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Abstract - Orthogonal Frequency Division Multiplexing (OFDM) has become one of the most widely used modern wireless 

communications as a result of its inherent capabilities of efficiently utilizing spectrum and resisting multipath fading. High Peak-

to-Average Power Ration (PAPR) is one of the significant challenges of OFDM systems, resulting in power efficiency reduction 

and signal quality degradation. This paper presents an enhanced Partial Transmit Sequence (PTS) technique that leverages a 

hybrid Genetic Algorithm–Particle Swarm Optimization (GA-PSO) to lower PAPR while keeping computational demands low 

effectively. By combining the broad exploration capability of GA with the fast convergence of PSO, the hybrid method efficiently 

identifies optimal phase factors. MATLAB simulations with 10,000 OFDM frames and 16-QAM modulation show that the GA-

PSO approach achieves PAPR reduction comparable to conventional PTS, outperforming GA-PTS and PSO-PTS alone. The 

method reached a PAPR of 5.16 dB at a CCDF of 10-4 with only 1200 iterations, demonstrating its practicality and efficiency 

for OFDM systems. 

 

Keywords - Genetic Algorithm, Orthogonal Frequency Division Multiplexing, Partial Transmit Sequence, Peak to Average 

Power Ratio, Particle Swarm Optimization.  

 

1. Introduction 
The demand for high-speed data transmissions has 

increased tremendously [1] with the development of high 

data rate wireless systems like 4G, 5G, and beyond. 

Orthogonal Frequency Division Multiplexing is a well-

known multicarrier system that offers high data rates, high 

spectral efficiency, and robustness against multipath 

fading [1]. OFDM has been widely adopted in wireless 

standards [2], including 4G and 5G, among others. It 

allows the transmission of multiple data streams 

simultaneously on separate orthogonal carriers using the 

Inverse Fast Fourier Transform at the transmitter side and 

the Fast Fourier transform at the receiver side [3].  

 

Nevertheless, one of the biggest drawbacks of OFDM 

systems is the High Peak to Average Power Ratio in their 

waveform [4]. High PAPR leads to power consumption 

and signal distortion, compromising the quality of the 

transmission. To mitigate the high PAPR inherent in 

OFDM systems, many methods have been proposed, 

including Clipping and Filtering [5], Compounding [6], 

Tone Injection, Selective Mapping [7], and Partial 

Transmit Sequence [8]. Partial Transmit Sequence 

emerges as one of the preferred methods for its 

performance in reducing the PAPR without increasing the 

Bit Error Rate (BER) [1]. The PTS method initially divides 

the input data into disjoint blocks, applies the IFFT to each 

subblock, then multiplies each of them by a phase rotating 

factor, and finally selects the combination with the lowest 

PAPR for transmission. The exhaustive search for the 

optimal phase factor increases exponentially as the number 

of subblocks grows.  

  

However, the exponential search complexity remains 

a major limitation that affects the real-time implementation 

of PTS. Despite several optimization techniques proposed 

to simplify the phase factor search, most existing solutions 

still face a trade-off between performance and 

computational cost. Several researchers have proposed 

modified versions of PTS to overcome its high search 

complexity. A few recent and relevant studies are outlined 

below. 

 

In 2022, Yuan et al. proposed an Adaptive PTS based 

on a Fuzzy Neural Network [9]. The proposed FNN-PTS 

combined FNN and PTS to adaptively select the number of 

subblocks according to the power of the input signal. 

 

Aghdam and Sharifi [10] proposed an enhanced PTS 

method using PSO to address the computational 

complexity at the phase factor search. The PSO algorithm 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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achieved lower computational complexity, but this came at 

the expense of some degradation in PAPR reduction 

performance. 

 

Somia et al. [11] proposed a hybrid IF-PSO-based PTS 

by combining Iterative Flipping and Particle Swarm 

Optimization. The proposed IF-PSO method enhanced the 

initial solution from the IF algorithm and improved it with 

PSO, allowing for better diversity and exploration. While 

the method reduced the computational complexity of the 

PTS, it impacted the PAPR performance. 

 

Another method was proposed by Xue et al. [3]in 

2023. The authors introduced an optimized PTS using the 

Chaotic Biogeographical-based Optimization (CBBO) 

algorithm. This method leveraged the Hermitian symmetry 

property to yield real-valued time-domain signals and 

combined phase rotation factor optimization with chaotic 

mechanisms to enhance convergence speed and reduce 

complexity compared to traditional methods. 

 

An ABC-PTS was proposed by Wang et al. using the 

Artificial Bee Colony Algorithm [12]. In their approach, a 

three-step process was used for the phase factor search. It 

involved employing bees, onlookers, and scouts to explore 

and exploit potential solutions. 

 

A hybrid SCA-GWO was proposed by Somia et al. in 

[13]. In their method, they leveraged SCA for initial global 

solution exploration and GWO for enhanced convergence. 

 

Joo et al. [2] proposed a PTS-free side information by 

relying on intelligent signal manipulation to allow the 

receiver to recover the original data without extra 

information. 

 

Zeid et al. proposed PTS with combined partitioning 

[14]. In their method, the authors combined adjacent and 

interleaved partitioning schemes. They introduced a hybrid 

method that constructs blocked interleaved partitions for 

more effective phase factor optimization. 

 

Hongmei et al. [8] proposed a Multiple discrete 

particle swarm for phase factor search in PTS. The 

MDPSO approach enhanced efficiency by using dynamic, 

time-varying learning factors to prevent premature 

convergence in DPSO. MDPSO-PTS outperformed 

standard DPSO-PTS in PAPR reduction while maintaining 

lower complexity than traditional PTS methods. 

 

A modified PTS with a Non-Uniform Phase factor was 

proposed by Tsai and Huang [15]. In order to solve the 

computational complexity of the PTS at the phase factor 

search, this research proposes a hybrid phase optimisation 

approach that combines Particle Swarm Optimisation and 

Genetic Algorithm. The proposed method leverages the 

strength of both algorithms to optimize the phase factor 

search in PTS. 

 

Despite these advances, a consistent balance between 

reduction performance and computational efficiency 

remains unresolved. Most techniques either reduce 

complexity at the cost of PAPR performance or achieve a 

strong reduction with heavy computation. This trade-off 

forms the central gap addressed in this work.  

 

The proposed hybrid GA-PSO-based PTS combines 

the broad search capability of GA with the rapid 

convergence of PSO to achieve efficient and reliable 

PAPR reduction suitable for practical OFDM systems. The 

rest of this paper is organised as follows: In Section 2, the 

system model is described, the methodology is presented 

in Section 3, the results are presented in Section 4, and the 

conclusion is in Section 5. 

 

2. System Model 
2.1. OFDM System Model 

In OFDM, the available frequency spectrum is 

divided into multiple orthogonal subcarriers, each 

carrying a portion of the total data payload. Given the 

number of subcarriers as N, the frequency domain can be 

represented as, 𝑋 = [𝑋1, 𝑋2, … . , 𝑋𝑁−1 ], consequently, the 

time domain signal is obtained by performing an IFFT 

and can be represented by 𝑥 = [𝑥1, 𝑥2, … . , 𝑥𝑁−1 ]. 
 

𝑥𝑛 =
1

√𝑁
∑ 𝑋𝑘𝑒𝑗

2𝜋

𝑁
𝑘𝑛  𝑁−1

𝑘=0 , 0 ≤ 𝑛 ≤ 𝑁 − 1      ( 1 )  

 

Here, Xₖ denotes the signal in the frequency domain 

obtained after subcarrier modulation. Figure 1 presents the 

block diagram of a typical OFDM system. 

 

2.2. PAPR and CCDF 

The PAPR of the OFDM signal 𝑥𝑛 is defined as the 

ratio of the maximum power to the average and can be 

obtained by 

 

PAPR =
max {|𝑥𝑛|2}

𝐸{|𝑥𝑛|2}
,     0 ≤ 𝑛 ≤ 𝑁 − 1                  (2) 

 

The complementary cumulative distribution function 

is a statistical function used to analyze the Peak to Average 

Power Ratio. It is the probability that the signal exceeds a 

given threshold and helps us measure how well the method 

does.  

 
𝐶𝐶𝐷𝐹 = Pr(𝑃𝐴𝑃𝑃𝑅 > 𝑃𝐴𝑃𝑅0) 

= 1 − (1 − 𝑒𝑥𝑝(𝑃𝐴𝑃𝑅0))𝑁.𝐿              (3) 

 

Where PAPR0 is the threshold power.
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Fig. 1 Functional decomposition of the OFDM system  

 

 
Fig. 2 Functional decomposition of PTS 

 

2.3. Partial Transmit Sequence 

Partial transmit sequence is a method used to reduce 

the PAPR in OFDM systems. First, the frequency domain 

signal X is divided into V disjoint blocks, and then the 

IFFT is performed to transform the signal into the time 

domain. After the IFFT process, each subblock is 

multiplied by a phase-rotating factor. Finally, the signal is 

recombined by adding the blocks together. The phase 

combination with the smallest PAPR is chosen for 

transmission. Figure  2 shows the block diagram of the PTS 

scheme, which can be expressed as Equation 4: 

 

𝑥 = ∑ 𝑏𝑣𝑥𝑣  = ∑ 𝑏𝑣𝐼𝐹𝐹𝑇{𝑋𝑣}𝑉
𝑣=1

𝑉
𝑣=1                 (4)     

 

Where 𝑏𝑣 = 𝑒𝑗𝜑𝑣 ,  with  𝜑𝑣 = [0, 2π],   1 ≤  𝑣 ≤  𝑉 

 

The choice of phase factors is expressed as 

[𝑏̃1, 𝑏̃2, … . , 𝑏̃𝑣] =[𝑏1,𝑏2,….,𝑏𝑣]

𝑎𝑟𝑔𝑚𝑖𝑛 {max|∑ 𝑏𝑣𝑥𝑣𝑉
𝑣=1 |}

     (5) 

 

Although PTS has the ability to reduce the PAPR in 

OFDM systems efficiently, its computational complexity 

at the phase factor search makes it inefficient for a large 

number of subblocks. The phase factor search complexity 

grows exponentially with the number of sub-blocks. To 

overcome the complexity of the exhaustive search of the 

conventional PTS method, this paper presents a hybrid 

GA-PSO for the phase factor search. 
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Fig. 3 Flowchart of the hybrid GA-PSO 

 

3. Proposed Method 
In this paper, a hybrid GA-PSO is introduced to reduce 

the computational complexity of the PTS method. In PTS, 

the phase factor search grows exponentially with the 

increase in sub-blocks. To overcome the computational 

complexity related to the phase factor search, a hybrid GA-

PSO for optimal phase search was proposed. This approach 

combines the exploration capabilities of GA with the 

exploitation abilities of PSO, leading to better optimization 

performance.  

 

The Genetic algorithm, as introduced by John Holland 

in 1975 [16-18], applies principles derived from biological 

evolution, notably the concepts of natural selection, to 

solve optimization problems.  

 

Each individual in the population is represented by a 

set of phase factor:𝑏 = [𝑏1,𝑏2 , … , 𝑏𝑚 ]. The dimension of 

the individual represents the number of sub-blocks in the 

PTS method, and each. 𝑏𝑖 It is a phase factor selected from 

a predefined set. 𝑏𝑖  𝜖 {1,-1,j,-j} 

 

First, all the individuals in the population are 

initialized with a random phase factor, then the fitness 

function of each individual is calculated using the formula 

fitness(b) = PAPR(x(b)).  

 

The individuals with lower PAPR are used for creating 

the next generation. Then, individuals with the best fitness 

values corresponding to lower PAPR are selected to create 

offspring. Finally, a mutation is introduced, altering some 

of the factors randomly to maintain genetic diversity in the 

population. Then the process is repeated for the number of 

iterations. After convergence, the best solutions are passed 

to PSO for further processing. 

 

Particle swarm optimization is a computational 

method inspired by the social behavior of birds and fish. 

Developed by Russel Eberhart and James Kennedy in 1995 

[10, 19, 20], PSO is used to solve optimization problems 

by simulating the social behavior of fish and birds 

(representing potential solutions) as they navigate through 

the solution space.  

 

In this approach, PSO is initialized by the best 

solutions derived from GA. Each selected individual from 

the GA becomes a particle in the PSO framework. Initial 

velocities 𝑣𝑖  are assigned randomly to each particle, and 

START 
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function of each 
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the personal best 𝑝𝑏𝑒𝑠𝑡𝑖  The mass of each particle is 

computed.  

 

The fitness of each particle is evaluated by computing 

the PAPR associated with the phase factor combination 

represented by its position. As the particles move through 

the solution space, their positions are updated according to 

their velocity and the influences of both their individual 

best and the global best in the entire swarm. The particles’ 

positions and velocities are updated according to equations 

(6) and (7). 

 

𝑣𝑖(𝑡 + 1) =  𝑤 · 𝑣𝑖(𝑡) +  𝑐1𝑟1(pbest − p𝑖(t)    +

𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 − p𝑖(𝑡))                            (6) 

 

P𝑖(𝑡 + 1)  =  p𝑖(𝑡)  +  𝑣𝑖(𝑡 + 1)       (7) 

 

Where: 

𝑣𝑖(𝑡)  and p𝑖(t) are particle i velocity and position, 

respectively. 

w is the inertia weight, which controls the impact of 

The previous velocity is compared to the current one. 

𝑐1  and 𝑐2  are cognitive and social coefficients, 

respectively, that have an influence on the personal and 

global best positions. 

𝑟1 and 𝑟2 are random numbers uniformly distributed in 

the range [0, 1]. 

 

After updating the positions, the PAPR of each particle 

is computed again to evaluate its fitness and to update the 

personal and global best values. Through optimization, 

each particle maintains a record of its personal best 

position 𝑝𝑏𝑒𝑠𝑡𝑖 , which corresponds to the phase factor 

combination that produced the lowest PAPR observed so 

far by the particle.  

 

The global best (gbest) position is updated to reflect 

the best-performing phase factor combination found 

among all particles in the swarm. The PSO converges 

toward the global best, corresponding to the optimal 

combination of phase factor with the lowest PAPR. 

 

Algorithm Hybrid GA-PSO 

Initialize parameters, GA individuals with random 

phase factors, 𝑡𝑚𝑎𝑥  

for each individual 𝑏𝑖  do 

  Calculate fitness(𝑏𝑖)= PAPR(𝑥𝑖) 

end for 

while 𝑡 < 𝑡𝑚𝑎𝑥  

(𝑡𝑚𝑎𝑥  𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠) 

Select individuals with the best fitness for 

formatting 

Create offspring using crossover and mutation 

   for each individual 𝑏𝑖do 

        Calculate fitness(𝑏𝑖) = PAPR(𝑥𝑖) 

    end for  

    Replace the worst individuals with new 

offspring  

end while 

Initialize PSO particles with the best solutions 

from GA 

for each particle 𝑝𝑖  do 

  set initial velocity 𝑣𝑖  randomly 

  calculate personal best, 𝑝𝑏𝑒𝑠𝑡𝑖  and global best  

𝑔𝑏𝑒𝑠𝑡𝑖  

end for 

while 𝑡 < 𝑡𝑚𝑎𝑥  

  For each particle 𝑝𝑖  do 

       Update velocity and position using equations 

(6) and (7) 

       Evaluate fitness(𝑝𝑖) = PAPR(x) 

       if fitness(𝑝𝑖) < fitness( 𝑝𝑏𝑒𝑠𝑡𝑖) then 

           Update personal best: ( 𝑝𝑏𝑒𝑠𝑡𝑖  =𝑝𝑖  

       end if 

       if fitness(𝑝𝑖)<fitness(( 𝑔𝑏𝑒𝑠𝑡𝑖) then 

       Update global best: 𝑔𝑏𝑒𝑠𝑡𝑖=𝑝𝑖 

       end if 

   end for  

end while 

return gbest as the optimal phase factor  

 

 

The complexity of the proposed method is computed by 

multiplying the population size P by the number of iterations 

I. The population size used in this paper is 30 for both Ga 

and PSO, and the iterations are 20 

 

4. Results and Discussions 
The simulations were conducted in MATLAB R2023a 

over 10,000 OFDM frames using 16-QAM modulation. A set 

of four phase factors {1, −1, 𝑗, −𝑗} was used. Table 1 gives a 

summary of the simulation parameters. These choices provide 

a balance between practical implementation and 

computational feasibility in evaluating the PAPR reduction 

performance. 

 
Table 1. Simulation parameters 

Parameters 
Oversampling factor                                  4 

Modulation                                           16-QAM 

Number of OFDM blocks                      10000    

Number of subcarriers                         128,256 

Mutation                                                 0.01 

Crossover                                           Single point  

Number of iterations                                20 

C1                                                              1.5 

C2                                                              0.5 

Number of carriers                                 256 

Population size                                         30 

Number of allowed phase factors            4                                                                                                             
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4.1. PAPR Performances 

 
(a) 

 
(b) 

 
(c) 

Fig. 4 CCDF vs PAPR, N=128, (a) Hybrid GA-PSO-PTS,  

(b) and (c) Performance comparison of PTS optimization methods 

V=8, and V=16, respectively. 

 
(a) 

 
(b) 

 
(c) 

 Fig. 5 CCDF vs PAPR, N=256, (a) Hybrid GA-PSO-PTS,  

(b) and (c) Performance comparison of PTS optimization methods 

V=8, and V=16, respectively. 
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Figures 4 and 5 show how the number of subcarriers and 

subblocks affects the PAPR reduction performance of 

Different methods. These figures assist in understanding the 

performance of each technique under different settings. 

 

Figures 4(a) and 5(a) illustrate the CCDF comparison of 

the hybrid GA-PSO method against the original OFDM signal 

for different subblocks with N equal 128 and 256 subcarriers 

respectively. The hybrid technique considerably reduces the 

PAPR, as shown in these figures. 
 

A comparison between the performance of different 

optimization-based PTS for V=8 and N equal 128 and 256 is 

shown in Figures 4(b) and 5(b). The hybrid GA-PSO clearly 

outperforms standalone GA and PSO in PAPR reduction, 

achieving a better balance between performance and 

complexity.  

 

Furthermore, Figures 4(c) and 5(b) extend the 

comparison to V=16, highlighting how the hybrid method 

maintains strong performance with increased subblocks. 

Table 2 provides a detailed comparison of PAPR values for 

N=128 and N=256 at CCDF of 10-4.  

 
Fig. 6 CCDF vs PAPR, N=256: Performance comparison of PTS 

Optimization Methods V=16 

 

Table 2. Performances comparison of PTS optimization methods at 

CCDF of 10-4 

PTS 

Optimization method 

CCDF 

 N=128 N=256 

V=8 V=16 V=8 V=16 

GA-PTS 7.26 6.49 7.62 7.02 

PSO-PTS 5.4 4.7 5.68 5.59 

GA-PSO-PTS 5.03 4.49 5.61 5.16 

PTS 5.15 4.28 5.33 4.48 
 

The hybrid GA-PSO-PTS achieves better results than 

existing optimization-based PTS methods because it exploits 

the complementary strengths of both algorithms. In the GA 

phase, population diversity is maintained through crossover 

and mutation, which prevents premature convergence and 

ensures a broad exploration of the phase-factor search space. 

These diverse and near-optimal candidates are then passed to 

the PSO stage, where swarm interactions refine the solutions 

efficiently toward the global optimum. This two-level search 

mechanism minimizes the likelihood of local stagnation and 

yields phase combinations that produce lower PAPR values. 

 

Compared with the MDPSO-PTS (Figure 6) reported by 

Hongmei et al. (2024), which achieved a PAPR of 5.28 dB at 

a CCDF of 10⁻⁴, the proposed hybrid GA-PSO obtained 5.16 

dB under the same conditions. The gain is attributed to GA’s 

robust global search and PSO’s rapid local convergence, 

which together enhance both accuracy and stability. 

Additionally, the hybrid method maintains the same 

computational cost as individual GA or PSO runs because it 

reuses GA-generated populations within PSO iterations rather 

than expanding them. Consequently, the approach achieves 

near-optimal PAPR reduction at a fraction of the complexity 

of conventional PTS, demonstrating that a cooperative hybrid 

design can overcome the performance-complexity trade-off 

observed in prior work. 
 

4.2. Computational Complexity  

Table 3 shows the computational complexity for the 

different PTS optimization methods in terms of the number of 

complex multiplications at V=16. The conventional PTS 

method uses an exhaustive search over all possible phase 

combinations, which results in a very high complexity, 

especially when the number of subblocks increases. For 

example, with 16 subblocks and a phase factor set of size 4, 

the complexity becomes 416=4,294,967,2964 complex 

multiplications. This is extremely large and becomes 

impractical for V>16. 

 

On the other hand, all three metaheuristic methods, GA, 

PSO, and the proposed hybrid GA-PSO, only require 1,200 

complex multiplications. The hybrid method combines the 

strengths of GA and PSO while maintaining the same level of 

complexity as the individual techniques. This means the 

hybrid GA-PSO method reduces the computational burden by 

a factor of approximately 3.58 million times compared to 

conventional PTS at V=16, while still achieving competitive 

PAPR reduction performance. This makes it a much more 

practical solution for modern OFDM systems. 
 

Table 3. Computational complexity analysis at V=16 

Method 
Computational complexity 

(Complex multiplications) 

GA-PSO 
(I*P) + (I*P) = 20*30+20*30= 

1200 

PSO I*P = 40*30 = 1200 

GA I*P = 40*30 = 1200 

PTS WV = 416 = 4,294964296 
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5. Conclusion 
This paper proposed an improved PTS scheme using a 

hybrid GA-PSO approach to reduce the PAPR in OFDM 

systems. The hybrid method was evaluated against 

conventional PTS, GA-PTS, and PSO-PTS for subblock sizes 

8 and 16 with a number of subcarriers of 128 and 256. 

Simulation results demonstrated that the GA-PSO approach 

consistently outperformed standalone GA and PSO methods, 

achieving PAPR reductions of 5.61 dB and 5.16 dB, 

respectively, at N=256, with a fixed computational cost of 

1,200 iterations. While the conventional PTS method offered 

slightly better PAPR performance (5.33dB and 4.98 dB, 

respectively, at V=8 and V=16), its exponentially increasing 

complexity renders it impractical for a number of subblocks 

greater than 16.The hybrid GA-PSO offers a scalable and 

efficient approach that provides near-optimal performance at 

a fraction of the computational cost of the conventional PTS. 
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