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Abstract - Orthogonal Frequency Division Multiplexing (OFDM) has become one of the most widely used modern wireless
communications as a result of its inherent capabilities of efficiently utilizing spectrum and resisting multipath fading. High Peak-
to-Average Power Ration (PAPR) is one of the significant challenges of OFDM systems, resulting in power efficiency reduction
and signal quality degradation. This paper presents an enhanced Partial Transmit Sequence (PTS) technique that leverages a
hybrid Genetic Algorithm—Particle Swarm Optimization (GA-PSO) to lower PAPR while keeping computational demands low
effectively. By combining the broad exploration capability of GA with the fast convergence of PSO, the hybrid method efficiently
identifies optimal phase factors. MATLAB simulations with 10,000 OFDM frames and 16-QAM modulation show that the GA-
PSO approach achieves PAPR reduction comparable to conventional PTS, outperforming GA-PTS and PSO-PTS alone. The
method reached a PAPR of 5.16 dB at a CCDF of 10* with only 1200 iterations, demonstrating its practicality and efficiency

for OFDM systems.

Keywords - Genetic Algorithm, Orthogonal Frequency Division Multiplexing, Partial Transmit Sequence, Peak to Average

Power Ratio, Particle Swarm Optimization.

1. Introduction

The demand for high-speed data transmissions has
increased tremendously [1] with the development of high
data rate wireless systems like 4G, 5G, and beyond.
Orthogonal Frequency Division Multiplexing is a well-
known multicarrier system that offers high data rates, high
spectral efficiency, and robustness against multipath
fading [1]. OFDM has been widely adopted in wireless
standards [2], including 4G and 5G, among others. It
allows the transmission of multiple data streams
simultaneously on separate orthogonal carriers using the
Inverse Fast Fourier Transform at the transmitter side and
the Fast Fourier transform at the receiver side [3].

Nevertheless, one of the biggest drawbacks of OFDM
systems is the High Peak to Average Power Ratio in their
waveform [4]. High PAPR leads to power consumption
and signal distortion, compromising the quality of the
transmission. To mitigate the high PAPR inherent in
OFDM systems, many methods have been proposed,
including Clipping and Filtering [5], Compounding [6],
Tone Injection, Selective Mapping [7], and Partial
Transmit Sequence [8]. Partial Transmit Sequence
emerges as one of the preferred methods for its
performance in reducing the PAPR without increasing the
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Bit Error Rate (BER) [1]. The PTS method initially divides
the input data into disjoint blocks, applies the IFFT to each
subblock, then multiplies each of them by a phase rotating
factor, and finally selects the combination with the lowest
PAPR for transmission. The exhaustive search for the
optimal phase factor increases exponentially as the number
of subblocks grows.

However, the exponential search complexity remains
a major limitation that affects the real-time implementation
of PTS. Despite several optimization techniques proposed
to simplify the phase factor search, most existing solutions
still face a trade-off between performance and
computational cost. Several researchers have proposed
modified versions of PTS to overcome its high search
complexity. A few recent and relevant studies are outlined
below.

In 2022, Yuan et al. proposed an Adaptive PTS based
on a Fuzzy Neural Network [9]. The proposed FNN-PTS
combined FNN and PTS to adaptively select the number of
subblocks according to the power of the input signal.

Aghdam and Sharifi [10] proposed an enhanced PTS
method using PSO to address the computational
complexity at the phase factor search. The PSO algorithm
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achieved lower computational complexity, but this came at
the expense of some degradation in PAPR reduction
performance.

Somiaetal. [11] proposed a hybrid IF-PSO-based PTS
by combining Iterative Flipping and Particle Swarm
Optimization. The proposed IF-PSO method enhanced the
initial solution from the IF algorithm and improved it with
PSO, allowing for better diversity and exploration. While
the method reduced the computational complexity of the
PTS, it impacted the PAPR performance.

Another method was proposed by Xue et al. [3]in
2023. The authors introduced an optimized PTS using the
Chaotic Biogeographical-based Optimization (CBBO)
algorithm. This method leveraged the Hermitian symmetry
property to yield real-valued time-domain signals and
combined phase rotation factor optimization with chaotic
mechanisms to enhance convergence speed and reduce
complexity compared to traditional methods.

An ABC-PTS was proposed by Wang et al. using the
Acrtificial Bee Colony Algorithm [12]. In their approach, a
three-step process was used for the phase factor search. It
involved employing bees, onlookers, and scouts to explore
and exploit potential solutions.

A hybrid SCA-GWO was proposed by Somia et al. in
[13]. In their method, they leveraged SCA for initial global
solution exploration and GWO for enhanced convergence.

Joo et al. [2] proposed a PTS-free side information by
relying on intelligent signal manipulation to allow the
receiver to recover the original data without extra
information.

Zeid et al. proposed PTS with combined partitioning
[14]. In their method, the authors combined adjacent and
interleaved partitioning schemes. They introduced a hybrid
method that constructs blocked interleaved partitions for
more effective phase factor optimization.

Hongmei et al. [8] proposed a Multiple discrete
particle swarm for phase factor search in PTS. The
MDPSO approach enhanced efficiency by using dynamic,
time-varying learning factors to prevent premature
convergence in DPSO. MDPSO-PTS outperformed
standard DPSO-PTS in PAPR reduction while maintaining
lower complexity than traditional PTS methods.

A modified PTS with a Non-Uniform Phase factor was
proposed by Tsai and Huang [15]. In order to solve the
computational complexity of the PTS at the phase factor
search, this research proposes a hybrid phase optimisation
approach that combines Particle Swarm Optimisation and
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Genetic Algorithm. The proposed method leverages the
strength of both algorithms to optimize the phase factor
search in PTS.

Despite these advances, a consistent balance between
reduction performance and computational efficiency
remains unresolved. Most techniques either reduce
complexity at the cost of PAPR performance or achieve a
strong reduction with heavy computation. This trade-off
forms the central gap addressed in this work.

The proposed hybrid GA-PSO-based PTS combines
the broad search capability of GA with the rapid
convergence of PSO to achieve efficient and reliable
PAPR reduction suitable for practical OFDM systems. The
rest of this paper is organised as follows: In Section 2, the
system model is described, the methodology is presented
in Section 3, the results are presented in Section 4, and the
conclusion is in Section 5.

2. System Model
2.1. OFDM System Model

In OFDM, the available frequency spectrum is
divided into multiple orthogonal subcarriers, each
carrying a portion of the total data payload. Given the
number of subcarriers as N, the frequency domain can be
represented as, X = [Xq, X5, ...., Xy_1 ], consequently, the
time domain signal is obtained by performing an IFFT
and can be represented by x = [x, x5, ..., Xy_1 ]-

1 _ 2%
Xn = =Rz X! W 0<n< N -1 (1)
Here, Xy denotes the signal in the frequency domain
obtained after subcarrier modulation. Figure 1 presents the
block diagram of a typical OFDM system.

2.2. PAPR and CCDF

The PAPR of the OFDM signal x,, is defined as the
ratio of the maximum power to the average and can be
obtained by

max{|xn|*}

PAPR = = ey

, 0<n<N-1

)

The complementary cumulative distribution function
is a statistical function used to analyze the Peak to Average
Power Ratio. It is the probability that the signal exceeds a
given threshold and helps us measure how well the method
does.

CCDF = Pr(PAPPR > PAPR,)

=1 — (1 —exp(PAPRO))NL 3

Where PAPRy is the threshold power.
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Fig. 2 Functional decomposition of PTS

2.3. Partial Transmit Sequence

Partial transmit sequence is a method used to reduce
the PAPR in OFDM systems. First, the frequency domain
signal X is divided into V disjoint blocks, and then the
IFFT is performed to transform the signal into the time
domain. After the IFFT process, each subblock is
multiplied by a phase-rotating factor. Finally, the signal is
recombined by adding the blocks together. The phase
combination with the smallest PAPR is chosen for
transmission. Figure 2 shows the block diagram of the PTS
scheme, which can be expressed as Equation 4:

X = 21‘;:1 byx, = ZE:lvaFFT{Xv} (4)
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Where b, = e/¢v, with ¢, =[0,2n], 1 < v <V
The choice of phase factors is expressed as

[E ; ; ] __argmin {(max|¥h-, byx’|}
D22y 0 Bl T by,by, by

©)

Although PTS has the ability to reduce the PAPR in
OFDM systems efficiently, its computational complexity
at the phase factor search makes it inefficient for a large
number of subblocks. The phase factor search complexity
grows exponentially with the number of sub-blocks. To
overcome the complexity of the exhaustive search of the
conventional PTS method, this paper presents a hybrid
GA-PSO for the phase factor search.
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3. Proposed Method

In this paper, a hybrid GA-PSO is introduced to reduce
the computational complexity of the PTS method. In PTS,
the phase factor search grows exponentially with the
increase in sub-blocks. To overcome the computational
complexity related to the phase factor search, a hybrid GA-
PSO for optimal phase search was proposed. This approach
combines the exploration capabilities of GA with the
exploitation abilities of PSO, leading to better optimization
performance.

The Genetic algorithm, as introduced by John Holland
in 1975 [16-18], applies principles derived from biological
evolution, notably the concepts of natural selection, to
solve optimization problems.

Each individual in the population is represented by a
set of phase factor:b = [b; by, ..., b,, ]. The dimension of
the individual represents the number of sub-blocks in the
PTS method, and each. b; It is a phase factor selected from
a predefined set. b; € {1,-1,j,-j}

First, all the individuals in the population are
initialized with a random phase factor, then the fitness

58

function of each individual is calculated using the formula
fitness(b) = PAPR(x(b)).

The individuals with lower PAPR are used for creating
the next generation. Then, individuals with the best fitness
values corresponding to lower PAPR are selected to create
offspring. Finally, a mutation is introduced, altering some
of the factors randomly to maintain genetic diversity in the
population. Then the process is repeated for the number of
iterations. After convergence, the best solutions are passed
to PSO for further processing.

Particle swarm optimization is a computational
method inspired by the social behavior of birds and fish.
Developed by Russel Eberhart and James Kennedy in 1995
[10, 19, 20], PSO is used to solve optimization problems
by simulating the social behavior of fish and birds
(representing potential solutions) as they navigate through
the solution space.

In this approach, PSO is initialized by the best
solutions derived from GA. Each selected individual from
the GA becomes a particle in the PSO framework. Initial
velocities v; are assigned randomly to each particle, and
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the personal best pbest; The mass of each particle is
computed.

The fitness of each particle is evaluated by computing
the PAPR associated with the phase factor combination
represented by its position. As the particles move through
the solution space, their positions are updated according to
their velocity and the influences of both their individual
best and the global best in the entire swarm. The particles’
positions and velocities are updated according to equations
(6) and (7).

vi(t+1) = w-v;(t) + c;ry(pbest —p;(t) +
o1 (gbest - pi(t)) (6)
P(t+1) =pi(®) +vi(t+1)  (7)
Where:
v;(t) and p;(t) are particle i velocity and position,
respectively.
w is the inertia weight, which controls the impact of
The previous velocity is compared to the current one.
¢, and c, are cognitive and social coefficients,
respectively, that have an influence on the personal and
global best positions.
1, and r, are random numbers uniformly distributed in
the range [0, 1].

After updating the positions, the PAPR of each particle
is computed again to evaluate its fitness and to update the
personal and global best values. Through optimization,
each particle maintains a record of its personal best
position pbest;, which corresponds to the phase factor
combination that produced the lowest PAPR observed so
far by the particle.

The global best (gbest) position is updated to reflect
the best-performing phase factor combination found
among all particles in the swarm. The PSO converges
toward the global best, corresponding to the optimal
combination of phase factor with the lowest PAPR.

end for
Replace the worst individuals with new
offspring
end while
Initialize PSO particles with the best solutions
from GA
for each particle p; do
set initial velocity v; randomly
calculate personal best, pbest; and global best
gbest;
end for
while t <t
For each particle p; do
Update velocity and position using equations
(6) and (7)
Evaluate fitness(p;) = PAPR(X)
if fitness(p;) < fitness( pbest;) then
Update personal best: ( pbest; =p;
end if
if fitness(p;)<fitness(( gbest;) then
Update global best: gbest;=p;
end if
end for
end while
return gbest as the optimal phase factor

The complexity of the proposed method is computed by
multiplying the population size P by the number of iterations
I. The population size used in this paper is 30 for both Ga
and PSO, and the iterations are 20

4. Results and Discussions

The simulations were conducted in MATLAB R2023a
over 10,000 OFDM frames using 16-QAM modulation. A set
of four phase factors {1, —1, j, —j} was used. Table 1 gives a
summary of the simulation parameters. These choices provide
a balance between practical implementation and
computational feasibility in evaluating the PAPR reduction
performance.

Table 1. Simulation parameters

Algorithm Hybrid GA-PSO Parameters
Initialize parameters, GA individuals with random Oversampling factor 4
phase factors, t,,q» Modulation 16-QAM
for each individual b; do Number of OFDM blocks 10000
Calculate fitness(b;)= PAPR(x;) Number of subcarriers 128,256
end for Mutation 0.01
while t < t0x Crossover Single point
(tmax is the number of iterations) Number of iterations 20
Select individuals with the best fitness for C1 15
formatting c2 0.5
Create offspring using crossover and mutation Number of carriers 256
for each individual b;do Population size 30
Calculate fitness(b;) = PAPR(x;) Number of allowed phase factors 4
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Fig. 4 CCDF vs PAPR, N=128, (a) Hybrid GA-PSO-PTS,
(b) and (c) Performance comparison of PTS optimization methods
V=8, and V=16, respectively.
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Figures 4 and 5 show how the number of subcarriers and
subblocks affects the PAPR reduction performance of
Different methods. These figures assist in understanding the
performance of each technique under different settings.

Figures 4(a) and 5(a) illustrate the CCDF comparison of
the hybrid GA-PSO method against the original OFDM signal
for different subblocks with N equal 128 and 256 subcarriers
respectively. The hybrid technique considerably reduces the
PAPR, as shown in these figures.

A comparison between the performance of different
optimization-based PTS for V=8 and N equal 128 and 256 is
shown in Figures 4(b) and 5(b). The hybrid GA-PSO clearly
outperforms standalone GA and PSO in PAPR reduction,
achieving a better balance between performance and
complexity.

Furthermore, Figures 4(c) and 5(b) extend the
comparison to V=16, highlighting how the hybrid method
maintains strong performance with increased subblocks.
Table 2 provides a detailed comparison of PAPR values for
N=128 and N=256 at CCDF of 10*.

Performance Comparison of different PTS Optimisation

lOU
——+— Original OFDM
—a— PTS
GA-PTS
PSO-PTS
10" + et Hybrid GA-PSO-PTS | 4
DMPSO-PTS
E 4
8 102 10
: \
Wi
107} Ar—%
2 K
46 48 5 52 54 56 \
10 L AL 1 L L TR
2 4 6 8 10 12 14 16

PAPR (dB)

Fig. 6 CCDF vs PAPR, N=256: Performance comparison of PTS
Optimization Methods V=16

Table 2. Performances comparison of PTS optimization methods at

CCDF of 10*
CCDF
Optimizallat-iI;)Sn method N=128 N=256
V=8 | V=16 | V=8 | V=16
GA-PTS 7.26 | 649 | 7.62 | 7.02
PSO-PTS 54 | 47 5.68 | 5.59
GA-PSO-PTS 5.03 | 449 | 5.61 | 5.16
PTS 5.15 | 4.28 | 5.33 | 4.48

The hybrid GA-PSO-PTS achieves better results than
existing optimization-based PTS methods because it exploits
the complementary strengths of both algorithms. In the GA

phase, population diversity is maintained through crossover
and mutation, which prevents premature convergence and
ensures a broad exploration of the phase-factor search space.
These diverse and near-optimal candidates are then passed to
the PSO stage, where swarm interactions refine the solutions
efficiently toward the global optimum. This two-level search
mechanism minimizes the likelihood of local stagnation and
yields phase combinations that produce lower PAPR values.

Compared with the MDPSO-PTS (Figure 6) reported by
Hongmei et al. (2024), which achieved a PAPR of 5.28 dB at
a CCDF of 107, the proposed hybrid GA-PSO obtained 5.16
dB under the same conditions. The gain is attributed to GA’s
robust global search and PSO’s rapid local convergence,
which together enhance both accuracy and stability.
Additionally, the hybrid method maintains the same
computational cost as individual GA or PSO runs because it
reuses GA-generated populations within PSO iterations rather
than expanding them. Consequently, the approach achieves
near-optimal PAPR reduction at a fraction of the complexity
of conventional PTS, demonstrating that a cooperative hybrid
design can overcome the performance-complexity trade-off
observed in prior work.

4.2. Computational Complexity

Table 3 shows the computational complexity for the
different PTS optimization methods in terms of the number of
complex multiplications at V=16. The conventional PTS
method uses an exhaustive search over all possible phase
combinations, which results in a very high complexity,
especially when the number of subblocks increases. For
example, with 16 subblocks and a phase factor set of size 4,
the complexity becomes 4%=4,294,967,2964 complex
multiplications. This is extremely large and becomes
impractical for V>16.

On the other hand, all three metaheuristic methods, GA,
PSO, and the proposed hybrid GA-PSO, only require 1,200
complex multiplications. The hybrid method combines the
strengths of GA and PSO while maintaining the same level of
complexity as the individual techniques. This means the
hybrid GA-PSO method reduces the computational burden by
a factor of approximately 3.58 million times compared to
conventional PTS at V=16, while still achieving competitive
PAPR reduction performance. This makes it a much more
practical solution for modern OFDM systems.

Table 3. Computational complexity analysis at V=16

Computational complexity
Method (Complex multiplications)
i (I*P) + (I*P) = 20*30+20*30=
GA-PSO 1200
PSO I*P = 40*30 = 1200
GA I*P = 40*30 = 1200
PTS WV = 416 = 4, 294964296
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5. Conclusion slightly better PAPR performance (5.33dB and 4.98 dB,

This paper proposed an improved PTS scheme using a  respectively, at V=8 and V=16), its exponentially increasing
hybrid GA-PSO approach to reduce the PAPR in OFDM complexity renders it impractical for a number of subblocks
Systems_ The hyb“d method was evaluated against greater than 16.The hybrld GA-PSO offers a scalable and

conventional PTS, GA-PTS, and PSO-PTS for subblock sizes  efficient approach that provides near-optimal performance at
8 and 16 with a number of subcarriers of 128 and 256. a fraction of the computational cost of the conventional PTS.
Simulation results demonstrated that the GA-PSO approach

consistently outperformed standalone GA and PSO methods, Funding Statement

achieving PAPR reductions of 5.61dB and 5.16dB, This research was funded by the African Union via the

respectively, at N=256, with a fixed computational cost of Pan African University, Institute for Basic Sciences,
1,200 iterations. While the conventional PTS method offered Technology, and Innovation.
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