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Abstract - Alcohol is considered an intense-affective agent in brain functions that can cause abrupt health issues. Hence, the
predominant approach for detecting alcohol consumption is to perform an alcohol diagnosis. Although clinical applications for
determining these causes have widely evolved, classical processes have several drawbacks for generating favorable facilities.
Clinicians have increasingly developed methods for determining consumption on a technological basis in recent years. Basically,
EEG tools aid in exhibiting brain activity through EEG signals. Currently, instigated technology is relatively dependent on ML
techniques; however, it has major defects, such as poor spatial resolution evaluation and high computational requirements for
precise outcomes. Therefore, the proposed model utilizes a DL approach in which both Convolutional Neural Networks (CNNs) and
Long Short-Term Memory (LSTM) are used to analyze spatial data to further define model enhancement. The proposed research
utilized ten types of pretrained neural network models for image classification. For comprehending the data samples, the proposed
system used the EEG-Alcohol dataset to evaluate model performance and efficiency on classification, and was examined by the
accuracy metric. In essence, comparative analysis is conducted through the respective models and their comparison with existing
research that applied DL-based techniques, unifying LSTM to CNN custom, which led to prominence in the classification of alcoholic
and nonalcoholic EEG signals, where the highest accuracy attained by the proposed model is VGG19+LSTM, with an accuracy rate
of 96.72%. Furthermore, the model intends to contribute to therapeutic services while pivoting as an impactful intervention in patient
care.
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1. Introduction

Alcoholism is a harmful binary disease worldwide, and its
causes include both physical and mental illness [1]. Predicting
alcoholism in an early stage could diminish the mental illness
[2]. Global statistics indicate that alcoholic cases account for
more than 25% of psychiatric disorders, with excessive alcohol
consumption accounting for 7.1% of male and 2.2% of female
deaths globally [3, 4].

Chronic alcohol abuse leads to numerous impairments,
especially neurotoxic effects on the brain, resulting in long-term
mental disorders such as dementia, brain syndromes, and panic
disorders. Therefore, early detection of alcoholism is crucial for
reducing the risk of mental illness and improving patient
outcomes [5]. Traditionally, clinicians have relied on
Electroencephalogram (EEG) signals to assess brain activity and
diagnose related disorders. However, EEG-based methods are
often hampered by inaccuracies and are both time- and resource-
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intensive [6, 7]. The test results have been represented in EEG
records [8, 9]. Primarily, EEG signals detect negative effects on
actual brain functions; although they predict alcoholism
predispositions, the EEG method still recognizes added spikes
such as inaccuracies, is time-intensive, and is resource-intensive
[10]. To resolve these limitations, many studies have focused on
Artificial Intelligence (Al) technologies for generating effective
treatment plans in EEG facilities [11]. Recent advancements in
various fields have been relatively enhanced by machine
learning [12] and Deep Learning (DL) techniques.

Accordingly, DL algorithms are capable of human brain
resemblance, which is improbable in ML methods since an
extensive feature of DL is determined from its neural network
models [13]. Several researchers [14, 15] have contributed to the
classification of alcoholic and nonalcoholic alcohol
consumption through the use of ML and DL models. It was
found that there is a significant difference in quantifying its
accuracy rate, high spatial resolution, and low cost. For instance,
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existing research [16] utilized neural networks and ML methods
of regression, Support Vector Machines (SVMs), Decision
Trees (DT), Random Forest (RF), and K-Nearest Neighbor
(KNN). The system was tested using 38 demographic and
sample variables. Among the utilised models, the RF model
obtained an ROC of 78% with 15 variables. Another study
supported this relative case, which employed Principal
Component Analysis (PCA) for feature extraction and LSTM
for Classification and achieved a feasible outcome [17]. While
these advancements are promising, a critical limitation persists:
existing DL models either predominantly analyze EEG signals
by extracting either spatial features or temporal features, but
they fail to integrate these two dimensions simultaneously,
which leads to insufficient accuracy. In addition, the conversion
of EEG to a spectrogram builds rich features; however, existing
studies have not applied it in their architecture for better
representation learning.

To address such constraints and enhance the screening
process for alcohol detection, the proposed work employs a
hybrid Convolutional Neural Network (CNN) with Long Short-
Term Memory (LSTM) architecture. In this approach, ten pre-
trained CNNs are utilized to extract spatial features from the
EEG spectrogram image. The input EEG signals are
preprocessed using noise filtering, and STFT is used to convert
the EEG signal into a time-frequency-based spectrogram image
representation. Then, the preprocessed image is fed into the
CNN for spectral analysis, followed by an LSTM for sequential
pattern recognition. By leveraging spatial-temporal feature
hierarchies, the model enables automated detection of
alcoholism. This dual-modality approach achieves high
accuracy by capturing both localized brain activity and long-
term neurological trends. The model optimizes efficiency
through regularization and data augmentation, ensuring clinical
applicability.

The foremost contribution of the proposed model is
examined in sequential cases:

e To propose a hybrid CNN-LSTM framework that captures
both spatial and temporal characteristics from the EEG
spectrum data. The proposed framework achieves better
robustness and accuracy over the traditional ML and
standalone DL approaches for the classification task.

e To evaluate ten different pre-trained neural network models
for image classification and unify them with LSTM, the
research identifies the VGG19+LSTM configuration as the
top performer, achieving a high classification accuracy of
96.72% for distinguishing alcoholic from nonalcoholic
EEG signals.

e To validate the clinical acceptability of the model,
performance assessment is performed through various key
parameters.

This paper is arranged based on the effective techniques
involved in the classification of alcohol use. In addition,
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techniques applied to the existing research undertaken on the
analysis of similar fields are reviewed in Section Il. Section IlI
describes the methodologies used to carry out the proposed
research. Consequently, the findings contributed by the
respective models are demonstrated in Section IV. Finally, the
conclusions and future implications of the proposed model are
specified in Section V.

2. Review of Literature

Alcohol Use Disorder (AUD) is one of the most common
neuropsychiatric disorders affecting the brain.
Electroencephalography (EEG) is fast becoming one of the most
widely used neurophysiological modalities for the diagnosis of
AUD. Many researchers have implemented ML and DL
approaches to automatic detection of alcoholism from EEG
signals. This section provides a comprehensive review of
existing approaches, synthesizing their contributions and
critically analyzing their limitations.

2.1. Traditional and Classical ML Models in Alcoholism
Prediction

Traditional alcoholism detection methods and analysis of
EEG signals to evaluate brain activity involve monitoring
specific brainwave patterns and other physiological indicators.
It was highly time-consuming and required extensive clinical
resources [18]. To mitigate this, initially, classical ML models
such as SVM, RF, KNN, MLP (multilayer perceptron), and
Bayesian classifiers were utilized to automate the detection
process. For instance, in [19], an RF-based ML classifier was
employed for alcoholic classification through EEG samples. The
model has yielded an average accuracy of 69%. In addition to
this case, another researcher introduced a method that utilizes
absolute gamma band power as a feature and employs an
ensemble subspace K-NN classifier to distinguish between
alcoholics and normal subjects. An Improved Binary
Gravitational Search Algorithm (IBGSA) selects important EEG
channels, achieving a detection accuracy of 92.50% [20].
Though ML models achieved good performance, these
techniques require a manual feature engineering process and fail
to capture the complex, non-linear patterns inherent in EEG data
[21].

2.2. Deep Learning Models For Alcoholism Prediction

The advent of DL approaches has ensured automatic feature
extraction, which can effectively learn the complex patterns
from large-scale data. Correspondingly, the existing system has
been applied to neural networks for classifying alcoholic and
control groups based on prevailing predictions of EEG signals.
Recently, prevailing work has utilized Convolutional Neural
Networks (CNNs) based on the VGG-16 method to enhance
accurate representations in the data extraction process,
particularly when working with spatial resolution data [22].
Another framework has implemented both Machine Learning
(ML) approaches and neural networks as classifiers [23]. In this
NN model, showcased improvements in performance over
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Classical ML models. It has been perceived that a prominent
alcoholic classification was undertaken from EEG signals to
attain feasible results. The author has presented a Graphical User
Interface (GUI) that extracts features such as sample entropy and
standard deviation from EEG signals to detect alcoholism status.
A Quadratic SVM classifier for detection and achieved 95%
accuracy [24].

In addition, distinct CNNs have been implemented to
improve the efficiency of the activation functions of alcoholic
classifications from EEG signals [25]. The author in [26] has
incorporated Transfer Learning with various CNNs as feature
extractors, combined with classical classifiers like SVM and RF.
The combination of the MobileNet CNN with an SVM classifier
achieved 95.33 % performance in point of accuracy. Another
existing research [27] Hybridising Fast Fourier Transform (FFT)
and three classification models were utilized. Among those, the
FFT+SVM model achieved better performance than the others.
Research also imposed a dissimilar approach in regard to vector
functions for enhancing the alcoholic classification of EEG
signals [28, 29]. The author in [30] has employed a cascaded
process starting with LASSO regression for initial clustering and
feature extraction, followed by meta-heuristic algorithms (PSO,
BCHS, BDA) for feature minimization, and finally classifying
using various models, including SVM, random forests, ANN,
EANN, and LSTM. In this study, LASSO regression combined
with BDA-based enhanced ANN obtained remarkable
performance. Though DL models performed well, the presence
of missing values, feature redundancy, noisy datasets, and
imbalanced data can adversely affect the efficacy of these
prediction models.

2.3. Hybrid Model for Alcoholism Prediction

To address the aforementioned problem, many researchers
implemented hybrid models subsequently to enrich the
prediction accuracy [31]. Accordingly, in [32], dimensionality
reduction using PCA (Principal Component Analysis) and
classification with ML models KNN, SVM, and XGBoost were
compared with CNN, RNN, and LSTM, and CNN combined
with LSTM to improve model performance. The model was

examined, and the demonstrated hybrid model achieves better
performance than standalone models. In [33], the authors
explored the use of CNN and bidirectional LSTM networks to
classify EEG signals for alcoholism detection, achieving a
diagnostic accuracy of 95.32%.

Another study [34] utilized the Multichannel Pyramidal
Convolutional Neural Network (MP-CNN), which has been
assessed with 61 channels of EEG signals covering over five
brain regions for alcoholic predictions of EEG signal-based data.
The results are extremely precise, but these conventional
monologues have been reduced to larger sample sizes.
Moreover, the CNN combined activation on the model has been
estimated with better performance on the list of performance
metrics in alcoholic classification. Another research [35] has
implemented three DL models: CNN, LSTM, and CNN+LSTM.
The framework yielded 92.77%, 89%, and 91% efficiency in
accuracy on test samples. The suggested work [36] has
converted 64-channel temporal data into images using FFT,
ICA, and SAX techniques, then employed an ensemble model,
LSTM, and EfficientNet models. Testing on a public dataset,
their method achieved 85.52% accuracy, outperforming the
state-of-the-art EEG-NET's 81.19% accuracy, demonstrating
the potential of multi-perspective EEG analysis with ensemble
methods for alcoholism detection.

Furthermore, researchers have looked at attention
mechanisms, transformer-based models, and multi-modal
learning to make EEG classification more robust and
generalizable [37, 38]. In spite of these advances, many current
models are computationally heavy, require large quantities of
training data, or depend on extensive pretraining, limiting their
use in clinical settings. Similarly, none of the approaches rely on
complex ensemble frameworks, which can impact
interpretability and deployment. Nevertheless, spatial CNNs and
temporal LSTMs have demonstrated considerable promise
individually; their joint potential remains underexplored in
lightweight architectures specifically tailored for EEG-based
alcoholism detection.

Table 1. Comparative analysis of proposed method with existing state-of-the-art techniques

Study Method(s) Dataset | Accuracy Key Takeaway
Zhang et la., (2020) [26] MobileNet CNN with an SVM EEG 95.33 % Achieved a better outcome
Mukhtar et al. (2021) [10] Regularized Deep CNN EEG | 92.3% CNN with dropout reduces
overfitting

FFT+SVM, FFT+KNN and

Nor et al., (2022) [27] FET+ANN

The SVM model performed better

0,
EEG 91% than other models

Cohen et al. (2023) [36] | LSTM + EfficientNet + Linear Nets

EEG 85.52% Ensemble improves robustness

GNN is effective for activations +

Pain et al. (2023) [9] GNN + Connectivity EEG 93.28% s
connectivity
EEG o Temporal modeling improves the
Proposed Model Assorted CNN + LSTM (UCI) 96.72% pre-trained CNN
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2.4. Problem Identification
While reviewing the existing studies, the following aspects

were found,

e High computational complexity in ensemble, wavelet-
based, and transformer-based models causes problems in
their use [23, 39].

e Traditional methods have unified more ML-based
algorithms for the classification of alcoholic states with
EEG signal images, but lack methods for enhancing the
alcoholic predictions of EEG signals [29].

3. Proposed Methodology

Alcoholism is regarded as a common addiction disorder that
substantially malfunctions the human immune system. ML
techniques are confined to providing a sufficient level of
precision for alcoholic and nonalcoholic  detection.
Consequently, traditional screening methods are limited in terms
of time consumption, processing, and the need for excessive
resources.

Several researchers have attempted to use ML and DL
technologies for effective screening of alcohol, but conventional
models are limited by inadequate mechanism incorporation in
the model paradigm. For better screening for alcoholic
classification, the proposed research works with a DL approach
that integrates LSTM with a CNN by using an EEG-alcohol
dataset. Figure 1 represents the workflow of the CNN-LSTM
system.

Figure 1 illustrates the respective procedures carried out to
perform the proposed CNN-LSTM technique for the
classification of alcoholic and nonalcoholic features using the
EEG-Alcohol dataset. This technique involves data collection,
preprocessing, data splitting, training, classification, and
prediction. The following sections depict a broad demonstration
of each stage.

4-Cross fold

Band pass filter
Validation

Short-Time Fourier
Transforms

| Classification model

CNN
Layer

t_l_l

Alcoholic

[ s0ke WIS

Raw EEG Signal

Preprocessing
Non-alcoholic

Performance Measures

Fig. 1 Flow diagram of the proposed method

3.1. Data Collection

The proposed research utilized the EEG-Alcohol dataset for
the binary classification of alcoholics and non-alcoholics. The
respective dataset is extracted from the Kaggle website, which
is a cloud-based database composed of various Al datasets with
data scales ranging from small to medium and large. Primarily,
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the design modality of the proposed dataset covers the EEG
signal denotation of alcoholism. The classification mechanism
is processed through stimulus and two-stimulus specifications.
The significant features of the assumed dataset are depicted in
Table 2.

Table 2. Significant aspects of the EEG-Alcohol dataset
Aspects Aspect Description
It is particularly useful for
analyzing EEG signal
images.
Each dataset subset can be
preprocessed.

The sensor value
measurements are estimated
in microvolts.

S.no

1. In-specific

Standardized

Predictive

The employed EEG-Alcohol dataset was acquired from the
following link [40]:

Subsequently, to ensure that the model is effective, the
MATLAB 2022a software is used for execution and for tuning
the parameter value control. For a reliable source requisite, the
deep learning toolbox delivers functions and tools for designing
and implementing the proposed CNN networks. To evaluate the
data structure analysis, a set of modules was employed with the
PCA toolbox.

3.2. Preprocessing

It is a crucial process in data preparation, essential for
transforming raw data into a suitable format for analysis and
modeling. The quality of the image significantly influences the
accuracy of the data, so image preprocessing enables the
lessening of distortions. Moreover, it is crucial to perform this
process before importing the dataset to the classification model.
The respective research imposed kernel matrices for processing
the collected EEG signal sample images, wherein each kernel is
designed to detect specific features by employing these matrices
on local regions of the input data.

The output of this operation is known as a feature map,
which highlights the presence of the particular features in the
input. Applying the kernel function permits measuring the
relationship between different segments of EEG data without
explicitly mapping them into high-dimensional space. With the
imparted mask, the extracted feature understanding of images is
attained by computing convolutional functions.

Properly preprocessed data improves the performance by
providing accurate and relevant inputs. Streamlining the data
can significantly reduce the computational resources and time
required for model training. Figure 2 demonstrates the depiction
of the data processing process carried out in the present research
to modify and obtain a clean dataset collection regardless of the
presence of noisy or blurred series of data samples.
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64 Channel EEG Cap Convolutional

Kernel Weights

Spectrogram Stack

Fig. 2 Data-preprocessing flow of the proposed model

3.3. Data Splitting

Data splitting is an essential process in determining the flow
of any Al model. In the proposed model, a fourfold cross-
validation method is applied to validate performance and to
reduce the bias issue in the dataset. As per Figure 3, the data is
divided into four equal subgroups. Here, during every iteration,
a single subgroup is designated as the test dataset, while the
remaining subgroups are utilized as the training dataset. In every
iteration, the model undergoes training and is subsequently
assessed using the test dataset. Then, all iterations undergo
metric evaluation, after which their averages are computed to
assess the overall performance of the model. This approach
effectively tackles the overfitting issue and improves the
performance of the model.

1
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Fig. 3 4-Fold Cross Validation
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3.4. Classification: Hybrid CNN-LSTM

The proposed research uses a CNN-LSTM model to classify
the alcoholic and control (nonalcoholic) groups via the
TensorFlow framework on the utilized sample images from the
EEG-Alcohol dataset. The respective model conducts the
training phase beforehand; the proposed model is constructed
with the use of neural networks as a pre-trained model. The
employed images depart from the EEG-Alcohol dataset. This
section illustrates the methods and algorithms used for alcoholic
classification in the proposed research.

The proposed model contains two key components, such as
CNN and LSTM. In which a component CNN is used for feature
extraction and an LSTM for sequence modeling purposes.
Initially, the process takes spectrogram images of the EEG
alcohol signal as an input for the CNN layer, which involves a
kernel method for data processing, to extract relevant features
and similarity data from the raw data, hence improving the
quality of the EEG data. Subsequently, the respective model
employs a pooling operation for noise reduction, and to avoid
overfitting issues, the dropout classifier adapts to the proposed
architecture to increase model capacity.

Following that, the outcome of the conventional layer is fed
into the LSTM layers that are utilized to learn durable
dependencies between individual time series from a set of data
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sequences. The LSTM network has memory cells that recall the
stored data over time, and it also includes gates that regulate the
flow of data into and out of these cells. The structure enables the
model to learn and remember patterns in the data that span
extended periods of time. In addition, before training the model,
samples of EEG data are converted to a spectrogram stack that
produces a series of segments for preprocessed data.
Sequentially, linear layers, called fully connected layers, are also
included in the configuration that applies a linear transformation
using a weight matrix, followed by a non-linear activation
function. This task allows the model to learn complex patterns
and interconnect the entire feature map into a single vector of
data. This vector is utilized to detect the alcoholism state signal.
The obtained data is used to generate output data via binary
classification of alcoholic and nonalcoholic features.

The classification is automated by using the DL method of
CNN and LSTM to improve the accuracy of the proposed model.
Together, these strategies can contribute to a more effective DL
framework that maximizes classification performance. The next
section illuminates the CNN mechanism in the classification
task.

3.4.1. Convolutional Neural Network
CNN is one of the most widely used artificial neural
networks in Al models; it is processed on the basis of designated
filters. The predominant work of CNNs involves features.
Moreover, it delivers better accuracy in images and
classification. Feature detectors work at identifying the intended
image and progress throughout CNN layers [29]. Basically,
CNN operation is carried out in three-layer patterns:
convolutional layer, pooling layer, and Fully Connected (FC)
layer [30].
__Output Layer
Input Layer ’ -

Convolution
Layer

Pooling Convolution Pooling

Layer Layer Layer Fully
Connected

Layer
Fig. 4 The architecture of the CNN model

Figure 4 depicts the working process of the CNN model. In
this, the convolutional layer transforms the image into a standard
numerical representation, where it prepares the data, and neural
networks enable the interpretation of the conclusions. In the next
step, the pooling operation bends the output to arrays produced
from aggregated functions. The mathematical expression for the
convolutional action is formulated accordingly, and the integral
operation produces a convolution function.

t f(Tg(t=T)aT
t t) = [~
fO+9® =, =00

D

The pooling layer has one of two paths: max pooling or
average pooling. The max pooling layer breaks down larger
classes, where average pooling is performed when neutral
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classes are used. The chief use of CNNs for deducting
complexes enhances accuracy and overfits the results. The fully
connected layer works as an interconnected system where each
node is connected to every other node of perceived outcomes.
FC classifies appropriate functions, but it cannot predict high-
dimensional vectors. The elaborate action of FC is an
increasingly time-consuming process and requires expensive
computational models during the training phase. Occasionally,
massive interconnections may lead to data loss.

The CNN design is categorized into variant structures, and
different models are represented by different activation
functions that determine the performance of the trained model
[32]. AlexNet is one of the most widely used architectures, and
itis the preferred architecture for large-scale datasets. The model
is composed of five convolutional layers, a single max pooling
layer, and three FC layers [33]. Finally, another layer is divided
into two norms, each of which specializes in promoting
graphical-centered approaches. Another system called ResNet
also leverages large sizes, yet not much more than AlexNet, but
features such as skips or shortcuts are possible. This model is
configured in three versions: ResNet50, ResNetl01, and
ResNet152. ResNet models are also widely recognized as
consensus-based and standardized models for obtaining energy
efficiency results. Ideally, mutual development is also implicit
before layer addition. VGGNet has smaller feature maps for its
functions. VGGNet has two versions: VGG16 and VGG19.
GoogLeNet also generates a wide range of performance metrics
for classification [34]. Furthermore, the GoogleNet model aids
in comprehensive learning of image feature representations, and
it is an idealized pre-trained model for classifying images.
However, other named SqueezeNet models are faster than the
GoogLe model. The added updates with the GoogLeNet model
included a new model, an enhanced model known as the
InceptionVV3 model.

The proposed CNN-LSTM system employs the respective
pre-trained neural networks according to their idealized
selection of layer architectures. In this case, the method utilized
ten standardized pre-trained models to impart a specialized
approach for determining the efficacy of the heightening
classification process. These neural network models have
previously departed from the typical requirement for classifying
image data; however, the use of the proposed method enables
the reconstruction of model optimism in the classification of
representative alcoholic and nonalcoholic EEG images.

3.4.2. Long Short-Term Memory

LSTM is boxed in an Recurrent Neural Network (RNN).
The operation of LSTM is slightly similar to that of the FC layer,
but the specific features of LSTM determine the added
effectiveness to model performance. The optimist verification
on each layer possibly detects the actions of the data sequences.
The memory is recorded with all sequential connections, which
can handle large sample sizes [35]. LSTM works with time
series conditions, and the recorded set of memory enables the
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evaluation of enumerations. Enumerations may differ with
model purposes. The application of these procedures precisely
detects different states in the sequences where there are no
unlikely missing data problems.

3.4.3. Proposed Classification Model—Hybrid CNN+LSTM

This section explicitly describes the specifications of the
classification methods used for model construction. The
proposed research employs the CNN-LSTM model to classify
alcoholic and nonalcoholic states in humans. The respective
technique is applied to the image of the EEG signals. To train
the model, the EEG-Alcohol dataset is used for alcoholic
identification from EEG records.

Output Layer

95.3%

95.8%

47% | 42%

Ig-—ivzt—H Z'—iVH"H'_{—HIH"HZ-“/’f-H Z—imt—l

[g-—-}m:—H g—imr‘Hz—qu—H z—iml—'H g—qml—l

Alcoholic  Non-Alcoholic

Fully Connected Layer
Fig. 5 Architecture of the CNN-LSTM classification model

As Figure 5 illustrates, the predominant use of the max
pooling layer from the CNN network layer executes relevant
data values by detecting image fluctuations.

Remarkably, LSTM has an elongated memory of data
information, and it considers all the particulars of memory
blocks. The feature of the forget gate on LSTM works to prevent
inappropriate data reflection on summarizing outcomes because
it primarily relies on yielding continuous predictions. This can
avoid complexity in the estimation of predictions, so LSTM
promotes the effective analysis of state conditions. This
serialized recognition of sequential EEG signals improves
learning tasks more effectively in the training phase. Essentially,
the proposed CNN-LSTM model disables the conditions of
complexity, inapt storage, and vanishing gradients. These
constraints  limit the performance of classical CNN
architectures. The combination with LSTM can generate a
precise evaluation of testing data. Eventually, the efficacy of the
trained model is enhanced compared with that of the normal
CNN model. The framework of Figure 5 depicts the CNN-
LSTM classification model. The model starts by receiving a
preprocessed EEG spectrogram image of EEG signals, which
are time-series data representing brain activity collected from
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scalp electrodes. These images are first processed by CNN
layers, which extract spatial and local temporal features, such as
frequency components and characteristic patterns, applying
convolutional filters across the input. The resulting feature maps
are then flattened into 1D vectors to prepare them for sequential
modeling. This flattened output is reshaped into a sequence
format suitable for LSTM input, ensuring the temporal structure
of the data is preserved.

Next, the LSTM layers (sometimes arranged in parallel or
as bidirectional streams) process these sequences to learn long-
range temporal dependencies, effectively capturing how EEG
features evolve. The high-level temporal features produced by

the LSTM are then passed through fully connected layers, which
integrate the information and perform the final classification.
The output layer maps these features to specific classes, such as
different mental states, motor imagery tasks, or seizure detection
categories.

This hybrid CNN-LSTM model significantly enhances
Alcoholic and nonalcoholic classification by effectively
capturing both spatial features and long-range temporal
dependencies within the data. By leveraging the strengths of
both architectures, it achieves improved accuracy and
robustness in distinguishing complex brain activity patterns for
various clinical and cognitive applications.

Table 3. Training parameters with the LSTM hybrid models

- No. of Elapsed Hardware Learning Learning
Model Layer Optimizer Epochs Time Resource rate schedule rate
Alexnet+LSTM pool5 adam 500 10 rsnelg 43 Single CPU Constant 0.001
Deniesl\l_relt/zl 01+ avg_pool adam 2000 | 9 min5sec Single CPU Constant 0.001

pool5- 9 min 44 .

GoogleNet+LSTM X7 sl adam 2000 sec Single CPU Constant 0.001
Inceptlolr\1/lv3+LST avg_pool adam 1500 3 ns],:anc 13 Single CPU Constant 0.001
ResNet18+LSTM pool5 adam a000 | 10 Z‘e'g 25 Single CPU Constant 0.001
ResNet 50+LSTM | avg_pool adam 2000 | 16 Z‘e'g 42 Single CPU Constant 0.001
ResNetl01+LSTM |  pool5 adam 2000 | Z‘e'g 32 Single CPU Constant 0.001
VGG16+LSTM pool5 adam 150 8 min 3 sec Single CPU Constant 0.001
VGG19+LSTM pool5 adam 200 | 10 Z‘;Q 1 Single CPU Constant 0.001
SqueezeNet+LSTM pool10 adam 7000 8 rsnelg 54 Single CPU Constant 0.001

Table 3 shows the training parameters of the proposed
neural network models, which are summed with their layers
formed in the CNN architecture, and the accuracy obtained
through the EEG-alcohol dataset for predicting the model
performance. Then, to minimize the loss functions, the proposed
system applied an optimizer named Adam. The Adam optimizer
was applied to all successive neural network models to execute
the accelerated optimization procedures for model training. The
subsequent addition of pooling layers to the respective CNN
models causes computational complexity and results in adequate
memory requirements.

Hence, the performance of the proposed model allows for
the exploration of improvements in image classification
performance. The elapsed time calculated at InceptionV3 was
less than that of the other proposed neural network models.
However, other mere models have procured more time, whereas
the corresponding number of epochs is determined in
accordance with resolving overfitting issues. Significantly, to
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alleviate overfitting and increase the generalization ability of the
neural networks, the optimal range of the number of epochs is
employed. Furthermore, to avoid waver or overrun, the research
employed learning rates with a default value of 0.001. A
constant learning rate is formulated for the adopted models to
update in the optimizer.

4. Experimental Analysis

This section demonstrates the outcome attained by the
proposed model. In addition, Explanatory Data Analysis (EDA),
performance metrics, and a comparative analysis of the
respective model with existing mechanisms are illustrated.

4.1. Explanatory Data Analysis (EDA)

The EDA method is further used to analyze and perceive
dataset automation based on model features, and the
characteristic features of the dataset are also identified in this
section.
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Fig. 7 Testing sample

Figures 6 and 7 represent the training and testing samples
used to analyze the classification performance of the CNN-
LSTM model, respectively.

This testing sample is processed with a trained model to
determine the efficacy of the proposed model. Training sample
of the CNN-LSTM model on the EEG-Alcohol dataset.

4.2. Performance Metrics

The respective models were tested with standard
performance metrics to evaluate the performance of the
proposed approach. This research used accuracy metrics for
evaluating model performance since accuracy enhancement is
crucial for model progression in alcoholic classification.

The accuracy metrics are determined to be significant for
determining the most appropriate prediction for the
classification. It is evaluated by the correct predictions as a
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proportion of the sum of predictions. The formula for
determining the accuracy is given below in Equation (2)-(5):

True P+True N

Accuracy(Acc) = 2
Trye P+False P+True N+False N
RCXP
Flscore = 2 * —— 3)
Rc+Pc
. True P
Precision = ————— 4)
(True P+False P)
True P
Recall = ——=— 5)
(True p+False N)
Where,

True P -The model correctly predicts an alcoholic
True N- The model correctly predicts not an alcoholic
False P- The model inaccurately predicts an alcoholic
False N- The model fails to predict an alcoholic

4.3. Performance Analysis

The outcomes for the CNN-LSTM model are demonstrated
in this section. The outcomes from the operation of the proposed
model were compared with those from the use of the EEG-
Alcohol dataset.

Table 4 illustrates the ten proposed pre-trained model
outcomes using various metrics.

Table 4. Pre-trained model performance analysis

- F1
Model ACC Precision | Recall Score
% % % %

Alexnet 95.43 98.7 92.1 95.27
DenseNe?0 | 9555 | 9577 | 9533 | 9555
GoogleNet 90.86 87.08 96.03 91.34
InceptionV3 | 91.44 90.19 92.57 91.28
ResNet18 92.38 93.46 91.51 92.47
ResNet 50 91.68 86.21 96.85 91.22
ResNet101 90.74 86.91 94.18 90.5
VGG16 95.63 95.33 95.33 95.33
VGG19 96.72 95.8 97.62 96.7
SqueezeNet 85.95 98.72 83.48 86.43

Table 4 illustrates the performance outcomes obtained in
the proposed ten pretraining models. From Table 4, observing
that pre-trained models Alexnet, DenseNet, VGG16, and
VGG19 have shown more accuracy in the prediction, of which
VGG19 has obtained the highest accuracy of 96.72% in
detecting the alcoholic state of the patients. Figure 8 depicts the
graphical representation of the pre-trained model's performance
with the accuracy metrics.
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Fig. 8 Performance analysis of the pre-trained model
Table 5. Comparative analysis of the CNN-LSTM model with the pretrained model
Pre-trained Models ACC % Proposed Model ACC %
AlexNet 92.85 AlexNet+LSTM 95.43
DenseNet-201 86.87 DenseNet-201+LSTM 95.55
GoogleNet 84.06 GoogleNet+LSTM 90.86
InceptionV3 88.98 InceptionV3+LSTM 91.44
ResNet18 82.65 ResNet18+LSTM 92.38
ResNet50 86.40 ResNet50+LSTM 91.68
ResNet101 82.65 ResNet101+LSTM 90.74
VGG16 85.35 VGG16+LSTM 95.63
VGG19 86.40 VGG19+LSTM 96.72
SqueezeNet 84.88 SqueezeNet+LSTM 85.95

4.4. Comparative Analysis

This section analyses the outcomes attained by the proposed
CNN-LSTM model with existing models, which determines the
efficacy of the present framework with CNN models. Table 5

depicts the comparative analysis of the CNN-LSTM method
with the existing model. The present research evaluated the
existing CNN models with the CNN-LSTM system model to
estimate the efficacy of the proposed method.

Table 6. Confusion matrices of CNN and CNN+LSTM with accuracy rates
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Table 6 illustrates the outcome of the proposed model in
which LSTM was cascaded with existing CNN models, which
were examined with 10 CNN-based pre-trained models utilized
in this present research, and the accuracy improvement of all 10
models was evaluated. The highest accuracy rate is identified
from the VGG19 model combination, with an accuracy of
96.72%. The accuracy of the confusion matrix collections of the
alcoholic classification of all ten pretrained CNN models with
the proposed CNN-LSTM models is shown in Table 6, which
shows the accuracy rates of the CNN models with and without
the LSTM combination. After LSTM is incorporated into the
mechanism, the accuracy increases for all ten models.
Henceforth, it is evident that LSTM is a major feature for
enhancing the prediction of alcoholic classification.

I NN NN - ~ T

a) Alcoholic

"b) Nonalcoholic

Fig. 9 Classification Results of the CNN System

a)Alcoholic b) Nonalcoholic
Fig. 10 Classification Results of the CNN-LSTM System

Figures 9(a), 9(b), and 10(a), 10(b), illustrate the alcoholic
classification on the CNN and CNN+LSTM models using the
EEG-Alcohol dataset. Figures 9 and 10 explicitly show the
precise outcomes of the EEG signals and a clear classification
of Alcoholic and Nonalcoholic indications. The efficacy of EEG
signal detection on alcoholic classification is enhanced to a
greater extent in the proposed CNN-LSTM system. Therefore,
further accurate results for classifying alcoholic and
nonalcoholic states are needed.
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4.5. Discussion

The conventional model [25] employs a generalized CNN
architecture to evaluate the classification performance of the
model, and the accuracy rates of the models reached a maximum
of 95%. In addition to evaluating the efficacy of the proposed
model through the assessment of the accuracy rates of the
pretrained models, typical research [37] has also evaluated the
proposed methods via external considerations. Although
research has prevailed in image detection, accuracy attainment
reached a minimal extent of 94.47%, rather than the results of
the proposed work. Subsequently, another recent study [21] also
explored feature extraction. The hybrid of LSTM to CNN is used
for improving model performance, but the marked accuracy rate
decreases by only 93% when using the CNN-LSTM approach.
However, the existing models have achieved better accuracy and
improved model training, as further improvements beyond
accuracy rates have not been achieved. According to the
proposed research, the performance of CNN-LSTM reached
96.72% for the VGG19 model, which was computed with
LSTM. Regardless of the LSTM, the model achieved an
accurate rate of 86.40%.

5. Conclusion

Alcoholism is regarded as a global disease that
predominantly affects brain functionality, and its causes lead to
malfunctioning human brain functions. It is crucial to determine
and anticipate ways to reduce the risk factors that contribute to
these causes. The EEG model depicts brain activity and,
moreover, monitors functionality and detects alcohol
consumption. In summary, hospitalists' involvement in
increasing the efficiency of EEG signal specifications is
considered a greater demand for generating accurate results to
prevent risks. Contemporary methods, such as ML techniques,
are preferred during the initial process; nevertheless, ML model
outcomes have been shown to yield better results than manual
procedures. However, there are still possibilities for improving
the efficacy of EEG signals; however, the ML mechanism is not
yet available for alcoholic classification. Relatively, the neural
network learning task is a more relevant application for
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analyzing alcohol detection, where the proposed system utilizes
the EEG-Alcohol dataset for alcoholic classification using Deep
learning CNN and LSTM, to enhance the efficacy of the
classification. The respective research used LSTM with its
grouping on CNN models such as AlexNet, DenseNet201,
GoogleNet, InceptionVV3, ResNet18, ResNet50, ResNetl01,
VGG16, VGG19, and SqueezeNet. Each CNN model
combination increased the accuracy of the model. A
comparative analysis of the CNN and CNN-LSTM models
revealed that the accuracy percentages obtained by the proposed
model are increased. The accuracies of the CNN models
AlexNet, DenseNet201, GooglLeNet, InceptionV3, ResNetl8,
ResNet50, ResNet101, VGG16, VGG19, and SqueezeNet were
92.85%, 86.87%, 84.06%, 88.98%, 82.65%, 86.40%, 82.65%,
85.35%, 86.40%, and 84.88%, respectively. The accuracies of
the CNN+LSTM, AlexNet+LSTM, DenseNet201+LSTM,
GoogLeNet+LSTM, InceptionV3+LSTM, ResNet18+LSTM,
ResNet50+LSTM, ResNet101+LSTM, VGG16+LSTM,
VGG19+LSTM and SqueezeNet+LSTM models were 95.43%,
95.55%, 90.86%, 91.44%, 92.38%, 91.68%, 90.74%, 95.63%,
96.72% and 85.95%, respectively. The proposed approach
achieved higher accuracies than the pre-trained neural network
models. Hence, the outcomes of the proposed models elucidate
the significance of LSTM for alcoholic and nonalcoholic image
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