanced the 

detection ability of the classifiers, displaying an overall 

accuracy of 99.84%.  

 

 A similar kind of approach referred to as “CCBLA” was 

proposed by Zhu et al [37] that adopted Bi-LSTM along with 

CNN and attention mechanism in order to perform phishing 

website detection. The proposed model proved to be a 

lightweight entity displaying accurate phishing URL detection 

with minimal time consumption. 

 

 As per the studies conducted, it shall be inferred that 

attention-enhanced Deep Learning Models provided better 

detection outcomes in comparison to traditional deep learning 

models; however, these models typically required training 

from scratch, and they might struggle to generalize across 

diverse phishing patterns. Henceforth, researchers began 

experimenting with pre-trained transformer models and their 

variants, which are already trained with a vast data corpus, 

with the intention of proposing anti-phishing solutions that 

offer high performance with minimal fine-tuning and strong 

transfer learning abilities. 

 

 Maneriker et al [38] proposed URLTran that adopts 

pretrained transformer architectures for improving phishing 

detection. In this work, an existing transformer architecture is 

fine-tuned and pre-trained using URL data. Also, publicly 

available pretrained models such as BERT and RoBERTa 

were fine-tuned on the URL classification task. A cloze-style 

masked language modeling objective is applied to the BERT 

architecture. Each of these fine-tuned pretrained transformers 

was analyzed, and the best among them was finally selected 

as URLTran_BERT. The proposed URLTran produces an 

actual positive rate of 86.80% which is quite optimal. 

 

 Haynes et al [39] proposed a lightweight URL-based 

phishing detection using two state-of-the-art pre-trained 

transformers, namely BERT and ELECTRA. The 

experimental results confirm that the adopted deep 

transformers performed exceptionally well, producing 

detection accuracy values of   96.1% and 96.3% respectively. 

This work signifies the fact that the adoption of pre-trained 

transformers for phishing website detection enhances the 

detection outcome as well as minimizes the amount of time 

taken for training and validation.  

 

 Apart from individually adopting pre-trained 

transformers for phishing detection, an integrated approach 

combining deep learning classifiers along with pre-trained 

transformers has been proposed recently by Do et al [40], 

referred to as RasNet-TCMA-MPNet. In this work, in order to 

analyze the unique nature of phishing website URLs, RasNet 

combines keras embeddings with ResNet. In addition, 

Temporal Convolutional Neural Network (TCN) has been 

incorporated along with Multi-Head Self-Attention for the 

optimization of feature extraction. Also, in order to examine 

the natural language structure of webpage URLs, MPNet has 

been utilized. The proposed model exhibited a maximum 

detection accuracy of 99.71%. However, this work only 

focuses on the URL part of a phishing website and does not 

concentrate on the features associated with the webpage 

content. 

 

3. Materials and Methods 

 In order to address the aforementioned limitations, an 

optimal lightweight phishing detection framework has been 

proposed that integrates the idea of transfer learning with a 

transformer-based architecture that concentrates on both the 

URL and HTML features of a phishing website. The proposed 

TL-BERT framework employs a TL-Enabled Autoencoder 

(TL-AE) model to automatically extract inherent raw URL 

features and Bidirectional Encoder Representation from 

Transformers (BERT) to generate context-aware HTML text 

embeddings. Both the URL and HTML features obtained from 

the TL-enabled AE and BERT models were concatenated and 

then fed as input to a traditional Deep Neural Network (DNN) 
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model for training and evaluation. Figure 1 depicts the 

architecture of the proposed TL-BERT model.  

 The proposed model is constructed by integrating two 

intelligent approaches for feature extraction and a neural 

network model for classification: 

i) A traditional Auto Encoder (AE) model constructed based 

on a transfer learning mechanism that is dedicated to 

automatic feature extraction from preprocessed raw URL 

inputs.  

ii)  Bidirectional Encoder Representations from 

Transformers (BERT) is a transformer-based deep 

learning model deployed for extracting valuable features 

from preprocessed HTML-based web content.  

 

3.1. URL Feature Extraction using Autoencoders 

 According to a study conducted by [41], it can be inferred 

that AE models are well-suited for dimensionality reduction 

and feature extraction processes. Hence, considering the 

reconstruction ability of the AE model, a special form of AE 

architecture has been adopted, which incorporates transfer 

learning techniques to automatically extract raw URL 

features.  

 

3.1.1. URL Preprocessing 

 The input URLs, which are in the form of text data, have 

been converted into fixed-size numerical vectors based on the 

One Hot Encoding (OHE) mechanism. OHE converts every 

character in a URL string into a fixed-size vector 

representation. For each character in the URL string, a vector 

is produced with respect to [42], which states that a Uniform 

Resource Locator (URL) of a website shall be formed based 

on 84 unique characters, including alphabets, digits, and 

special symbols. Hence, a corpus is generated with those 84 

characters, each individually indexed.  

 For every character in the URL, an OHE vector of size 84 

is generated, which contains 83 ‘0’ values, and based on the 

index position with respect to the corpus, a ‘1’ value is 

generated in accordance. Since neural network models expect 

the input vectors to be of uniform size, i.e., all URLs should 

have equivalent N * M dimensions, where N denotes the 

length of the URL and M represents feature representation 

size, based on [43], the M value is set to 84 uniformly. In 

contrast, N is determined by calculating the average length of 

all the URLs in the input dataset.  

 
Fig. 1 Proposed TL-BERT architecture

 Around 50000 URLs are available in the dataset, of which 

the average lengths of all the URLs were found to be 72. 

Hence, the N value is fixed to be 72 in this work.  

For those URLs whose length is shorter than 72, the remaining 

positions of the vector will be padded with 0s, and for those 

whose length exceeds 72, trimming is done to trim off those 

extra characters in the URL. Finally, after preprocessing the 

input URLs, a numerical vector of dimension N *M is 

obtained, where N = 72 and M = 84, respectively. 

3.1.2. Autoencoders as Feature Extractors 

 Figure 2 depicts the detailed workflow of the proposed 

feature extraction module. The preprocessed numerical 

vectors of individual URLs are collectively fed as input to the 
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feature extraction module. As already suggested, a traditional 

AE model is employed for the process of URL feature 

extraction. An autoencoder model [44] is a variant of Neural 

Network Architecture that encompasses three main layers: a) 

encoder, b) latent space, and c) decoder. The basic principle 

behind the AE model is to receive input data and produce an 

output that is a reconstructed form of the input data.  

 The AE model is structured by stacking three layers 

sequentially, namely the encoder layer, the latent space, and 

the decoder layer. The encoder part of the AE model is 

structured as follows: It consists of an input layer, three hidden 

layers, and an output layer. The number of units in the input 

layer of the encoder is set to be 84, since it should match the 

preprocessed URL vector dimension.  

 Hidden layer 1 consists of 80 neuron units, followed by 

hidden layer 2 containing 70 units and hidden layer 3 holding 

64 units, respectively. The number of units in the latent space 

layer of AE is set to be 20. The decoder part of AE is 

constructed in the reverse manner with respect to the encoder 

part of the model, as shown in Figure 2. 

 The primary steps involved in training an AE model are 

as follows: 

1. The preprocessed URL vectors are fed as input to the 

encoder layer, where the data gets forwarded to the 

intermediate hidden layers and finally to the output layer. 

2. The output of the encoder part is a dimensionally reduced 

input vector, which gets stored in the latent space or 

bottleneck layer of the architecture. 

3. The units in the latent space region are then forwarded as 

input to the decoder part of the model. Here, the vectors 

are decompressed by passing through a set of hidden 

layers to the output layer. 

4. The output layer produces a URL vector that is of the 

same dimension as the original input vector. 

5. Reconstruction error is calculated based on the difference 

between the input vector and the reconstructed output 

vector. Based on the loss value obtained, the weights of 

the decoder and encoder are adjusted during the 

backpropagation process.  

6. Once the reconstruction loss is optimally minimized, the 

training process is halted. 

 

 After the completion of training, the dimensionally 

reduced latent space vectors shall be extracted and provided 

as one of the inputs to the classification layer in the TL-BERT 

model. The latent space vectors are taken into account since 

they contain dimensionally reduced abstract higher-level 

representations of the input data. 

 

 However, instead of training an AE model using a bunch 

of real-world URLs from scratch, a special technique is 

adopted that eases the training process of the model, such that 

valiant features are extracted at less computational cost and in 

a limited time duration. 

 
Fig. 2 Detailed workflow of the feature extractor module 

 In order to speed up the training duration of the model, an 

advanced machine learning technique referred to as Transfer 

Learning (TL) is adopted. In TL [45], a pre-trained model that 

has been exposed to a massive dataset for a unique task shall 

be used as the initiating point to train a particular model. 

Instead of making use of one of the existing pre-trained 

models, a self-built Neural Network Model that has already 

been trained with a vast number of real-world URLs is 

incorporated as an initiator to train the AE architecture. The 

architecture utilizes a Variational Autoencoder (VAE) 

framework. Specifically, the encoder weights from the pre-

trained VAE model described in are transferred to the AE 

encoder in this study to leverage previously optimized feature 

extraction capabilities. VAE model, in particular, was trained 

with a custom dataset consisting of 1 48 960 URL samples, 

out of which 74,480 are real-world phishing URLs and the 

remaining 74,480 are generated adversarial phishing samples. 

For generating the adversarial URL samples, a special form of 

generative modeling technique referred to as Generative 

Adversarial Network (GAN) is implemented. The GAN 

model was being trained for around 5000 epochs to generate 

fake phishing samples, which in turn were combined with real-

world phishing URLs collected from benchmark datasets to 

train the VAE architecture.  

  Considering the merits of the constructed VAE model 

with respect to the number of training samples and its 
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exposure to adversarial URL inputs, a transfer learning 

mechanism is adopted in which the encoder part of the VAE 

architecture is completely transferred, along with the updated 

weights to the proposed AE model. 

 The encoder part of the VAE model, comprising an input 

layer, three hidden layers, an output layer, and the latent space 

layer, is entirely replicated along with the updated weights in 

the AE architecture. For training the TL-enabled AE model, 

around 50,000 URL samples are collected from benchmark 

datasets. The number of epochs is set to be 50. The learning 

rate is fixed at 0.001. The Adam optimizer is used as the 

optimization technique. The mean square error is used as the 

loss function to calculate the reconstruction error. The encoder 

part is frozen for the initial 35 epochs, and only the decoder 

part undergoes back propagation, i.e., the weights are adjusted 

only for the decoder layer units initially. For the remaining 15 

epochs, both the encoder and decoder units undergo weight 

updates. 

3.2. HTML Feature Extraction using Pre-Trained 

Transformers 
 Numerous existing solutions [28-30] in relevance to 

HTML-based phishing website detection have been proposed 

by various researchers in the recent past, which dictated the 

significant role of HTML features in the classification 

outcome. Considering the merits of the automatic HTML 

feature extraction technique as well as the complexities 

associated with representation learning, a transformer-based 

model is deployed to automatically extract context-based text 

embedding of webpage content.  

3.2.1. HTML Preprocessing 

 The following steps are performed to preprocess the 

webpage content into a clean format before being fed to the 

transformer model for feature extraction. 

 Initially, web scraping is done by implementing 

BeautifulSoup, a Python library that shall be imported 

from the BS4 package. This enables us to parse HTML 

documents in a user-friendly manner. 

 Once the HTML documents are parsed, the source code 

content of the respective webpage will be retrieved. From 

the source code, script and style tags are ripped off, and 

the relevant text contents are extracted alone using the 

get_text () method associated with the BS library. 

 After extracting the text content, those texts are broken 

into separate lines by removing leading and trailing 

spaces on each sentence and further split into individual 

chunks. 

 Finally, a dictionary is generated with a key as URL and 

values in the form of a nested list comprising line-by-line 

text extracted from chunks using the splitlines () method. 

 In order to make each entry in the dictionary of uniform 

length, suitable threshold values, say ‘T are identified that 

set the fixed length for all the webpage text content. Based 

on the experimentation conducted, the T value was fixed 

to be 500. Hence, those website contents whose text 

length exceeded the T value were trimmed off, and those 

having a length shorter than the T value were padded with 

additional 0’s for compensation. 

   

 Once the preprocessing stage is finished, a dictionary is 

obtained with key and value pairs, where key denotes the 

individual URLs in the dataset and values represent the 

preprocessed webpage content organized in the form of a 

multi-dimensional list with uniform length.  

 To extract the intrinsic features of a webpage context with 

respect to contextual embedding, this work incorporates 

BERT (Bidirectional Encoder Representations from 

Transformers). This pre-trained language model uses the 

Transformer architecture [46]. In particular,  BERTBASE, a pre-

trained model that comprises 12 encoders stacked together 

linearly, has been implemented. The encoder part of the model 

constitutes a feed-forward network layer containing 768 

neuron units and 12 attention heads.  

 

Fig. 3 BERTBASE architecture 

 

The working principle of a BERT model is as follows: 

 Initially, the model receives input in the form of text 

tokens. Here, each word or sentence in a text shall be 

considered an individual token. 

 The first input token for any form of input is a [CLS] 

token that refers to classification. 
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 Followed by the input token, either a sequence of words 

or a sentence, depending on the requirement, shall be fed 

as input to the model, which would flow up through the 

stack of encoders in the respective BERT model. 

 In each layer, there are ‘n’ numbers of self-attention heads 

that apply a self-attention mechanism to calculate the 

attention weights of each token and further pass the 

attention score calculated through the FFN layer. 

 The FFN layer finally hands over the obtained output data 

to the next encoder in the stack. 

 Each input token produces an output vector of a different 

size depending on the BERT variant. 

 Figure 3 depicts the architecture of the adopted BERTBASE 

along with the internal structure of the encoder part associated 

with the model.   

 The BERTBASE model has been implemented using the 

TensorFlow library, which is available in Python. The model 

has been downloaded from the following URL: 

https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-

4_H-512_A-8 , and a respective preprocessing URL that 

indulges in text preprocessing has been downloaded from 

https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3. 

Algorithm 1 explains the steps involved in extracting HTML 

features using the BERT model. 

 Figure 4 represents the detailed representation of HTML 

feature extraction using the adopted BERT model. Initially, 

the preprocessed HTML data, which is in the form of a 

dictionary, is fed as input to the BERTBASE model for feature 

extraction. The dictionary contains a key-value pair where the 

key points to a particular URL in the input dataset and the 

value denotes the preprocessed textual web content organized 

as a multi-dimensional list. 

  The keys in the dictionary are iterated, and the text values 

of a particular URL are fed line by line as input to the BERT 

model. This model comprises a sequence of 12 encoders. The 

preprocessed HTML feature vectors were passed sequentially 

onto all 12 encoders with a CLS and SEP tag at the initial 

layer. For each line, a contextual embedding vector of size 512 

is generated.  

 Since the length of the webpage content ‘T’ was fixed 

uniformly as 500, an output vector of dimension 500 * 512 

will be generated for each website URL available in the input 

dataset. The obtained HTML features based on the BERT 

model play a vital role in phishing website detection since 

those features are based on the context in which a particular 

text is present. 

Algorithm 1 HTML feature extraction using BERT 

 from bs4 import BeautifulSoup 

 html = fetch_html_from_url(url) 

 soup = BeautifulSoup(html, 'html.parser') 

 text_content = soup.get_text() 

cleaned_content= 

remove_unwanted_elements(text_content) 

 lines = split_into_lines(cleaned_content) 

 data_dict = {url: lines} 

 return data_dict 

 //Generating feature vectors using BERT 

 HTML_vectors=[ ] 

 for key in data_dict: 

  output_vector = [] 

for layer in bert_model.encoders: 

attention_weights = self_attention_mechanism(token, 

layer) 

 attention_scores = ffn_layer(attention_weights) 

output = attention_scores 

output_vector.append(output) 

HTML_vectors.append(output_vector) 

3.3. Deep Neural Network (DNN) Model for Classification 

 The final layer of the proposed TL-BERT architecture 

incorporates a Deep Neural Network (DNN) model that is 

tasked with classifying legitimate and phishing websites. 

DNN receives its input from the feature vectors extracted from 

both the AE and BERT models. Both the URL and HTML 

feature vectors were concatenated and produced as a 

combined numerical vector for the DNN model for URL 

prediction.  

 
Fig. 4 HTML feature extraction using BERT 
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 The extracted URL feature vector is of dimension N * M, 

where N = 72 and M = 20, respectively. HTML feature vectors 

obtained through the BERT model are of dimension L * Z, 

where L = 500 and Z = 512. Before feeding these features into 

the classifier for prediction, they need to be flattened into a 

single input vector of dimension [Ui, Xi, Yi], where Ui 

denotes a particular URL in the input dataset, Xi is calculated 

as 572, which is obtained by adding N and L values. In 

contrast, Yi is set to 532 by summing up M and Z values. 

 The flattened vector [Ui, Xi, Yi] shall be produced as 

input to the proposed DNN model for URL classification. The 

adopted DNN model is structured as follows: It consists of an 

input layer, four hidden layers, and an output layer. The 

number of units in the input layer is fixed at 532, 

corresponding to the dimension of the input URL vector. Four 

hidden layers comprise 512, 256, 128, and 64 neuron units. 

The output layer contains two units for binary classification 

purposes. Figure 5 depicts the detailed representation of the 

classification layer. 

 
Fig. 5 Classification layer 

 Initially, the input dataset is split into training and testing 

samples. The ratio of training and testing data was fixed at 

80:20. The DNN model undergoes supervised training in 

which it receives a combined URL and HTML features along 

with its label values. The number of training epochs was set to 

50, and the learning rate of the model was fixed at 0.001.  

 The input vectors were passed through the set of hidden 

layers and finally to the output layer. The loss value is 

estimated by calculating the difference between the predicted 

and actual output. A negative log-likelihood loss function has 

been adopted to estimate the loss value. Batch normalization 

was done based on a dropout mechanism. Furthermore, to 

prevent overfitting, a dropout mechanism is implemented, 

whereby specific neuron units are randomly dropped during 

the training process. Also, to ensure optimal training, the batch 

size was fixed at 100. The Adam optimizer was used to 

optimize the loss function. At every intermediate layer, the 

Rectified Linear Unit (ReLU) was used as the activation 

function, except for the output layer, in which the Log-

Softmax function was used as an activation function for 

calculating the probabilistic outcome. 

 Finally, to ensure the efficient training of DNN without 

complex computations, the concept of early stopping was 

implemented in order to cease the training process whenever 

the validation loss stopped improving. Once the training is 

completed, the model is exposed to the testing data samples 

for detecting malicious URL samples. 

4. Experimental Results and Analysis 

4.1. Dataset Description 

 Raw URL samples have been collected from the 

following two benchmark datasets, namely Alexa Top 

Website and ISCX URL 2016, for the purpose of training the 

proposed TL-BERT model. The dataset comprises 54300 

URL samples extracted from the above-mentioned benchmark 

resources. The constructed dataset is a balanced mixture of 

legitimate and phishing URL samples. 

 The legitimate URL samples were crawled from Alexa 

(Source: www.alexa.com), a web traffic analysis company 

owned by Amazon that provides information and rankings on 

the popularity of websites. It determines website rankings 

based on factors such as daily unique visitors, page views, and 

average time spent on the site. Also, it provides a list of the 

top websites globally and for specific countries, along with 

additional analytics and insights. Exactly 29870 URLs were 

crawled from the Alexa website during the time period of 

March 2023. Phishing samples were collected from the ISCX 

URL 2016 dataset (Source: https://www.unb.ca/cic/datasets/ 

url-2016.html), which comprises four variants of phishing 

URLs, namely spam, phishing, and defacement URLs. Out of 

these 4 variants, 24430 phishing URLs were randomly 

collected to form the list of phishing URLs in the dataset. 

 The dataset was split into training and testing data, of 

which 70% of the input data was considered for training 

purposes and the remaining 30% for testing. A total of 16290 

URL samples were used for evaluating the proposed model, of 

which 8961 were benign, and 7329 were malicious. 

 In order to accurately assess the performance of the 

proposed model, various measures were taken into 

consideration, namely the accuracy curve, loss curve, 

confusion matrix, precision, recall, F1 score, True Positive 

Rate (TPR), True Negative Rate (TNR), False Positive Rate 

(FPR), False Negative Rate (FNR), and Area Under the ROC 

(AUC-ROC) curve. 

 The experimental setup comprises Google Colab Pro, a 

cloud-based Jupyter notebook environment, which provides a 

seamless and setup-free platform for conducting the 

experiments. Google Colab Pro offers several advantages, 

including access to powerful hardware resources and GPU 

acceleration. Specifically, the experiments made use of the 

Tesla V100 PCIe GPU accelerator, which is known for its high 

performance in deep learning tasks. This GPU has a staggering 

14 TFLOPS (Tera Floating-Point Operations Per Second) of 

computational power, allowing for efficient and fast model 

http://www.alexa.com/
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training and evaluation. Additionally, the Tesla V100 boasts a 

substantial memory bandwidth of 900 GB/sec, enabling 

smooth data transfer and processing. To complement the 

powerful GPU, Google Colab Pro provided generous system 

specifications. The setup included a sizable 125GB HDD, 

which allowed for ample storage of datasets, model 

checkpoints, and experimental outputs. Moreover, the system 

provided 25GB of memory, ensuring sufficient space for 

running memory-intensive tasks and accommodating large-

scale models and datasets. 

4.2. Design of Experimentation and Result Analysis 
 Experiments were conducted in different phases to 

analyze the importance of both URL and HTML features in 

the effective classification of malicious URLs. In each phase, 

the impact of URL and HTML features with respect to 

classifier accuracy was analyzed by experimenting with 

different feature extraction strategies. The following are the 

three phases in which the experiments were carried out: 

 Impact analysis of the proposed TL-BERT model with 

respect to URL features alone (Phase 1). 

 Impact analysis of the proposed TL-BERT model with 

respect to HTML features alone (Phase 2). 

 Impact analysis of the proposed TL-BERT model with 

respect to both the URL and HTML features (Phase 3). 

 Lightweightness evaluation of the proposed TL_BERT 

model (Phase 4) 

 Evaluation of the proposed TL-BERT model against the 

existing state-of-the-art anti-phishing approaches that 

employed representation learning techniques (Phase 5). 

4.2.1. Phase 1- URL Feature Analysis 

 In this phase, the HTML feature extractor module of the 

proposed framework is excluded, and only the URL feature 

extractor and classifier are considered for experimentation.  

 Hence, minor alterations have been made with respect to 

the dimensions of the features extracted from the TL-assisted 

AE model. The classifier’s input layer is composed of 532 

units, which were purposefully fixed with respect to the 

combined input size of both URL and HTML features. Since 

only URL features are dealt with alone in this experiment, 

which are of dimension L * 20 (L specifies the uniform length 

of a particular URL), it is mandatory to align the URL feature 

size with the classifier’s input layer size. Hence, a padding 

mechanism is adopted for compensation in which the required 

number of zeroes is padded to produce a URL feature vector 

of dimension L*532. Although padding is applied, the 

inherent features extracted by the extractor remain unchanged. 

These features were then fed as input to the classifier for 

training and evaluation.  

  In this experimental phase, the TL-assisted AE model is 

taken into account without changing its structure with respect 

to the original proposed TL-BERT model. The performance 

of the model designed with respect to URL features alone has 

been measured using the following two metrics: accuracy 

curve and confusion matrix. 

 Figure 6 (a) and 6 (b) represent the accuracy curve and 

confusion matrix for the experimented TL-enabled AE-DNN 

model. As can be inferred from the results, the model reaches 

a maximum accuracy of 97.5%. The number of false positives 

acquired was 212 out of the 7329 malicious URL samples, and 

the number of false negatives obtained was 196 out of the 

8961 benign samples.  
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Fig. 6 (a) Accuracy curve of TL-Enabled AE-DNN,  

(b) Confusion matrix of TL-Enabled AE-DNN. 

 The model exhibits a better outcome with the URL 

features alone, and this is mainly due to the adoption of 

transfer learning techniques in the feature extraction process. 

In order to stress the effect of adopting transfer learning in 

URL feature extraction, a separate experiment was carried out 

in which the role of TL was excluded from the picture. In this 

process, the traditional autoencoder was trained from scratch 

without leveraging the trained weight initialization technique. 

In the TL-disabled AE architecture, both the encoder and 

decoder parts of the AE model undergo weight updates during 

the entire training process. No weights were transferred from 
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any pre-trained models. Once the training process is 

completed, the latent space feature vectors are fed as input to 

the DNN for URL classification. 

 The performance analysis of the features extracted with 

respect to the traditional AE model is measured based on a 

similar metric adopted for the TL-enabled AE model. Figure 

7(a) and 7(b) depict the accuracy curve and confusion matrix 

for the TL-disabled AE-DNN model. 
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Fig. 7 (a) Accuracy curve of TL-Disabled AE-DNN,  

(b) Confusion matrix of TL-Disabled AE-DNN. 

 As per the results obtained, it can be found that the 

detection accuracy of the model reaches a maximum of 92.5%. 

However, the number of false positive and false negative 

samples was significantly higher when compared with the 

previous case. The model acquires a false positive rate of 

6.49%, which is quite large. 

4.2.2. Phase 2- HTML Feature Analysis 

 In the proposed TL-BERT architecture, along with the 

HTML embedding vector, the URL feature vectors were 

concatenated to produce the input. Instead, in this 

experimental phase, the URL features were ignored for 

experimental purposes, and only the BERT-generated 

embedding vector of dimension 500*512 was taken into 

account for analysis. Since the input layer of the DNN model 

comprises 532 neuron units, a padding mechanism is adopted 

in the HTML embedding vector to compensate for the size of 

the DNN input layer. Hence, the additional 20 spaces are 

allocated to the BERT embeddings and populated with 0s.  

 Apart from adopting the BERT text embedding 

mechanism, there are various other real-world text embedding 

techniques that can convert real-world text data into fixed-size 

numerical vectors. Hence, in this experimental phase, five 

different text embedding mechanisms were experimented with 

apart from BERT to assess the quality of the text-based 

features obtained with respect to individual techniques in the 

effective identification of phishing websites, namely Term 

Frequency – Inverse Document Frequency.  

(TF-IDF), Bag of Words (BoW), Global Vector For Word 

representation (Glove), Word2Vec, and Fast Text  [47]. Figure 

8 describes the detailed performance analysis of each text 

embedding technique with respect to precision, recall, F1 

score, and accuracy metrics.  

 From the experimental results obtained, it can be 

observed that out of all the text embedding techniques, the 

adopted BERT architecture exhibits the best outcome in terms 

of precision, recall, and F1 score. BERT reaches a maximum 

F1 score of 0.98, which is the highest among all the other text 

embedding techniques. This clearly suggests that context-

aware embedding vectors play a significant role in describing 

the nature of the content of a particular website. Apart from 

BERT, glove-generated embedding vectors lead to a better 

detection accuracy of 96.1%, which is the second highest 

among all the experimented models. However, the precision 

and recall values obtained for the glove model with respect to 

phishing samples were not optimal. 

 In contrast, the TF-IDF-based feature vector delivers the 

least detection accuracy of 91.5% with a lower precision and 

recall value in comparison to other techniques. Both 

Word2Vec and FastText produce similar kinds of results, 

exhibiting an average F1 score of 0.95. Table 1 summarizes 

the performance outcomes of the various text embedding 

techniques. 

Table 1. Performance outcome of various text embedding techniques 

Text 

embedding 

techniques 

Precision Recall 
F1-

score 

Accuracy 

(%) 

TF-IDF 0.9135 0.9153 0.9143 91.49 

BoW 0.9501 0.9470 0.9483 94.90 

Word2Vec 0.9507 0.9501 0.9504 95.10 

FastText 0.9568 0.9562 0.9565 95.70 

Glove 0.9607 0.9603 0.9605 96.10 

BERT 0.9807 0.9808 0.9809 98.10 
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 The following are the inferences obtained after 

experimenting with different text embedding techniques: a) 

TF-IDF does not capture the semantic relationships between 

words and may struggle to handle out-of-vocabulary words. b) 

Both Word2Vec and FastText were memory-intensive and 

consumed more data to train. c) Glove is effective at capturing 

semantic relationships between words and can handle out-of-

vocabulary words. However, the drawback associated with 

Glove is that it is memory-intensive and requires a significant 

amount of data. d) BERT captures the contextual meaning of 

words by considering the entire input sentence, leading to 

better representation of word meanings in natural language 

processing tasks. 

 Precision Recall F1-score 

Benign 0.932321 0.911617 0.921853 

Phishing 0.894793 0.919089 0.906778 

Accuracy 0.914979 0.914979 0.914979 

Macro avg 0.913557 0.915353 0.914315 

Weighted 

avg 
0.915437 0.914979 0.915071 

 
Performance outcome of TF-IDF + 

DNN 
(a) 

 

 Precision Recall F1-score 

Benign 0.941656 0.967191 0.954253 

Phishing 0.95851 0.926729 0.942352 

Accuracy 0.948987 0.948987 0.948987 

Macro avg 0.950083 0.94696 0.948302 

Weighted 

avg 
0.949239 0.948987 0.948898 
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 Precision Recall F1-score 

Benign 0.95838 0.96362 0.960993 

Phishing 0.95522 0.948833 0.952016 

Accuracy 0.956967 0.956967 0.956967 

Macro avg 0.9568 0.956227 0.956504 

Weighted 

avg 
0.956958 0.956967 0.956954 

 
Performance outcome of FastText + 

DNN 
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 Precision Recall F1-score 

Benign 0.953042 0.95804 0.955535 

Phishing 0.948366 0.942284 0.945315 

Accuracy 0.950952 0.950952 0.950952 

Macro avg 0.950704 0.950162 0.950425 

Weighted 

avg 
0.950938 0.950952 0.950937 

 
Performance outcome of Word2Vec 

+ DNN 
(d) 

 Precision Recall F1-score 

Benign 0.96286 0.966298 0.964576 

Phishing 0.958613 0.954428 0.956516 

Accuracy 0.960958 0.960958 0.960958 

Macro avg 0.960737 0.960363 0.960546 

Weighted 

avg 
0.960949 0.960958 0.96095 

 
Performance outcome of Glove + 

DNN 
(e) 

 Precision Recall F1-score 

Benign 0.982918 0.98248 0.982699 

Phishing 0.97859 0.979124 0.978857 

Accuracy 0.98097 0.98097 0.98097 

Macro avg 0.980754 0.980802 0.980778 

Weighted 

avg 
0.980971 0.98097 0.98097 

 
Performance outcome of BERT + 

DNN 
(f) 

Fig. 8 Precision, recall, F1 score, and accuracy of various text 

embedding techniques. Panels show, (a) TF-IDF, (b) BoW, (c) FastText, 

(d) Word2Vec, (e) GloVe, and (f) BERT. 

 In a nutshell, it can be summarized that the adoption of 

BERT to generate context-aware embedding of HTML text 

content results in optimal phishing website detection in 

comparison to all the other text embedding mechanisms. 

4.2.3. Phase 3- Analysis of Proposed TL-BERT Model 

 The core objective of this research is to deploy an AI-

assisted phishing website detection mechanism that optimally 

identifies malicious URLs in a real-world environment. To 

enhance the detection ability of the proposed model, this 

research intends to enrich the detector with both the URL and 

HTML features of a particular website. In the previous two 

phases of experimental analysis, URL and HTML features 

were individually experimented with to study their impact on 

the model’s classification ability. In this phase, the core task 

is to analyse the proposed TL-BERT model, which actually 

combines both URL and HTML features obtained by 

employing the TL-enabled AE and BERT models. The 

following experiments have been carried out in phase 3 of the 

experimental analysis: 

 Initially, the proposed TL-BERT model is experimented 

with the input dataset, and the detection ability of the 

model is assessed using accuracy and a loss curve. 

 To further showcase the optimality of the TL-BERT 

architecture, additional experiments were conducted to 

compare the performance outcomes of the model with 

those of the models constructed in the previous two 

phases (TL-AE DNN and BERT + DNN). The outcomes 

were analysed using the following metrics: TPR, TNR, 

FPR, and FNR. 
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 In order to validate the combined effect of URL and 

HTML in website classification, a study is conducted 

by constructing an AuC-ROC curve that examines the 

classification ability of the model with respect to URL, 

HTML, and URL+HTML. 

 Figure 9 demonstrates the accuracy and loss curve 

obtained for the proposed TL-BERT model, and the results 

clearly suggest that the proposed model performed 

predominantly well, reaching a maximum accuracy of 

99.08%. Although the model struggled to classify the URLs in 

the initial epochs of the training process, it can be witnessed 

that after a very few epochs, the model adapted in accordance. 

This is mainly due to the adoption of pre-trained models to 

extract URL and HTML features. 

 Additional experiments were conducted to evaluate the 

performance of the proposed model with respect to the models 

constructed in the previous two phases. Table 2 presents the 

performance analysis of the models in all three phases, 

specifically with respect to TPR, TNR, FPR, and FNR. 

 

Table 2. Performance analysis of TL-BERT with respect to phase 1 and phase 2 models 

Proposed models 
True Positive Rate 

(TPR) 

False Positive 

Rate (FPR) 

True Negative Rate 

(TNR) 

False Negative Rate 

(FNR) 

TL-AE + DNN 97.81% 2.89% 97.11% 2.19% 

BERT + DNN 98.25% 2.09% 97.91% 1.75% 

TL-BERT+DNN 99.15% 1.01% 98.99% 0.85% 

 With respect to the URL features (TL-AE+DNN), 

although the classifier exhibits a decent TPR and TNR value, 

there is a significant increase in the FPR value, and this is 

mainly because focusing only on URL features might lead the 

model to misclassify specific malicious URLs as legitimate 

ones. As can be observed, the TL-AE model reached an FPR 

of 2.89%, which is the highest among the experimented 

models. 
 

 In the case of HTML features (BERT+DNN), the 

performance outcome was better when compared with the URL 

features. The model exhibits lower FPR and FNR values of 2.09 

and 1.75%, respectively. This outcome is achieved on the basis 

of the context-aware embedding mechanism that leads the 

classifier to understand the contextual information of HTML text 

content to precisely identify malicious websites. As can be 

witnessed from Table 2, the proposed TL-BERT architecture 

displayed an excellent outcome in terms of correctly identifying 

benign and malicious URLs. The model acquired the lowest FPR 

and FNR values of 1.01% and 0.85%, which is considered to be 

quite decent for the quantity of URLs taken for evaluation.  
 

 
(a) 

 

 
(b) 

Fig. 9 (a) Accuracy curve of the TL-BERT Model,  

(b) Loss curve of  TL-BERT Model. 

 Figure 10 shows the AuC-ROC curve of the proposed model 

for both TL-AE and BERT. This analysis was done to ensure 

the trade-off between sensitivity and specificity of the 

experimental models.  

 The ROC curve clearly suggests that the proposed TL-

BERT model delivers the maximum AuC score of 0.98, which 

is almost closer to 1. This shows the ability of the model to 

effectively classify benign and malicious websites.  

 Combining the merits of both URL and HTML features 

results in effective identification of URLs with a lower false 

positive rate and higher detection accuracy. 
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Fig. 10 AuC-ROC curve of the experimented models 

4.2.4. Phase 4- Light-Weightedness Evaluation of the 

Proposed TL_BERT Model  

 In this phase, a special experiment has been conducted to 

analyze the optimality and lightweightedness associated with 

the proposed model. In order to evaluate the model, the 

following metrics have been chosen, namely Training 

time/epoch, Inference time/sample, memory usage, and 

detection accuracy. 

 For performing a fair evaluation, the following similar 

kinds of architectures have been derived that are slightly 

modified versions of the proposed TL_BERT architecture. 

The following are those modified phishing detection 

architectures constructed for this experimentation: 

a) VAE + BERTbase: In this configuration, instead of the TL-

adopted AE model, a pretrained VAE architecture is 

employed to initialize the encoder, which is then 

integrated with the BERTbase model. However, BERTbase 

is utilized in the proposed model. 

b) AE( w/o TL) + BERTbase: A similar design to TL_BERT 

except that both the encoder and decoder part of the AE 

model is trained from scratch without the adoption of a 

transfer learning mechanism 

c) VAE + BERTlarge: This structure involves the 

combination of Variational autoencoders and BERTlarge, a 

special form of BERT architecture that produces 1024 

embedding vectors.  

d) AE (w/o TL) + BERTlarge: In this case, BERTlarge, along 

with traditional autoencoders implemented without a TL 

mechanism, is fused 

 

 All of the above constructed models are evaluated against 

the proposed TL_BERT architecture. In particular, DNN is 

deputed as the classifier with a similar configuration as 

TL_BERT for all the experimented models in this phase. The 

core objective of this experimentation is to assess the 

lightweightedness of the model, which shall be measured with 

respect to training time and inference, as well as the optimality 

that is validated using detection accuracy. Table 3 shows the 

Runtime and resource efficiency comparison of TL_BERT 

with the experimentally structurally modified phishing 

detection framework. 

 

Table 3. Runtime and resource efficiency comparison of TL_BERT framework 

Model variant 

Training time/ 

Epoch  

(seconds) 

Inference time/sample 

(milliseconds) 
Memory usage 

Accuracy 

(%) 

VAE + BERTbase 65 24 1.1 GB 98.72 

AE( w/o TL) + 

BERTbase 
58 21 950 MB 98.31 

VAE + BERTlarge 95 39 2.5 GB 98.88 

AE( w/o TL) + 

BERTbase 
78 33 2.3 GB 98.42 

Proposed TL_BERT 

model 
42 18 900 MB 99.08 

  As can be observed from Table 3, the proposed model 

consumed the minimal training time duration of 42 seconds 

and an inference time of 18 milliseconds, which is the most 

optimal among all the experimented models.  

 Also, the amount of memory consumed by each architecture 

significantly differed according to its structural complexities, 

with vast amounts of memory being consumed by two 

architectures that adopted BERTlarge, averaging around 2.4 GB. 

The least amount of memory has been utilized by the model, 

consuming 900MB respectively. With lower training time, 

faster inference speed, and optimal memory usage, this model 

exhibited a significant advantage for real-time deployment. In 

addition to the lightweight nature of TL_BERT, TL_BERT 

achieved the maximum detection accuracy of 99.08% 

outperforming all the experimented variants.  

 This experimental analysis concludes that the proposed 

model is both lightweight and optimal and is well-suited for 

real-time deployment. 
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4.2.5. Phase 5 – Comparison of TL-BERT with Current Anti-

Phishing Solutions 

In this phase, the proposed TL-BERT model has been 

compared against the current state-of-the-art anti-phishing 

approaches. In particular, unique anti-phishing models that 

deploy representation learning techniques to identify 

malicious URLs have been identified for this experimentation. 

In fact, the proposed TL-BERT model incorporates a 

representation learning technique in which both URL and 

HTML features are automatically extracted, excluding the 

process of manual feature engineering. Hence, it would be 

more appropriate to compare the proposed model with those 

approaches that deploy automatic feature extraction 

mechanisms. Seven significant phishing detection solutions 

proposed in the recent past have been considered for 

comparative evaluation.  

 Table 4 demonstrates the details of those approaches 

along with their performance analysis. The results projected in 

Table 4 were in accordance with the evaluation values as 

provided in the respective papers. 

 

Table 4. Comparison of TL-BERT with current anti-phishing methods 

State-of-the-art Phishing 

detection approaches 
Feature set Precision (%) Recall (%) 

F1 score 

(%) 

Accuracy 

(%) 

PDRCNN URL 97.33 93.78 95.52 95.6 

HTML Phish HTML 97 98 97 98 

WebPhish 
URL and 

HTML 
98 98 98 98 

PhishDet 
URL and 

HTML 
96.40 96.44 96.42 96.42 

Web2Vec 

URL, HTML, 

and 

DOM Structure 

98.69 98.26 98.47 99.05 

MFPD 
URL and 

HTML 
99.41 98.57 99 98.88 

Proposed TL_BERT model 
URL and 

HTML 
99.06 99.07 99.07 99.08 

 Precise Phishing Detection with Recurrent Convolutional 

Neural Network (PDRCNN) [48] is an anti-phishing 

technique that employs bi-directional LSTM and CNN, which 

in particular rely only on the URL of a particular website. 

Although it is a faster and lighter mechanism, it exhibits an 

average recall value of 93.78%. HTML Phish [49] is a CNN-

based phishing webpage classification technique that relies 

only on the HTML webpage content for classification. 

 

 Out of the seven research works, the following solutions, 

WebPhish [12], Phish Det [15], and Multi-dimensional 

Features driven by Deep learning (MFPD) [34], adopted both 

URL and HTML features for phishing website detection. All 

of those approaches employed different means to 

automatically extract URL and HTML features in order to 

identify malicious websites optimally. In particular, MFPD 

outperforms all the other models, reaching a maximum 

accuracy of 98.88% and a higher F1 score of 99%. This is 

mainly because the model adopted multi-dimensional URL 

and web page features that are both statistical and 

automatically driven. The only limitation of MFPD is the 

model’s reliance on manually crafted URL and HTML 

statistical features, along with other extracted features. 

Web2Vec [14] is a phishing website detection model that not 

only focuses on URL and HTML features but also considers 

the DOM structure of the webpage, which makes the model 

quite expensive. The model is hybrid in nature, combining the 

merits of CNN and bi-directional LSTM, which tends to 

produce the highest accuracy among the experimented 

models, reaching a value of 99.05%. 

 The proposed TL-BERT model achieves a maximum 

accuracy of 99.08% with a notable F1 score. Compared to 

other models, the proposed model is lightweight and less 

computationally intensive. Notably, the model leverages the 

training overhead associated with other models since only pre-

trained models for feature extraction have been incorporated. 

4.3. Discussion 

 The performance of the TL_BERT framework in 

comparison to the existing state-of-the-art solutions can be 

attributed to its effective adoption of advanced transfer 

learning and pre-trained transformer-based contextual 

learning. Unlike the existing traditional machine learning 

solutions that implement manual feature engineering, the 

proposed model leverages a transfer learning adopted 

autoencoder and a pre-trained BERT model to automatically 

extract significant URL and HTML features of a phishing 

website. In comparison to the modern deep learning based 

solutions, namely CNN-LSTM, CNN-GRU, and other hybrid 

frameworks, TL-BERT exhibits better detection outcomes in 

terms of precision, recall, and accuracy metrices. The core 

reason behind the stability of TL_BERT lies in the underlying 

structure of the proposed framework, which comprises two 
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lightweight infrastructures: a transfer learning-adopted 

lightweight autoencoder model and a base version of a pre-

trained BERT model. This makes the model lightweight and 

optimal, making it less prone to structural complexities and 

huge training time overhead. This highlights the dominance of 

the proposed TL_BERT with respect to the existing anti-

phishing solutions, making it much more suitable for real-time 

deployment in an attack-prone environment. 

5. Conclusion 
 The core objective is to build a lightweight, optimal 

model that accurately detects malicious websites with minimal 

false alarm rates. In order to meet the fundamental objective, 

a transfer learning enabled autoencoder model has been 

constructed for the role of automatic URL extraction. The 

choice of adopting the TL mechanism is to minimize the 

complexity associated with training the AE model for URL 

feature extraction. Since the weight parameters of a pre-

trained VAE architecture were transferred to the proposed 

traditional AE model, only the decoder part will undergo 

training. Hence, the complexity associated with training the 

AE for feature extraction is eliminated, leading to a 

lightweight infrastructure. Also, for the role of extracting 

HTML features from the website, a transformer-based BERT 

model is adopted that generates fixed-size context-aware text 

embedding vectors through a post-preprocessing mechanism. 

However, to reduce the complexity associated with this 

process, BERTBASE, a special variant of the BERT 

architecture, is adopted, which is a lightweight architecture 

capable of generating 512 vectors. The choice of BERTBASE 

instead of a BERTLARGE architecture is to reduce the overall 

structural complexity of the proposed framework. Both the 

generated URL and HTML feature vectors were concatenated 

and given to the output layer for classification. This technique 

of adopting a based AE model and a base variant of BERT 

architecture helps us to ensure that TL-BERT remains 

lightweight while maintaining high detection accuracy. The 

proposed experimental results show that the TL-BERT 

framework achieved a maximum accuracy of 99.08% with a 

1.01% false rate. The training time associated with both URL 

and HTML feature extraction modules was significantly 

reduced due to the use of transfer learning and pre-trained 

models, making the model faster and lighter. 

 Additionally, the core objective of this research is to build 

browser-based add-on software, in which the proposed TL-

BERT model will be deployed for real-time detection of 

phishing websites. Once deployed, the model’s ability shall be 

periodically analyzed by setting up a feedback loop that logs 

the details of misclassified results. This mechanism enables us 

to continuously monitor the model’s performance after 

deployment, facilitating further training and fine-tuning. 
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