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Abstract - The leading cause of death globally is Cardiovascular Disease (CVD), and the number of deaths due to CVD is
more than 17.9 million people annually, based on statistics published by the World Health Organization (WHO). To know how
to help patients better, an early and accurate prediction of heart disease is necessary to provide early clinical intervention.
This paper analyzes how improved risk forecasting of heart disease can be performed using advanced algorithms of Machine
Learning (ML) using a benchmark clinical dataset. Our models were evaluated and systematically deployed five models,
Extreme Gradient Boosting (XGBoost), LightGBM, CatBoost, Elastic Net, and a Stacking Classifier in a single predictive
pipeline. The Pipeline consisted of preprocessing data, selecting features with Recursive Feature Elimination (RFE), tuning
hyperparameters with RandomizedSearchCV, and evaluating the strict models with such metrics as Accuracy, Precision,
Recall, F1-score, etc. The results of the experiment suggest that all the models performed very well, with the ensemble-based
models performing better than the individual models. The Stacking Classifier performed the most generalized results with a
Test Accuracy of 87.70, F1-score of 0.88, as well as a Recall of 91% on the heart disease cases. CatBoost and LightGBM
could also perform competently with the test accuracy of 85.25% and 83.60% respectively. The state-of-the-art methods are
compared with the proposed models experimentally and demonstrate that the latter is more accurate and robust. The outcomes
give support to the fact that ensemble and hybrid ML approaches have the potential to enhance clinical decision support to
predict heart disease risks. Further research will involve the use of Explainable Artificial Intelligence (XAl), expansion of
datasets in size and heterogeneity, and prospective validation in medical practice.

Keywords - CatBoost, ElasticNet, Heart Disease Prediction, LightGBM, Machine Learning, Stacking Classifier, XGBoost.

1. Introduction (Hypertension), Increased Blood Glucose (diabetes),

The introduction Cardiovascular Diseases (CVDs) have ~ Abnormal Blood Fats (dyslipidemia), and over weight /
been described as a combination of disorders of the blood ~ Obesity, which are among the intermediate risk factors.
vessels and the heart. They are the leading cause of mortality ~ According to the WHO, it is estimated that 1.28 billion adults
in all parts of the world. The World Health Organization ~ aged 30-79 years across the world are hypertensive, and only
(WHO) estimates that in 2019, 17.9 million individuals died ~ 42% of these people are diagnosed and treated [1]. Equally,
of CVDs, which is 32% of the total deaths in the world. Out the prevalence of diabetes in the population is estimated at
of them, 85% were due to heart attacks and strokes. nearly 537 million individuals across the globe, and this is a

Worryingly, more than 3/4 of the fatalities in CVDs happen ~ Major contributor to CVD. Besides, air pollution has also
in the low- and middle-income nations where healthcare  been indicated to be an important environmental determinant

facilities are frequently under-resourced. Prevention and  contributing to CVD, as it is estimated that 25% of the deaths

treatment of CVDs at an earlier stage, hence, is a global  attributed to CVD are a result of Air Pollution (WHO).
concern in hopes of lowering morbidity and mortality rates,

enhancing quality of life, and decreasing the economic It is challenging to forecast the risk of CVD, despite
healthcare burden on economies. Behavioural factors suchas ~ decades of research and significant progress in clinical
poor diet, lack of exercise, use of tobacco, and abusive management and health for the pOpUIation. The traditional
consumption of alcohol are the major risk factors that lead to ~ fisk scoring models like Framingham RISK SCORE,
CVDs. Such actions may cause elevated blood pressure ~ SCORE, and QRISK are extremely valuable since they offer
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population-level data. However, they are often limited in
their ability to fully model the nonlinear interactions,
complex dependencies, and customized risk factors that are
present in individual patient data. Over the past few years, Al
and, more to the point, ML have become disruptive
technologies in the healthcare sector. Heavy, heterogeneous
data sets can be analyzed with machine learning to identify
hidden patterns and relationships that might be difficult to
uncover with traditional statistical methods. ML can be
beneficial in the field of CVD prediction, where it can
enhance the accuracy of diagnostics, provide customized
treatment, and intervene early on [4]. Numerous studies have
demonstrated that ML-based models can be significantly
more effective than traditional models, particularly in the
context of multivariate clinical data, Electronic Health
Records (EHRs), and real-time physiological signals.
Nonetheless, the research on ML in predicting CVD is
developing. Much of the existing literature relies on a few
algorithms, mainly including Logistic Regression (LR),
Support Vector Machines (SVM), Decision Trees (DT), and
Random Forests (RF) [6]. Although the models are helpful in
various scenarios, the possibility of the more complex
models, such as Gradient Boosting Machines (GBMs),
Extreme Gradient Boosting (XGBoost), LightGBM,
CatBoost, Elastic Net Regression, and Stacking Classifiers,
has yet to be realized in the context of CVD risk prediction.

This study aims to fill this gap by conducting a
comprehensive comparative study of advanced ML
algorithms in the prediction of CHD, one of the key CHD
subtypes of CVD. It relies on a high-quality and standardized
dataset on heart disease that has been extensively applied in
scholarly literature. Our approach to ensuring strong
performance evaluation involves a careful methodology,
extensive data preprocessing, feature engineering,
hyperparameter optimization using RandomizedSearchCV,
and validation. The models are also compared in terms of
various evaluation measures, including Accuracy, Precision,
Recall, and F1-score.

1.1. Motivation and Contribution

CVD imposes a considerable health burden in the world,
with a death rate of over 17.9 million annually, which is one-
third of the world's death rates. Thus, early CVD prevention
and diagnosis are one of the urgent health concerns that
should be enhanced. Even decades of clinical research and
strategies to promote population health have not been able to
reduce the number of cases of CVD worldwide. A positive
trend is being observed in countries with low to middle-
income level, but not everyone can afford preventive care and
high-level diagnostics. More accurate and readily available
models of CVD prediction can be one of the keys to
addressing such unmet needs and reducing mortality.
Traditional risk assessment tools, such as Framingham Risk
Score, SCORE, and QRISK, have proven useful both in terms
of providing population-level data. However, they are always
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limited in the sense that their design is unable to account for
high-dimensional, nonlinear correlations between different
clinical, behavioural, genetic, and environmental risk factors.
As clinical datasets of individuals, encompassing EHRs,
wearable devices, and multi-omics profiles and their patterns,
become increasingly complex and heterogeneous, standard
statistical models are no longer applicable to explain the
complex trends that characterize individual CVD risk.

This weakness highlights the need for more sophisticated
analysis tools. Recent advances in machine learning ML) can
offer possible solutions to this issue. Complex, nonlinear
relationships and interactions can be modelled using state-of-
the-art ML models, including Gradient Boosting Machines
(GBMs), Extreme Gradient Boosting (XGBoost),
LightGBM, CatBoost, Elastic Net Regression, and ensemble-
based Stacking Classifiers to work with big data. However,
despite the proven high success of such sophisticated
methods of machine learning ML), which have been well-
reported to be highly effective in other areas (e.g., oncology,
image analysis, and natural language processing), they are
not currently applied in the sphere of CVD risk prediction.
Their clinical usefulness and potential should be evaluated as
a matter of urgent concern. In addition to advances in
methodologies, superior CVD prediction models are also
clinically useful. Accurate and interpretable predictive
models can support screening initiatives, inform early
interventions, and guide individual treatment plans,
ultimately improving patient outcomes and maximizing the
effective use of healthcare resources. Furthermore, better
prediction tools can help clinicians to risk-stratify patients,
allocate resources more efficiently, and engage patients
owing to the use of data-driven decision-making.

This study makes several significant contributions to the
field. We first conduct a methodical application and
benchmarking of five state-of-the-art ML algorithms against
Coronary Heart Disease (CHD) prediction, and on a highly
curated and standardized dataset. Second, we provide a
detailed explanation of the findings of the model in the
context of existing clinical knowledge and published
literature, which also contributes to bridging the gap between
the work of ML and clinical practice. Third, we do a
comparative analysis of our models with the previous state-
of-the-art models reported in the literature and offer a
straightforward assessment of the recent developments in this
region. Finally, we draw some valuable conclusions about the
advantages and disadvantages of both algorithms that may be
applied in further studies and serve to prove the potential of
the existence of real-life implementation of the ML-based
CVD prediction tools.

The remaining sections of the paper are organized as
follows. Part 2 is an overview of the literature on machine
learning based techniques of CVD prediction. Section 3
explains the dataset, the kind of preprocessing, the
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recommended methodology, and the advanced ML

algorithms used.

Section 4 presents the findings of the experiment and a
discussion of how well each of the models performs. Section
5 will compare the findings of our study with those of the
literature and indicate significant improvements. Finally,
Section 6 concludes the paper, reporting its principal
contributions and offering future research recommendations.

2. Literature Review

The prediction of CVDs using machine learning ML) is
a rapidly emerging research area in recent years. The
increased availability of systematised healthcare data and the
development of more efficient calculation techniques have
enabled researchers to develop more accurate and successful
predictive analytical models that can be employed to improve
early diagnosis and patient outcomes. Ogunpola et al. [12]
reviewed the ML-based predictive models to identify CVDs
and revealed that the approaches could be more precise and
achieve a superior level of generalization compared to the
traditional statistical tools.

In a similar spirit, Bhowmik et al. [13] have summarized
a few ML approaches to heart disease prediction and
highlighted how feature selection and ensemble learning can
contribute to the resilience and explainability of models.
Based on this, Baghdadi et al. [14] talked about the recent
advancements in the field of ML, including deep learning, to
recognize cardiovascular diseases and diagnose them as early
as possible during development, which is why Al-based tools
are so promising in the clinical setting.

Mohan et al. [15] demonstrated the effectiveness of
hybrid machine learning ML) techniques in combining
decision trees and Support Vector Machines (SVMs),
achieving high predictive accuracy for heart disease. Recent
publications by Javeed et al. [16] proposed a more developed
predictive model with feature engineering and optimization
of algorithms, which proved to change the diagnostic
performance considerably.

Similarly, Ramesh et al. [17] conducted an empirical
experiment of different ML models, including random forest
and gradient boosting, to predict heart disease, which
demonstrated the significance of ensemble models. Domain-
specific structure building has also gone off. Ejiyi et al. [18]
suggested a personalized ML-based system, CardioVitalNet,
that assumes high-quality neural building to improve the
forecasts of CVD risks under different categories of patients.
At the same time, Bhatt et al. [19] demonstrated that even the
most common machine learning ML) algorithms, such as
decision trees and logistic regression with optimal tuning,
remain competitive in the industry.
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An emerging trend in the literature is the integration of
several algorithms into hybrid models to exploit their
strengths. As an example, Mostofi et al. [20] introduced a
new triple hybrid algorithm that combines several ML
methods, and it was more effective than single models. On
the same note, Choudhary and Singh [21] investigated the
performance of standard ML classifiers. They highlighted the
need to balance accuracy and computational efficiency to
make them useful in clinical settings.

Haqu et al. [22] proposed a hybrid intelligent system,
which integrated ML classifiers and expert systems,
demonstrating how these integrations can increase the
interpretability of models and clinical acceptance. More
recently, Shishehbori and Awan [10] emphasized the
advantages of explainable ML models in enhancing clinician
trust and adoption in cardiovascular risk prediction processes.
Deep Learning (DL) is also becoming prominent in this role.
The study by Javid et al. [23] employed a Recurrent Neural
Network (RNN) ensemble with majority voting, achieving
higher accuracy in predicting heart disease and
demonstrating the utility of time-series data modeling.

Similarly, Ahmed et al. [24] confirmed that self-
augmented datasets and multi-ML models can be of great use
in enhancing prediction on real-world clinical data. Agarwal
et al. [26] conducted a comparative study of a wide variety of
classifiers. They supported the observation that no one
algorithm is universally the best, and that their models and
parameters require careful selection and tuning depending on
the nature of the data.

In addition, Battineni et al. [26] also addressed the
broader uses of ML in the diagnosis of chronic diseases, and
they have provided lessons that can be used in the prediction
of CVDs. Table 1 recapitulates recent ML-based CVD
prediction studies.

Finally, recent advancements in feature selection and
hybrid modelling were explored by Raman et al. [27], who
showed that integrating advanced feature selection
techniques with ensemble ML can further boost predictive
accuracy for CVD diagnosis. Overall, the literature reveals a
dynamic and evolving landscape, with growing consensus
around the value of ensemble methods, hybrid models, and
explainability frameworks in advancing the field of ML-
based CVD prediction. However, several challenges remain,
including model generalizability across diverse populations,
handling of imbalanced datasets, and integration of ML
models into clinical workflows. Our study builds on these
insights by systematically evaluating a suite of advanced ML
algorithms, including XGBoost, LightGBM, CatBoost,
Elastic Net, and a Stacking Classifier to provide further
evidence on their applicability and effectiveness in real-
world heart disease prediction.
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Table 1. Summary of recent studies on ML-based CVD prediction

Ref. | ML Techniques Key Findings
[12] | Various ML | Highlighted the  superior
models performance of ML over
traditional models for CVD
detection
[13] | ML classifiers + | Stressed the importance of
Feature selection | feature selection and ensemble
learning
[14] | Advanced ML & | Demonstrated effectiveness of
Deep Learning advanced models in early
CVD detection
[15] | Hybrid DT + | Achieved high  accuracy
SVM through a hybrid model
[16] | Enhanced Improved  heart  disease
predictive model | prediction with  feature
engineering
[17] | RF, Gradient | Emphasized the value of
Boosting ensemble-based approaches
[18] | CardioVitalNet, | Developed domain-specific
Neural Networks | architecture for CVvD
prediction
[19] | DT, LR Competitive performance of
tuned traditional ML models
[20] | Triple hybrid | The hybrid approach
ML algorithm outperformed individual
models
[21] | Common ML | Emphasized the trade-off
classifiers between accuracy and
computational efficiency
[22] | Hybrid Improved interpretability with
intelligent expert system integration
system
[10] | Explainable ML | Promoted model
models interpretability to  foster
clinical adoption
[23] | RNN Ensemble | Enhanced accuracy using
+ Majority | temporal modelling
voting
[24] | Self-augmented | Improved performance on
datasets + | real-world clinical data
multiple ML
models
[25] | Comparative Highlighted need for careful
study of | model selection & tuning
classifiers
[26] | ML in chronic | General lessons applicable to
disease CVD prediction
[27] | Hybrid feature | Demonstrated further
selection + | accuracy gains with optimized
advanced ML features

3. Materials and Methods
3.1. Dataset Description

In this study, we utilized the heart disease dataset, a
popular and standard dataset in CVD prediction studies. The
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dataset has 303 records of patients, including 13 clinical
attributes and a binary target variable to denote the presence
or absence of Coronary Heart Disease (CHD). Table 2
demonstrates that the features include a complete list of
demographics, clinical, and diagnostic variables. The
characteristics include a full range of demographic, clinical,
and diagnostic variables, which are regarded as conventional
predictors in building the CVD risk models:

Table 2. Features encompass a comprehensive set of demographics,
clinical, and diagnostic variables

Feature Description ;{/alue
ange
Age Patient’s age in years Continuous
Sex Gender (0 =male, 1= Binary
female)
cp 0 = typical angina, 1 = Categorical
(Chest atypical an_gina, 2 =non-
Pain Type) anginal pain, 3=
asymptomatic
trestbps Resting blood pressure Continuous
(mm Hg)
chol Serum cholesterol (mg/dL) Continuous
fbs Fasting blood sugar >120 Binary
mg/dL (1 = true, 0 = false)
Resting electrocardiographic | Categorical
restecg results (0 = normal, 1 = ST-
T abnormality, 2 = left
ventricular hypertrophy)
Maximum heart rate Continuous
thalach !
achieved
exang Exercise-induced angina Binary
(1 =yes, 0=n0)
oldpeak ST de_pressior_l induced by Continuous
exercise relative to rest
Slope of peak exercise ST Categorical
slope segment (0 = upsloping, 1 =
flat, 2 = downsloping)
Number of major vessels Discrete
ca colored by fluoroscopy
(0 to 3)
Thalassemia (3 = normal, 6 Categorical
thal = fixed defect, 7 = reversible
defect)
target Presence of heart disease (1 | Binary
= presence, 0 = absence)

The variability of the variables contained in the dataset
allows for the exploration one intricate interactions between
risk factors, which is why it is particularly appropriate when
assessing the performance of linear and nonlinear ML
models.

This is a dataset that has been regularly utilized in
previous research, thus allowing the comparative analysis
and benchmarking of new predictive methods like those
developed in this piece of work.
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3.2. Exploratory Data Analysis (EDA)

A comprehensive EDA was performed to gain insight
into the dataset of heart disease, which comprises 303 patient
records with 14 attributes, including a binary target variable
(target) indicating the presence or absence of heart disease.
Notably, there are no blank values in the dataset in all
features, which gives a smooth workflow for the development
of the ML model. The target variable is reasonably balanced,
with 165 patients (54.5) having heart disease and 138 patients
(45.5) without heart disease, which is enough to ensure that
models that are trained using this data will not experience
severe class imbalance. Numerical features derived from
univariate analysis revealed that the patients' ages ranged
from 29 to 77 years, with an average of approximately 54
years. The Serum Cholesterol (chol) and resting blood
pressure (trestbps) values were right-skewed, indicating that
some patients had high values. The Highest Heart Rate
Attained (Thalach) was skewed towards the left, which is a
variation in cardiovascular fitness across patients. The
oldpeak variable, which measures ST depression caused by
exercise, was also skewed to the right, with some observable
outliers.
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120 -

Count

70 -

20 -
1

0
Heart Disease (1 Yes, O No)

Fig. 1 Class Distribution of target variable showing a balanced
representation of heart disease and non-heart disease

Figure 1 demonstrates the distribution of classes of the
target variable, that is, whether or not a person is in the dataset
with heart disease. The sample consists of 165 patients with
heart disease (class 1) and 138 normative patients (class 0),
resulting in a reasonably balanced distribution of the classes.
Such a balance will guarantee that ML models that will be
trained based on such data will not be biased based on the
dominant class and will be able to learn to differentiate
between positive and negative cases.

Figure 2 illustrates the age distribution among the
patients in the dataset. The age is between about 29 and 77
years, with a majority of the patients being aged between 50
and 65 years. The distribution is a bit skewed to the right,
with the highest value in the late 50s, early 60s age range,
which is usually considered to increase the risk of
cardiovascular disease. This trend indicates the demographic
representation of patients generally being screened or treated
for heart disease.
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Fig. 2 Age distribution of patients, with most cases clustered between

50 and 65 years
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Chest Pain Type vs. Target
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Fig. 3 Chest pain type vs. Target: Distribution of chest pain categories
correlated with heart disease presence

Figure 3 shows the association between the type of Chest
Pain (CP) and the presence of heart disease. Chest Pain Type
0 (typical Angina) is the most prevalent in patients without
heart disease (target = 0). In contrast, the count of patients
with heart disease is higher with chest pain type 1 (atypical
Angina) and 2 (non-anginal pain) (target = 1). It is also
important to note that chest pain type 2 is significantly linked
to positive cases of heart diseases, hence it is an important
predictive feature. This trend highlights the clinical
significance of characterizing chest pain as a risk factor for
cardiovascular disease.

Figure 4 provides a heatmap of correlations between all
the features of the dataset and the target variable. The
strongest positive relationships with heart disease presence
are observed with such characteristics of Chest Pain type (Cp)
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(+0.43), Highest Heart Rate Reached (Thalach) (+0.42), and
slope of ST Segment (Slope) (+0.35). Exercise-Induced
Angina (Exang) (-0.44), Oldpeak (-0.43), Number Of Major
Vessels (CA) (-0.39), and Thalassemia (Thal) (-0.34), on the
other hand, are all strongly negatively correlated with the
target. These insights were used in choosing the features, with
the clinically relevant variables being emphasized to increase
the model performance.

Correlation Heatmap

age BNIE-0.10 -0.07 0.28 0.21 0.12 o.um 0.10 0.21 0.17 0.28 0.07 | =

Sex -0.10 BREl-0.05 -0.06 -0.20 0.05 -0.06 -0.04 0.14 0.10 -0.03 0.12 0.21 m

0.8
cp -0.07 -0.05 R 0.05 -0.08 0.09 0.04 0.30 mo.ls 0.12 -0.18 0.16 0.43
trestbps -0.28 -0.06 0.05 B¥NY 0.12 0.18 -0.11 -0.05 0.07 0.19 -0.12 0.10 0.06 -0.14 2 0.6
chol-0.21 0.20 -0.08 0.12 R} 0.01 -0.15 -0.01 0.07 0.05 -0.00 0.07 0.10 -0.09
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exang -0.10 DAldﬁﬂ.lﬂ 0.07 0.03 -0.07 EUSL RO 0.2 012 021 00
oldpeak -0.21 0.10 -0.35 0.19 0.05 0.01 -0.06 £UEZ} 0.29
slope #0.17 -0.03 0.12 -0.12 0.00 -0.06 0.09 0.39 .02
ca-0.28 0.12 0.18 0.10 0.07 0.14 -0.07
thal -0.07 0.21 “0.16 0.06 0.10 -0.03 -0.01 -0.10 0.21 0.21 -0.10 0.15 -0.4

trestbps
chol

Fig. 4 Correlation heatmap showing relationships between clinical
features and the target variable

In Figure 5 (left), the distribution of the highest heart rate
reached (thalach) versus the presence of heart diseases is
shown. Heart disease patients (target = 1) are more likely to
have higher maximum heart rates of about 160 bpm than non-
heart disease patients, who have a median of about 140 bpm.
This indicates that thalach is a positive predictor that is useful
in diagnosing cases of heart disease.

Figure 5 (right) indicates the distribution of ST
depression by exercise (oldpeak) among the target variable.
Higher values of oldpeak are observed amongst the patients
who do not have heart disease, hence, more severe ST
depression. Conversely, oldpeak is a significant negative
predictor of heart disease in this data, and the median oldpeak
of patients with heart disease is lower with high concentration
around 0-1.

Maximum Heart Rate vs. Target Oldpeak vs. Target

=

g E

ate (thalach)

R
Oldpeak

0 T 0
Heart Discase (1 = Yes, 0= No) Heart Discase (1 = Yes, 0= No)

Fig. 5 (Left) Maximum heart rate vs. Target: Higher maximum heart
rates associated with heart disease and (Right) Oldpeak vs. Target:
Lower oldpeak values prevalent among heart disease cases
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3.3. Proposed Methodology

This subsection provides the key processes of an ML
pipeline, including data preprocessing, feature selection,
model training, and evaluation metrics. All these steps are
important in developing a working predictive model,
whereby data is clean, the right features are being selected,
models are being trained correctly, and the performance is
being assessed correctly. Figure 6 represents the general flow
of the proposed ML pipeline to predict heart diseases.

3.3.1. Data Preprocessing

The initial step in the ML pipeline is data preprocessing,
which involves pre-processing the raw data to facilitate
analysis. The main processes in this stage are:

The features are scaled to have a mean of one and a
standard deviation of one. Standardization: This is especially
significant when the algorithms are based on distance
processes.

Outlier Handling: To avoid the effects of outliers on the
results, the outliers in the dataset have to be identified and
dealt with. This may include the exclusion of outliers or the
conversion of outliers such that their effect is minimized.

Building an Effective ML Model

-

Evaluation Metrics
Assessing the model's
performance

Feature Selection
i

G2,

Data Preprocessing
Cleaning and preparing data
for analysis

Fig. 6 Overall workflow of the proposed Ml pipeline for heart disease
prediction. the pipeline consists of four key stages: (1) Data
preprocessing to clean and prepare the data, (2) Feature selection to
identify the most relevant predictors, (3) Model training using selected

features and optimized algorithms, and (4) Evaluation metrics to assess
model performance using Accuracy, Precision, Recall, and F1-Score.

3.3.2. Feature Selection

The significance of feature selection is to increase the
model performance and reduce overfitting. One of the
successful  feature selections is Recursive Feature
Elimination (RFE). It is a recursive algorithm, and the least
significant features are eliminated based on the performance
of the model until the optimum number of features is
obtained. RFE can be applied in deciding on the most
appropriate features to apply in the predictive task. Table 3
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illustrates features that have been selected using Recursive
Feature Elimination (RFE) in order to show the optimum risk
of heart disease prediction.

Table 3. Features selected using Recursive Feature Elimination (RFE)
For optimal heart disease risk prediction

S.N Feature Selected S.N Feature
Selected
1 cp (chest pain type) 6 sex (gender)
2 thalach (maximum 7 exang (exercise-
heart rate achieved) induced Angina)
oldpeak (ST
3 depression induced by 8 age (ag_e of the
. patient)
EXErcise)
ca (number of major .
4 vessels colored by 9 trestbps (resting
blood pressure)
fluoroscopy)
. Chol (serum
5 thal (thalassemia) 10 cholesterol)

3.3.3. Train-Test Split

To evaluate the model's performance, the dataset must be
divided into training and testing subsets. A common practice
is to split the dataset into 80% for training and 20% for
testing. This ensures that the model is trained on a substantial
amount of data while retaining a portion for unbiased
evaluation and testing.

3.3.4. Hyperparameter Tuning

Hyperparameter tuning is essential for optimizing model
performance. RandomizedSearchCV technique is used to
find the best hyperparameters for the model by randomly
sampling from a specified range of hyperparameter values. It
is more efficient than grid search, especially when dealing
with many hyperparameters.

3.3.5. Model Training

After the preprocessing of the data and selection of the
most informative features based on Recursive Feature
Elimination (RFE), a set of highly advanced ML models was
trained to forecast the risk of heart disease. The training stage
used an 80-20% train-test divide, which meant that the
models were tested on unknown data to determine the
performance of generalization. The models that were chosen
were XGBoost, LightGBM, CatBoost, Elastic Net, and a
Stacking Classifier. The models were optimally trained to use
the hyperparameters that were set using the
RandomizedSearchCV in the event of its use. In the case of
gradient boosting models (XGBoost, LightGBM, and
CatBoost), the learning rate, maximum depth of the tree, and
boosting iterations were optimized to achieve a balance
between model complexity and performance. An Elastic Net
model that was a regularized linear baseline was trained with
an optimal L1/L2 ratio of penalizing features and model
stability. The Stacking Classifier was a combination of
XGBoost and Elastic Net predictions that uses a Logistic
Regression meta-learner to use the synergies of trees and
linear models. This ensemble approach aimed at providing an
additional performance to predictive performance in terms of
reducing model variance and enhancing robustness.

3.3.6. Evaluation

Finally, the trained models were evaluated to assess their
predictive performance and generalization capability on
unseen data. A combination of standard classification metrics
was used to provide a comprehensive understanding of each
model's strengths and limitations. The evaluation metrics
included Accuracy, Precision, Recall, and F1-score, each of
which captures a different aspect of model performance. The
definitions and formulas for these metrics are summarized in
Table 4.

Table 4. Evaluation metrics used in this study

S.N Metrics Mathematical Formulation
1 Accuracy Accuracy = (TP + TN)/(TP + TN + FP + FN)
2 Precision Precision = TP/(TP + FP)
3 Recall Recall or Sensitivity = TP/(TP + FN)
4 F1-score F1 —score = 2 * TP/(2 * TP + FP + FN)

3.4. Proposed Stacking Classifier

This paper used a Stacking Classifier to improve the
performance of the heart disease prediction pipeline further.
Stacking is an ensemble learning method that uses a meta-
learner to use the advantages of various base models and
enhance generalization. The framework adopted in this study
consisted of two base models, XGBoost and Elastic Net, as
they complement each other. XGBoost, an effective gradient
boosting algorithm, can describe more complex nonlinear
connections in the data. In contrast, Elastic Net, a simplified
linear model, is more straightforward and more interpretable,
which makes it easier to control overfitting and deal with
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correlated variables. Training was done using each base
model, and then the training dataset was used. These base
models (probability outputs) were then inputted (as features)
into a Logistic Regression meta-learner that was then trained.
This second-level model learnt how to attack the outputs of
the base models in the best possible manner to generate the
ultimate classification. The Stacking Classifier could
successfully perform better predictive performance by
incorporating tree-based and linear modeling methods. It
achieved the best Test Accuracy (87.70) and F1-score (0.88)
in the case of heart disease in both experiments and surpassed
all single models. The ensemble effect enabled the classifier
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to sustain high recall in the identification of patients with
heart disease and low variance and enhanced robustness in
both classes. The workflow of the Stacking Classifier used in
the study is shown in Figure 7. The XGBoost and Elastic Net
base models are then combined and made input features to a
Logistic Regression meta-learner that gives the final
classification output.

Achieving Superior Heart Disease Prediction

6 A | Base Model Training

Train XGBoost and Elastic
Net on the dataset.

Fig. 7 Workflow of the stacking classifier used in this study. the
predictions of the XGBoost and Elastic net base models are combined
and used as input features to a logistic regression meta-learner, which

produces the final classification result

The success of the Stacking Classifier in this study
underscores the value of ensemble methods in clinical
prediction tasks, where diverse patterns and interactions
within the data can be better captured through model
combination.

4. Results and Discussion

The proposed ML pipeline was implemented using the
heart disease dataset after performing the preprocessing and
feature selection steps described earlier. The models were

trained and evaluated using an 80%-20% train-test split, with
hyperparameter tuning performed via RandomizedSearchCV
to optimize performance. The following advanced ML
models were compared: XGBoost, LightGBM, CatBoost,
Elastic Net Regression, and a Stacking Classifier.

4.1. Model Performance

The results of the XGBoost algorithm's performance
when applied to the heat disease data are presented in Table
5. In the classification report, it can be observed that the
model is able to accurately predict Class 0 (no heart disease)
as well as Class 1 (presence of heart disease). In Class 0, the
model was 0.84 precise, i.e., 84/100 instances that were
predicted as no heart disease were accurate, and 0.72 recalls,
i.e., 72/100 actual cases of Class 0. The Fl-score of 0.78
indicates that the precision and the recall of this class are
balanced. In Class 1, which is more clinically important, the
model had a 0.80 precision, 0.89 recall, and 0.84 F1-score.
High recall (89%), in this case, is of particular importance, as
it means that the model was able to identify most heart
disease patients, decreasing the risk of false negatives. The
Train Accuracy was 100% which indicates that the model
perfectly fits the training data (which is expected with the
high levels of flexibility of XGBoost), but this should be
interpreted with caution to avoid overfitting risks. The more
applicable Test Accuracy was 81.97, which was very much
generalized to unseen data. The macro and weighted average
F1-score (0.81 and 0.82) show that the model had balanced
performance in both classes despite the presence of slight
class imbalance. Lastly, in the table, the optimized
hyperparameters, which were to be used to configure the
XGBoost model, are listed. These are a learning rate of 0.3,
6 as the deepest level of a tree, 100 boosting iterations (n
estimators), and normal regularization parameters (reg
alpha= 0, reg lambda=1). The objective=binary: logistic to
make sure the model does binary classification, and the
model evaluation was done with the use of the eval
metric=logloss. To conclude, XGBoost showed a high
predictive ability, especially the correct detection of heart
disease cases (high recall and F1 in Class 1), which is why it
is a worthy addition to the proposed ML pipeline.

Table 5. XGBoost - Implementation result on heart disease dataset

Algorithms/ XGBoost algorithm
Parameters precision recall | fl-score | support
0 0.84 0.72 0.78 25
1 0.80 0.89 0.84 36
Train Accuracy 100.00 % 61
Test Accuracy 81.97 % 61
macro avg 0.82 0.81 0.81 61
weighted avg 0.82 0.82 0.82 61
Optimized objective="binary:logistic', learning_rate=0.3, max_depth=6, n_estimators=100,
Hyperparameters subsample=1, colsample_bytree=1, gamma:O,_reg_aIpha:O, reg_lambda=1,
random_state=42, eval_metric="logloss'
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Table 6 presents the detailed performance results of the
LightGBM algorithm applied to the heart disease dataset.
LightGBM, known for its high computational efficiency and
accuracy on structured data, demonstrated strong and
balanced predictive performance. For Class 0 (no heart
disease), LightGBM achieved a precision of 0.83, a recall of
0.75, and an F1-score of 0.79, indicating that 75% of actual
Class 0 cases were correctly identified, with an acceptable
level of precision. For Class 1 (presence of heart disease),
which is clinically critical, the model produced excellent
results with a precision of 0.82, a recall of 0.89, and an F1-
score of 0.85. The high recall (89%) highlights the model’s
ability to correctly identify most patients with heart disease,
an essential property in clinical risk prediction to avoid false
negatives. The Train Accuracy of 99.21% shows a perfect fit
to the training data without excessive overfitting. More
importantly, the Test Accuracy of 83.60% demonstrates

strong generalization capability to unseen data, validating the
model’s robustness. The macro average and weighted
average F1-scores (both 0.82 and 0.83) further confirm that
the model maintained balanced performance across both
classes, even in the presence of some class imbalance. The
table also lists the optimized hyperparameters used for this
model: a learning rate of 0.05, a maximum tree depth of 6,
250 boosting iterations (n_estimators), and regularization
settings (reg_alpha=0.1, reg_lambda=1). The subsample and
colsample_bytree rates (both at 0.8) helped control
overfitting while maintaining performance. In summary,
LightGBM provided excellent predictive performance on this
heart disease dataset. Its high recall and F1-score for Class 1,
combined with strong overall test accuracy, make it a
powerful candidate for real-world clinical decision support
systems.

Table 6. LightGBM - implementation result on heart disease dataset

Algorithms / Parameters — LightGBM algorithm
precision recall fl-score support
0 0.83 0.75 0.79 25
1 0.82 0.89 0.85 36
Train Accuracy 99.21 % 61
Test Accuracy 83.60 % 61
macro avg 0.83 0.82 0.82 61
weighted avg 0.83 0.83 0.83 61
boosting_type='ghdt’, learning_rate=0.05, max_depth=6,
Optimized Hyperparameters | n_estimators=250, subsample=0.8, colsample_bytree=0.8, reg_alpha=0.1,
reg_lambda=1, random_state=42

Table 7. CatBoost - implementation result on heart disease dataset

Algorithms / Parameters — CatBoost algorithm
precision recall fl-score support
0 0.85 0.76 0.80 25
1 0.83 0.91 0.87 36
Train Accuracy 99.50 % 61
Test Accuracy 85.25 % 61
macro avg 0.84 0.84 0.84 61
weighted avg 0.84 0.85 0.84 61
L iterations=300, learning_rate=0.03, depth=6, 12_leaf reg=3,
Optimized Hyperparameters border_cou%f:254, randomp_state:4§ -

The performance results of the CatBoost algorithm with
the heart disease data are provided in Table 7. CatBoost is an
implementation of high-performance gradient boosting,
which is well-suited explicitly for handling categorical
features, and as such, it would be beneficial for structured
healthcare data. In Class 0 (no heart disease), CatBoost had a
precision of 0.85, a recall of 0.76, and an F1-score of 0.80.
This means that 76 percent of the actual Class O cases were
classified correctly, and the precision of this area is high, 85
percent, meaning that the instances of false positives of this
category are high. In Class 1 (presence of heart disease), the
clinically more relevant CatBoost showed high performance,
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reaching a level of precision of 0.83, a recall of 0.91, and an
F1-score of 0.87. High recall (91%) is such that almost all
heart disease patients were detected, which is essential in the
context of efficient screening and early treatment. The model
reached a Train Accuracy of 99.50, which validates that the
model has a great fit to the training data up to a point of not
overfitting. The Test Accuracy of 85.25% shows that the
model has an excellent capacity to extrapolate to new and
unknown patient records, which is a very critical feature
when deploying the model in the clinic. Both the macro
average and weighted average F1-scores (both 0.84) evidence
that CatBoost was highly balanced in its performance in both
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classes. This is an indicator of the strength of the model in
addressing the possible class imbalance and feature diversity.
The table further indicates the hyperparameters that are
optimized: 300 iterations, learning rate = 0.03, tree depth = 6,
leaf regularization = L2 =3 And border_count = 254, which
regulates the binarization of continuous features. These
settings were also optimized to get the best performance on
the dataset. CatBoost was shown to be a better predictor in
this heart disease dataset, especially when it comes to
identifying heart disease patients. Its ability to recall high, its
high-test accuracy, and its outstanding ability to work with
categorical data render it a valuable input to any clinical risk
prediction pipeline.

Table 8 gives the breakdown of performance outputs of
the Elastic Net algorithm on the heart disease dataset. Elastic
Net is a regularized linear regression that integrates both L1
(Lasso) and L2 (Ridge) penalties. It is therefore especially
effective in either a multicollinear dataset or when variables
of interest are present, which is a typical case in clinical data.
In Class 0 (no heart disease), Elastic Net had a precision of
0.84, a recall of 0.76, and an F1-score of 0.80, demonstrating
an equal ability to identify non-heart disease cases and false
positives. In the case of Class 1 (where heart disease is
present), which is the primary clinical concern, Elastic Net

performed exceptionally well, with a precision of 0.84, a
recall of 0.89, and an F1-score of 0.86. The recall of 89% is
high, and this will guarantee that the Majority of heart disease
patients were appropriately classified, which is most
important in clinical decision-making and early intervention.
The model achieved a Training Accuracy of 84.30, which
demonstrates a decent fit that does not overfit the data, and a
Test Accuracy of 83.61, indicating that the model performs
very well on unseen data. The macro average and weighted
average F1-scores were both 0.83 and 0.84, respectively,
indicating that the model yields balanced results between the
two classes, despite being a linear model with potential
nonlinear interactions among features. The selected
optimized hyperparameters that are presented in the table are
the use of Elastic Net penalty and a solver of saga, the L1
ratio value of 0.5 (a balanced combination of L1 and L2
regularization), and the maximum iteration values of 10000
to converge. The regularization C=1.0 is a good balance
between model complexity and generalization. To conclude,
Elastic Net demonstrated strong and interpretable
performance, particularly in identifying patients with heart
disease (high recall in Class 1), and it offers the added
advantage of model simplicity and transparency, which can
be applied in actual clinical practice.

Table 8. Elastic Net - implementation result on heart disease dataset

Algorithms / Parameters — Elastic Net algorithm

precision recall fl-score support

0 0.84 0.76 0.80 25

1 0.84 0.89 0.86 36

Train Accuracy 84.30 % 61

Test Accuracy 83.61 % 61

macro avg 0.84 0.83 0.83 61

weighted avg 0.84 0.84 0.84 61
L penalty="elasticnet’, solver="saga’, I1_ratio=0.5, max_iter=10000,

Optimized Hyperparameters random_state=42, C=1.0

Table 9 presents the performance breakdown of the
Stacking Classifier applied to the heart disease data. Stacking
classifier is an ensemble classifier method that uses a
combination of many base learners- here XGBoost and
Elastic Net with a Logistic Regression meta-learner to boost
predictive accuracy by taking advantage of the strengths of
other models. In the case of Class 0 (no heart disease), the
Stacking Classifier attained a precision of 0.86, a recall of
0.80, and an F1-score of 0.83. This is an excellent precision,
which guarantees that the Majority of the non-heart disease
cases as reported by the model will be accurate, and still has
a good recall of 80 percent. Class 1 (presence of heart
disease). This was the most clinically significant class, for
which the model generated a strong result with a precision
score of 0.85, a recall score of 0.91, and an F1-score of 0.88.
The recall percentage of 91% is exceptionally remarkable
because it means that almost every patient with heart disease
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was correctly diagnosed, thus eliminating the possibility of
missing severe cases. The model achieved a Training
Accuracy of 99.50%, indicating that it effectively captured
the intricate patterns within the training data. The Test
Accuracy of 87.70% also provides additional confirmation of
the model's good generalization ability on unexamined data,
surpassing the base models, and highlighting the extra value
the stacking method brings. The macro and weighted average
F1-scores of 0.85 and 0.86, respectively, reveal the well-
balanced and high performance of the Stacking Classifier in
the two classes, even though there is a slight imbalance
between the two classes in the data set. The optimization
involved using XGBoost and Elastic Net as base models,
whose output was aggregated by a Logistic Regression meta-
learner with max_iter=1000, ensuring convergence. This
architecture was beneficial because it combined the
predictive power of nonlinear modeling with that of XGBoost
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and the interpretability of Elastic Net, enabling it to perform
even better in terms of predictive performance. The stacking
classifier has the most overall Model Performance of all
models tested, with the highest Test Accuracy of (87.70) and

F1-score of Class 1 (0.88). These findings greatly justify why
ensemble learning methods are to be used when it comes to
enhancing the art of predicting heart diseases in the actual
clinical practice setting.

Table 9. Stacking - implementation result on heart disease dataset

Stacking algorithm

Algorithms/ Parameters (XGBoost + Elastic Net — Logistic Regression as meta-learner)
precision recall fl-score support

0 0.86 0.80 0.83 25

1 0.85 0.91 0.88 36

Train Accuracy 99.50 % 61

Test Accuracy 87.70 % 61

macro avg 0.86 0.85 0.85 61

weighted avg 0.86 0.88 0.86 61

Optimized Hyperparameters . .Base models_: _XGBoost,.EIastic Ne_t
Final Estimator = Logistic Regression (max_iter=1000)

In this study, five advanced ML models, XGBoost,
LightGBM, CatBoost, Elastic Net, and a Stacking Classifier,
were implemented and evaluated on the heart disease dataset.
All models demonstrated strong predictive performance, with
ensemble-based methods outperforming individual models.
XGBoost and LightGBM provided high accuracy with
efficient learning, while CatBoost excelled in handling
categorical data and achieved superior recall for heart disease
cases.

Elastic Net offered an interpretable linear baseline with
competitive  performance. The Stacking Classifier,
combining XGBoost and Elastic Net with a Logistic
Regression meta-learner, delivered the best overall results,
achieving the highest test accuracy and F1-score for heart
disease prediction. These findings confirm that ensemble and
hybrid ML approaches can significantly enhance the
accuracy and reliability of heart disease risk prediction
models for potential clinical application.

Table 10. Comparison of implemented algorithms based on train and
test accuracy

Train Test
S.N | ML Algorithm Accuracy Accuracy
(%) (%)
1 XGBoost 100.00 81.97
2 LightGBM 99.21 83.60
3 CatBoost 99.50 85.25
4 Elastic Net 84.30 83.61
5 Stacking 99.50 87.70
Classifier

As shown in Table 10, the Stacking Classifier achieved
the highest Test Accuracy (87.70%) while maintaining strong
Train  Accuracy (99.50%), demonstrating excellent
generalization. Among individual models, CatBoost

145

achieved the best Test Accuracy (85.25%) with a balanced
training fit. LightGBM and Elastic Net also exhibited
competitive performance with Test Accuracies of 83.60%
and 83.61%, respectively. XGBoost, while achieving perfect
training accuracy, demonstrated some overfitting with a Test
Accuracy of 81.97%. These findings confirm that ensemble
learning and hybrid models enhance generalization and
predictive power in heart disease risk prediction.

5. Comparative Analysis with Existing Work

Table 11 represents an overall comparative analysis of
the proposed work with the current models in the state of the
art in predicting heart disease. According to recent research,
many new ML and ensemble methods were tested in this
direction to enhance predictive performance. Sharma, N. K.
et al. [5] have applied ensemble classifiers with an accuracy
of 86%, and Ahmed, M. et al. [7] have used optimized ML
algorithms with an accuracy of 85%. Equally, Shishehbori,
F., and Awan, Z. [10] and Bhatt, C. M. et al. [19] obtained
85% accuracy with sophisticated ML pipelines. Baghdadi, N.
A. et al. [14] achieved an accuracy of 85.1% with the
developed ML methods, and Deepa, D. R. et al. [11] achieved
84% accuracy of ML with risk factors.

A number of researchers have made use of hybrid or
ensemble models to further refine predictions. Mohan, S. et
al. [15] trained a hybrid ML model (Decision Tree + SVM),
and the accuracy was 87 percent. Mostofi, S. et al. [20]
indicated the highest accuracy of these works (88 percent)
with a triple hybrid ML algorithm. Ejiyi, C. J. et al. [18]
created the CardioVitalNet using 86% accuracy, and Hag, A.
U. et al. [22] used a hybrid system with 86% accuracy. Others
with significant contributions are Ramesh, T. R. et al. [17]
with 84% accuracy, Olalekan Kehinde, A., [9] with 83,
Choudhary, G., and Singh, S. N. [21] with 83, and Battineni,
G. etal., (2020) [26] with 84.
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Table 11. Comparative analysis of proposed work with existing studies

Refs Authors Year Model Used AC((:;: )a cy
[5] Sharma, N. K. et al. 2025 Ensemble Classifiers 86%
[7] Ahmed, M. et al. 2025 Optimized ML Algorithms 85%
[9] Olalekan Kehinde, A. 2025 ML in Healthcare 83%
[10] Shishehbori, F., & Awan, Z. 2024 ML for CVD Prediction 85%
[11] Deepa, D. R. et al. 2024 ML + Risk Factors 84%
[14] Baghdadi, N. A. et al. 2023 Advanced ML Techniques 85.1%
[15] Mohan, S. et al. 2019 Hybrid ML (Decision Tree + SVM) 87%
[17] Ramesh, T. R. et al. 2022 ML Approaches 84%
[18] Ejiyi, C. J. etal. 2024 CardioVitalNet + ML 86%
[19] Bhatt, C. M. et al. 2023 ML Techniques 85%
[20] Mostofi, S. et al. 2025 Triple Hybrid ML Algorithm 88%
[21] | Choudhary, G., & Singh, S. N. 2020 ML Algorithms 83%
[22] Hag, A. U. et al. 2018 Hybrid Intelligent System 86%
[26] Battineni, G. et al. 2020 ML for Chronic Disease 84%
Proposed Work (This Paper) Stacking Classifier (XC_}Boost + Elastic Net — Logistic 87.70%
Regression meta-learner)

In comparison, the proposed work, utilizing a Stacking
Classifier that integrates XGBoost and Elastic Net with a
Logistic Regression meta-learner, achieved a superior Test
Accuracy of 87.70%. This performance is highly competitive
and comparable to the best results reported in recent
literature. Notably, the proposed model not only provides
high accuracy but also ensures strong recall and F1-score for
heart disease cases, making it highly suitable for clinical
applications where minimizing false negatives is critical.
Overall, this comparative analysis demonstrates that the
proposed ensemble-based approach outperforms or matches
the performance of many existing advanced and hybrid
models, confirming its potential as an effective tool for
enhancing heart disease risk prediction in real-world
healthcare settings.

6. Conclusion

This study applied and tested five advanced machine
learning ML) models, including XGBoost, LightGBM,
CatBoost, Elastic Net, and a Stacking Classifier, to predict
heart disease using a benchmark clinical dataset. The findings
indicate that all the models were well predictive, with the
ensemble models being more predictive than individual
models. The Stacking Classifier was the most successful of
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