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Abstract - Precise forecasting of crop yields is the key to food security, resource management, and sustainable food farming.
This paper will examine how different Machine Learning (ML) models can be used to predict crop yield in relation to climatic
and other environmental conditions, like rainfall, temperature, and the use of pesticides. Multiple performance metrics, such
as R?, Mean Squared Error (MSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) were used to
train and evaluate seven ML models which were Linear Regression (LR), Decision Tree (DT), K-Nearest Neighbors (KNN),
Gradient Boosting (GB), XGBoost, Random Forest (RF), and Bagging. The experimental findings showed that the ensemble-
based models were very effective compared to the traditional regression and distance-based algorithms. The Bagging
recorded the best prediction accuracy in terms of Rz score, closely followed by the RF. The two models were effective in
capturing nonlinear relationships and high generalization in varied climatic and crop conditions. On the other hand, the
simplicity of models like LR and KNN demonstrated low predictive abilities. The results highlight the scalability and the
strength of the Ensemble Learning(EL) techniques in crop yield forecasting. The paper concludes with a set of
recommendations on how to incorporate Explainable Al, real-time data that uses loT, and region-specific hybrid deep
learning systems to improve the interpretability, adjustment, and accuracy of agricultural forecasting systems in the future.

Keywords - Bagging, Crop Yield Prediction (CYP), Ensemble Learning, Machine Learning, Random Forest.

1. Introduction
1.1. Background

One of the most important sectors that contributes to the
survival of human beings and the economy is agriculture,
which supplies food, raw materials, and jobs to billions of
people across the world. Proper prediction of crop yield is an
issue of focus in agricultural research and management since
it allows agricultural policy makers, farmers, and
agribusiness to make good decisions about food security,
food prices, and allocation of resources. Nevertheless, crop
yield is a complicated process that is affected by a great
variety of environmental, agronomic, and socio-economic
factors. The interaction of variables like rain, temperature,
use of pesticides, soil fertility, and climatic patterns in the
region is not linear, and in fact, interacts in complex
nonlinear manners to influence crop productivity [1]. The
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world agricultural industry has been experiencing increasing
challenges in recent years owing to climate change, erratic
weather patterns, and soil erosion.

The changes in rainfall and the increase in temperature
have had a significant impact on crop production and food
availability, especially in areas that rely on rain-fed crops.
These issues reveal the pressing necessity to have more data-
driven, adaptive, and reliable prediction systems that can
help reduce risk and guarantee sustainable agricultural
production [2]. Historical trends, statistical methods that are
based on regression, as well as domain knowledge, are key
elements in the traditional methods of predicting crop yield.
In spite of a certain degree of accuracy, such models do not
always represent the sophisticated relationships between
climatic, biological, and geographical variables. Moreover,
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these traditional methods have limitations of linear
assumptions, lack scalability, and are sensitive to missing or
noisy data. Machine learning ML) has become an effective
tool for improving the accuracy of crop yield prediction in
this respect [3]. ML methods can be trained to capture the
latent patterns and nonlinear relationships in large datasets
and can provide superior generalization and flexibility to
changing agricultural conditions. Using ML algorithms, it is
possible to process agricultural data, including temperature
measurements, precipitation, pesticide application, and soil
properties in large volumes to produce high-quality
predictive models that are both interpretable and accurate [4].

As a result, prediction models based on ML have
become a part of the development of precision agriculture
systems that should maximize the use of the resources,
enhance their efficiency, and minimize their environmental
impact [5, 6]. ML-based crop yield prediction has, therefore,
tremendous opportunities to transform the existing
agricultural processes and allow making decisions based on
data, and play a significant role in the overall objectives of
global food security [7]. This paper discusses and analyzes
the performance of various ML algorithms to determine the
most dependable method of predicting crop production based
on climatic and environmental data.

1.2. Problem Definition

The forecasting of agricultural production is, by its
nature, a challenging task because of the dynamic and
multivariate character of influencing factors. Conventional
yield estimation techniques, including regression-based
prediction, time series forecasting, or expert-based
evaluation, tend to be restricted by their assumption of fixed
assumptions and simplistic relations.

These models do not usually account for the nonlinear
interaction between the major environmental factors, such as
temperature, rainfall, and pesticide use, which, in
combination, define the outcome of crop vyield [7, 8].
Moreover, the fact that the agricultural conditions of various
regions, soils, and crops vary complicates the accurate
modeling of yield. As an illustration, two areas that receive
the same amount of rainfall can vyield vastly different
amounts of yield because of differences in soil fertility or
pesticides used.

Moreover, climatic fluctuations have increased the
uncertainty of the agricultural results, and thus, the use of
conventional linear models is not practical in contemporary
times. Another weakness of conventional methods is that
they cannot effectively analyze large and heterogeneous data
sets. Agricultural data typically includes thousands of
observations gathered across multiple regions, crops, and
years. Such high-dimensional data cannot be handled with
algorithms that can only learn more complicated
relationships, but also be generalized to previously unknown
conditions. Thus, it is increasingly necessary to have
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automated and scalable solutions capable of forecasting crop
yields with a high degree of accuracy, taking into account a
combination of several interacting variables simultaneously.

The alternative to traditional prediction methods is the
use of machine learning ML) models, including ensemble
techniques, regression trees, and boosting algorithms. They
can understand the past trends in agriculture, adjust to the
shifting climatic trends, and produce exact forecasts of Yield

[9].

The primary issue this study aims to address is the
enhancement of the accuracy, strength, and explainability of
crop yield forecasting based on various machine learning
ML) methods trained on actual agricultural data [10]. The
study will identify the best-performing algorithm by
systematically comparing various models under different
geographical and climatic conditions to understand which
algorithm is most effective at modeling crop production in
nonlinear conditions.

1.3. Research Motivation and Objectives

Efficient CYP is crucial in addressing some of the most
pressing issues in global agriculture, including food
insecurity, resource scarcity, and climate-related production
losses. The rationale of the study is the growing demand for
data-driven intelligence in agricultural decision-making
processes.

As the Artificial Intelligence industry rapidly evolves
and open agricultural data sets are provided, it has become a
possibility to use advanced ML methods to model yields with
an even greater degree of accuracy than before.

1.3.1. Three Main Reasons Drive this Research

First, it will offer a comparative analysis of several ML
models, i.e., LR, RF, GB, XGBoost, KNN, DT, and Bagging,
on a large, real-world dataset, obtained on Kaggle. The
comparative approach enables the identification of models
that offer the best trade-offs in terms of accuracy,
complexity, and interpretability.

Second, the research aims to understand how major
environmental elements, such as rainfall, average
temperature, and pesticide use, impact agricultural
productivity. Through the analysis of the feature importance
of various ML models, the study identifies which variables
are the most important in explaining the variation in the yield
across the countries and crop types.

Third, the study has been inspired by the desire to
promote sustainable agriculture and policy formulation. With
improved and more precise predictive systems, governments
and farmers can plan crop production more effectively,
allocate resources more efficiently, and predict potential
yield deficits resulting from climate change.
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The following are the objectives of this study,

1. To pre-process and analyze a multi-country crop yield
dataset of climatic and agricultural characteristics.

2. The work aims to deploy and train several ML models to
predict crop yield.

3. To measure and compare the model performance based
on the statistical measures like R2 score, MSE, MAE,
and MAPE.

4. To determine the most performing model according to
predictive accuracy and generalization.

5. To examine how the environmental variables impact
yield results.

6. The study achieves these objectives in relation to a
broader objective of incorporating Al in agricultural
forecasting and decision-making.

1.4. Scope and Contribution

This paper aims to apply, compare, and evaluate the use
of various ML algorithms in predicting crop yield based on a
real-world dataset of various regions and crops. The data
consists of the key climatic and environmental data, as well
as specific and regional data.

Specific information about soil or irrigation is not
considered in the research because these variables are not
available in the data set; instead, it focuses on the effects of
climatic and environmental variables on yield outcomes. The
researchers employ seven ML-based models to compare their
performance and find the most effective model to use in
predicting yield accurately.

The main contributions of this paper can be presented as
follows,

1. Creation of an efficient ML pipeline to predict crop
yields, such as the processing of data, encoding of
features, and evaluation of the model.

2. Extensive comparative study of seven ML models (LR,
RF, Gradient Boost, XGBoost, KNN, DT, and Bagging).

3. Detection of the Bagging and the RF as the most
successful models with the highest R? scores and the
lowest error scores.

4. An in-depth investigation into feature significance
reveals that rainfall, temperature, and pesticide use are
the most significant factors in predicting yield.

5. Further, the cause of sustainable agriculture is achieved
by showing how ML-driven systems can be used to
improve the accuracy of forecasting, facilitating
informed decision-making, and resource optimization.

6. The given paper thereby contributes to the expanding
literature on the topic of Al-based agricultural analytics
by offering an evidence-based assessment of the model
performance on a large and heterogeneous dataset.

1.5. Paper Organization
The remainder of the paper is structured in the following
way:

Section 2 (Literature Review) gives a summary of
previous studies that have been conducted on predicting crop
yield using traditional and ML models, with their key
variables and gaps in the research.

Section 3 (Dataset Description) describes the dataset that
was utilized in this study, including its features, statistical
features, and pre-processing stages.

Section 4 (Methodology) includes the ML models used,
model configurations, training plan, and performance
assessment measures.

Section 5 (Results and Analysis) expounds on the
comparative findings of all models, article feature
significance, and best-performers.

Section 6 (Discussion) explains the findings in
connection to the practical application in agriculture,
challenges, and implications on sustainability.

Section 7 (Conclusion and Future Work) recaps the
overall findings, contributions, and future research directions
in ML-based agricultural forecasting.

2. Literature Survey

ML-based crop yield prediction has become one of the
significant areas of research in precision agriculture.
Different researchers have investigated the use of traditional,
hybrid, and deep learning methods to predict yield by using
climatic, soil, and environmental factors. This section is a
summary and analysis of the current literature on CYP, with
the emphasis on datasets employed, dependencies between
features, models, and important conclusions.

2.1. Machine Learning for Crop Yield Prediction

ML is a critical component of agricultural decision
support systems that determines the pattern of yield and crop
management optimization.

[11] ML is the key decision support tool in predicting
crop vields and informing agricultural practices. A
Systematic Literature Review located and synthesized 50
articles out of an original sample of 567 relevant articles in
six electronic databases. Analysis showed that the most
commonly used features were temperature, rainfall, and soil
type, with Artificial Neural Networks being the most used
algorithm. Furthermore, another search found 30 studies that
were dedicated to deep learning, and CNN were the most
popular Deep Learning algorithms, as well as LSTM and
DNN. [12] ML can be helpful in forecasting harvest
production and informing agricultural choices. The ML
techniques are beneficial as the farming system is a
complicated system that entails different data points. This
paper discusses various methods of soil and environmental-
based methods of predicting yields. The aim is to create an
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ML model that would help farmers to select crops and
improve the yield, which would result in fewer losses and
better prices. These models can be either descriptive or
predictive, depending on the research objectives. [6]
Agriculture plays a vital role in the Indian economy, with a
significant percentage of the population, over 50 percent,
depending on it. Climate change is a threat to the health of
agriculture. ML is a decision support tool that supports CYP,
which helps in the management and choice of crops. This
study provides a systematic review of features applied in
CYP and identifies various Al techniques for studying CYP.
Neural Networks have their limitations, such as amplified
errors in predictions, and supervised learning fails to work
with the nonlinear relationship of the data. It aims at creating
proper models to classify crops and estimate their yield,
taking into account such factors as weather and crop
diseases, to achieve higher accuracy in the estimation of crop
yield using different methods of ML.

2.2. Deep Learning Approaches for Crop Yield Prediction

Recent studies have increasingly focused on DL to
predict crop yields due to its ability to automatically extract
spatial and temporal features from extensive and non-
homogeneous data.

[13] DL is also being considered an important technique
in crop yield forecasting, and it succeeds in learning with
data sets and thus automatically discovers the important
features. This literature review identifies gaps in the study of
DL methods and assesses the impact of vegetation indices
and environmental conditions on crop yields. A review of
recent literature (2012-2022) indicates that the most
commonly used DL methods are LSTM and CNN with
satellite remote sensing technology. The most prevalent
features in predictions are vegetation indices, but the
effectiveness of vegetation indices differs among the
methodologies. Some of the significant issues are to increase
the accuracy of the model, its practical use by stakeholders,
and the black box character of these models. [14] Remote
sensing and the use of UAVs in smart farming are becoming
popular in the detection of crops and weeds, biomass
analysis, and the prediction of yields. This paper uses CNN
to forecast crop yields using NDVI and RGB data. The
methodological tests involving CNN parameters such as
training algorithm, network depth, and hyperparameter
optimization provided an average absolute error (MAE) of
484.3 kg/ha and an average absolute percentage error
(MAPE) of 8.8 percent in early growth stages (June 2017).
To allow subsequent growth (July and August 2017), the
MAE was 624.3 kg/ha (MAPE: 12.6%). Interestingly, the
CNN model worked well when using RGB data as opposed
to using NDVI data. [15] The article presents a DL model
that uses the CNN and the RNN to predict the yields of corn
and soybean crops in the U.S. Corn Belt between 2016 and
2018. CNN-RNN model outperformed the other methods,
such as RF and deep fully-connected neural networks, by a
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significant margin with an RMSE of 9 percent of average
yields and an 8 percent of average yields. The main
characteristics of the model are the possibility to model time
dependencies related to the environment, predictive
generalization to new environments, and the measurement of
the influence of weather, soil conditions, and management
practices on the changes in yield.

2.3. Hybrid and Comparative Models

Combination models that incorporate the advantages of
both linear and nonlinear algorithms have also been
considered.

[16] The genotype, environment, and interaction
between genotype and environment affect crop yield. These
relationships are essential for making accurate predictions,
which require large datasets and sophisticated algorithms.
Yield prediction in 2017 was performed using datasets of
2,267 maize hybrids across 2,247 locations in the 2018
Syngenta Crop Challenge. The DNN model of our winning
team had a Root-Mean-Square-Error (RMSE) of 12% of the
average yield using predicted weather data, and the perfect
data had a Root-Mean-Square-Error (RMSE) of 11%. The
input dimensions were reduced through feature selection
without compromising accuracy. The model performed
better than other techniques, such as Lasso, shallow neural
networks, and regression trees. It was found that
environmental factors are more influential on crop vyield
than the genotype. [17] Crop yield prediction is a highly
complicated process that has been widely studied with the
help of ML, especially ANN and Multiple LR. This paper
discusses the connection between MLR and ANN and
suggests a hybrid model of MLR-ANN, which may be used
to provide better predictive accuracy. The model uses the
coefficients of MLR to set the weights and biases of the
input layer of the ANN instead of using random values. This
hybrid model is compared to the conventional models, such
as ANN, MLR, Support Vector Regression (SVR), KNN,
and RF. It has been found that the MLR-ANN hybrid model
is more accurate and takes into account computational time
compared to traditional methods.

2.4. Application-Specific Studies

[2] Forecasting of crop production is essential in
financial analyses of the agricultural sector, affecting import-
export policies and the income of farmers. This paper
provides a review of machine learning ML) algorithms in
crop yield prediction, with a focus on palm oil. It discusses
the current state of palm oil production, its popular
characteristics, and forecasting algorithms. A critical analysis
of the current machine learning ML) application in the palm
oil industry, along with comparative research, is presented.
The article highlights the benefits and challenges of machine
learning ML) in predicting yields and proposes potential
solutions for the future. It discusses remote sensing, plant
growth, and disease detection, and suggests a future
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architecture of palm oil yield prediction to improve the
accuracy and minimize computation challenges. [18]
Agriculture plays a significant role in India's economy and is
the foundation of the country's civilization. Being an agrarian
country, crop choice is crucial for economic development, as
it depends on market prices, production rates, and
government policies. To increase agricultural productivity,
the application of ML methods can streamline crop choices,
solve farmers' problems, and improve yield level, ultimately
yielding positive results for the Indian economy.

2.5. Comparative Analysis and Research Gaps
In the literature that has been reviewed, there are several
patterns and gaps in research:

Dominating Features and Data Sources: Temperature,
rainfall, and soil features are the most dominant features.
Spatial yield estimation is also commonly performed using
satellite-based vegetation indices.

Algorithmic Trends: The classical models of ML, such
as the RF and SVM, are not out of competition, yet DL
architectures, particularly CNN, LSTM, and the hybrid CNN-
RNN, demonstrate greater ability to process large volumes of
unstructured agricultural data.

Hybrid Approaches: Predictive performance is better,
and the training time of models is lower when linear and
nonlinear methods are combined (e.g., MLR-ANN, CNN-
RNN).

Difficulties: The typical limitations are an imbalance of
data, absence of soil and management data, insufficient
temporal coverage, and inability to interpret deep models.

Future Directions: It is evident that there has been a shift
towards Explainable Al (XAIl) to enhance the model
transparency, loT-based real-time predictive systems, and
region-specific adaptive systems to meet local agricultural
requirements.

Overall, the literature suggests that ML, primarily
ensemble and DL techniques, can be used to provide
practical solutions to the accurate forecasting of crop yields.
The recent researches are dominated by the ANN, CNNs,
LSTMs, and ensemble tree models (RF, Bagging) because of
their ability to address nonlinear relationships and large
datasets.

Nevertheless, there are still significant limitations, such
as data availability, interpretability, and scalability, that
future research should address with the help of hybrid
modeling, 10T integration, and explainable frameworks. The
knowledge of previous research works gives a powerful
background to the present study, which further elaborates this
area through conducting a comparative study of several ML
models utilizing a worldwide agricultural dataset, assessing
their precision, reliability, and calculating efficiency in crop
output prediction.

Table 1. Overview of the dataset

Unn%med: Area Item Year | hg/ha_yield averageagflggg?rl |_mm pesticides_tonnes avg_temp

0 0 Albania Maize | 1990 36613 14850 121.00 16.37

1 1 Albania | Potatoes | 1990 66667 1485.0 121.00 16.37

2 2 Albania Rice, | 1990 | 23333 1485.0 121.00 16.37
paddy

3 3 Albania | Sorghum | 1990 12500 1485.0 121.00 16.37

4 4 Albania | Soybeans | 1990 7000 1485.0 121.00 16.37

28237 | 28237 | Zimbabwe ;ﬁ;’ 2013 22581 657.0 2550.07 19.76

28238 | 28238 | Zimbabwe | Sorghum | 2013 3066 657.0 2550.07 19.76

28239 | 28239 | Zimbabwe | Soybeans | 2013 13142 657.0 2550.07 19.76
. Sweet

28240 | 28240 | Zimbabwe 2013 22222 657.0 2550.07 19.76
potatoes

28241 | 28241 | Zimbabwe | Wheat | 2013 22888 657.0 2550.07 19.76

3. Dataset Description
3.1. Dataset Overview

The data used in this study were obtained from the CYP
Dataset on Kaggle [19]. It is an extensive set of agricultural,
climatic, and environmental data on several countries and
types of crops, making it suitable for creating and testing ML
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models to predict yields. The dataset comprises 8 key
features and 28,242 records, encompassing both categorical
and numerical variables. The records represent the
agricultural output of a specific type of crop produced in a
given country during a particular year, taking into account
climatic and input-related factors such as rainfall, pesticide
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use, and temperature. This dataset was selected due to its
geographical diversity, broadness of climatic conditions, and
various aspects of yield that influence it, which is critical in
training ML models that can represent the complex and
nonlinear interactions. It also shows the diversity of
environmental conditions and agricultural methods in
different countries, which is important in determining the
generalization of models. The data is stored in CSV format,
and preprocessed and explored data analysis was done with
Python-based libraries like Pandas and NumPy. There were
no missing or null values, which guarantees the consistency
and reliability of data in training ML models.

3.2. Data Attributes and their Significance

The data set has eight columns, which are important
determinants of crop vyield. The variables and their
importance are explained as follows:
1. Unnamed: 0 (Serial Number): The index of each record
in the dataset. Though not a predictive feature, it helps in
the identification of records and the management of data.
Area (Country): A categorical variable that states the
country/region of cultivation of the crop. It is important
because geography greatly influences agricultural output,
as it determines the type of soil, climate, and farming
methods. The sample comprises 101 different countries,
representing a wide geographical range.
Item (Crop Type): Categorical variable that shows the
type of crop grown (e.g., Maize, Wheat, Rice, Potatoes,
Soybeans, Sorghum, etc.). Crop type is important
because all crops have different biological
characteristics, water requirements, fertilizer needs, and
sensitivity to climate conditions. The dataset has 10
different types of crops.
Year: The Year of data collection, which is between
1990 and 2013. This time-varying aspect allows models
to include the trends and changes in yield that vary with

time due to technological advancement, changes in
policies, or changes in climate.

hg/hayield (Target Variable): Represents the product
of crops in hectograms/hectare (hg/ha). It is the target
variable (dependent variable) in the research, and the
leading indicator of agricultural productivity.

Average rainfall mm per Year: The mean amount of
rainfall (in millimeters) in a country and Year. Rainfall
is among the most important variables in crop yield, as
it influences soil moisture, the need for irrigation, and
plant growth in general.

Pesticides tonnes: The total pesticides used (in tonnes).
The feature helps capture the effect of pest control
practices on crop health and productivity.
Nevertheless, its impact is nonlinear because it has
environmental side effects when used excessively.
Avgtemp ( Average Temperature): Means the average
temperature per Year (in °C). Temperature affects the
stages of crop development, including germination,
flowering, and yield development. Both low and high
extremes can negatively impact yield, making it a
critical variable in prediction.

Data Types: The majority of the columns (6 out of 8)
are of the int64 (or float64) data type. The only object data
type columns are the Item and Area ones. Missing Values:
There are no missing values within the dataset because
every column contains 28242 non-null values.

3.3. Statistical Overview of the Dataset

In order to have a more comprehensive view of the
structure and variation of the dataset, descriptive statistical
analysis was performed on the numerical attributes. Table 2
shows the summary statistics of the key numerical
variables.

Table 2. Descriptive summary of numerical attributes

count mean std min 25% 50% 75% max
Unnamed: 0 28242.0 | 14120.500000 | 8152.907488 | 0.00 | 7060.2500 | 14120.50 | 21180.75 | 28241.00
Year 28242.0 | 2001544296 | 7.051905 | 1990.00 | 1995.0000 | 2001.00 | 2008.00 | 2013.00
hg/ha_yield 28242.0 | 77053.332094 | 84956.612897 | 50.00 | 19919.2500 | 38295.00 | 104676.75 | 501412.00
average_rain_fall 28242.0 | 1149.055980 | 709.812150 | 51.00 | 593.0000 | 1083.00 | 1668.00 | 3240.00
_mm_per_year
pesticides_tonnes | 28242.0 | 37076.909344 | 59958.784665 | 0.04 | 1702.0000 | 17529.44 | 48687.88 | 367778.00
avg_temp 28242.0 | 20542627 6.312051 1.30 16.7025 2151 26.00 30.65

Table 2 is the summary of the descriptive statistics of
the numerical variables in the crop yield prediction dataset
of 28,242 observations. The data covers a variety of
geographical areas and time periods. The statistical
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summary illustrates the variation and dispersion of the
major agricultural indicators, including crop yield (kg/ha),
annual rainfall (mm), pesticide application (tonnes), and
average temperature (°C).
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The average crop yield is nearly 77,053 hg/ha, and the
standard deviation is very high, which means that there is a
big difference in crop yield among different crops as well as
among different locations. The annual rainfall ranges from 51
mm to 3240 mm, reflecting the diverse climatic conditions.
Similarly, the use of pesticides is not evenly distributed,
indicating that agricultural practices vary.

This dataset is particularly effective in training ML
models that can generalize to other agricultural settings due
to its variety in both geographic and climatic dimensions.

3.4. Key Insights and Observations
The initial data analysis
information regarding the model

interpretation:

indicates some crucial
development and

Variation in Climatic Conditions: The data set represents
a broad range of environmental situations, from arid areas
with low rainfall to tropical areas with substantial rainfall.
This will enable ML models to be trained on heterogeneous
data, improving their capability to be applied to various
regions.

Great Diversity of Crop Yield: The standard deviation of
the yield variable (~84,956) is very high, indicating that other
factors, such as rainfall, temperature, and the type of
pesticide used, vary differently according to the crop type
and region.

Temporal Range and Technological Influence: The
inclusion of data between 1990 and 2013 enables the analysis
one trends over time, such as the advancement of agricultural
technology, fertilizer use, and irrigation systems that could
impact yield.

Good Representations of Particular Crops and Areas:
Different nations have a very good number of records, which
give a consistent data sample on the major types of crops. In
the same way, a large percentage of crops such as Potatoes,
Maize, and Wheat gives more reliability to the models of the
category.

Balanced Data Quality: There is no imbalance in the
data, as all attributes have 28,242 non-null entries. This
feature enables the models to train uniformly without the
need for data imputation.

Possible Correlation between Features: According to the
preliminary correlation analysis, it is observed that rainfall,
temperature, and pesticide use are likely to be correlated with
yield to some degree. The feature importance analysis can
further be used to explore these relationships.

In general, the dataset is highly suitable for predictive
modeling, featuring a wide range of high-quality data, as well

as abundant climatic, geographical, and agricultural data. It
lays a concrete foundation for training, testing, and validating
ML models to predict crop yields, both individually and at
scale, accurately.

4. Methodology
The following section describes the general structure,
pre-processing, ML models, configuration, training,

validation plan, and evaluation metrics of this study. The
methodology framework was developed to provide the right,
stable, and repeatable crop yield forecasting based on ML
algorithms, based on multiple regression.
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Fig. 1 Overall research framework of the CYP

Algorithm: CYP Framework

4.1. Research Framework

The research framework proposed for conducting the
study on CYP is systematic and features a workflow that
incorporates data acquisition, preprocessing, model
training, evaluation, and prediction. The conceptual flow of
the process is shown in Figure 1 below. Also, the research
framework is given in Algorithm 1.
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Algorithm:
Input:

Raw dataset D = {(x®, y)N
where x® ={Area, Item, Year, Rainfall, Temperature,
Pesticides}
and y® = yield (hg/ha)
ML Models:
M ={LR, DT, RF, BG, GB, XGB, KNN}
Output:

Best model M*
Performance metrics: R2, MSE, MAE, MAPE
Predicted yield values y

Algorithm
Dataset Collection: Raw dataset D = {(x®, y @)}V,
Data Preprocessing
Encode categorical variables Areall), =
2,(Area?), ItemY, = ¢, (Item®)
I?l(?i)rnlalize numerical features Xs(cizled =

Xmax—Xmin
Remove outliers X ¢ [Q1 — 1.5IQR, Q3 +
1.5IQR] = discard

Split dataset D = Dyrgin U Diest | Diest 1= 0.2N

Train each model M, = arg nt};icn 2,00 = M (D)2

Predict on the test set. 37,50 = My (J?t(e?t
Evaluate metrics R2, MSE,, MAE,, MAPE,
Select the best model. M* =

arg max R2with minimal error
Final prediction 9., = M*(Xpew)

4.2. Data Preprocessing

Preprocessing of data is crucial in preparing the data for
use in machine learning ML). It assists in removing
inconsistencies and ensures that the input features are
properly formatted for ingestion by the model. There were
the following preprocessing operations:

4.2.1. Handling of Categorical Variables (Area and Item)

The dataset has two categorical variables, i.e., Area
(country name) and Item (crop type). These variables
represent contextual information on geographical and
biological diversity; however, most machine learning ML)
algorithms cannot interpret these variables directly. As such,
the categorical encoding was done through the process of
Label Encoding, which assigns each category a unique
numerical value. For example, other crops like "Maize,"
"Wheat and Potatoes were translated into numerical labels.
The transformation enables the models to identify country
and crop differences without increasing dimensionality, as
would be the case with one-hot encoding.

Scaling of Numerical Attributes: Numerical attributes
can be scaled to a specific range, resulting in a continuous
numerical variable. The attributes
average_rainfall_mm_per_year, pesticides_tonnes,
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avg_temp, and Year were normalized using Min-Max
Scaling. The scaling operation converts all numerical
variables to a normalized scale (0 to 1), thus not causing
models such as K-Nearest Neighbors or GB to be biased
towards variables that have larger numerical values.

Mathematically:
X—Xmin

@)

X =
scaled X
Xmax—Xmin

4.2.2. Outlier Detection and Removal

Since the dataset was broad in terms of geography and
climate, it contained possible outliers, including extreme
values of rainfall, pesticide use, or yield. To reduce their
effect, simple statistical thresholding (using the interquartile
range) was employed to identify and eliminate anomalies that
exceeded the 99th percentile. This made the model's learning
process stable, unaffected by unrealistic and erroneous data
points.

4.2.3. Data Consistency and Validation

The final validation test ensured that all 28,242 records
were complete and that none were missing or contained a
null value. Following the preprocessing, the data was split
into training and testing sets so as to continue with model
development.

4.3. Machine Learning Models

The proposed study uses seven regression-based ML
algorithms, which are supervised to predict crop yield using
climatic and environmental factors. The algorithms capture
various relationships and levels of data complexity. The
mathematical expressions of the models are as follows.

4.3.1. Linear Regression

One of the most straightforward and most interpretable
predictive models is the LR. It presupposes the linear
connection between the dependent variable (crop yield) and
the independent variables (rainfall, temperature, pesticide
usage, etc.) [20, 21].

The model can be modeled mathematically as:

V= Bo+Pixs + Boxy + o+ Puxy + € (2

Where:
y= predicted crop yield (hg/ha),
Bo= intercept term,
B;= coefficients of feature x;,
x;= input features (e.g., rainfall, temperature, pesticide
use),
€= random error term.

The model parameters B;Are estimated using Ordinary
Least Squares (OLS) by minimizing the residual sum of
squares:

©)

minimize Zﬁl(yi - 9)?
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Despite its computing efficiency, LR is inefficient in the
presence of nonlinear data such as agricultural data, whose
yield and environmental relationships are nonlinear [22].

4.3.2. Decision Tree

DT Regressor predicts the crop yield by splitting the
feature space recursively into regions in which the target
value (Yield) is essentially the same [21]. It is a
nonparametric, nonlinear model that can be used to identify
intricate associations among rainfall, temperature, pesticide
application, crop type, and yield [23, 24].

Given dataset:

D= {(x®,yOL,, (4)
Where
x(i) = [Area, Item, Year, 1, p, t](i),
y(i) = Yield (hg/ha).
Goal: learn a function
y=rf® ®)

That predicts yield based on environmental and crop
features.

At each node, the tree chooses feature jand threshold
sthat best split the data into two child nodes:
Left child:

R.G,s) = {(x,y):x; < s} (6)

Right child:
Rr(j,s) = {(x,¥):%; > s} )
The optimal split minimizes the Sum of Squared Errors
(SSE) or variance:

(*,s*) =arg min[@Var(RL) + MVar(RR)] (8)
j.s 1Dl DI
Where
1 i -
Var(R) = — 3. (7® = 3)? (©)

Once the tree assigns a set of samples to a leaf region
R,,,, the predicted crop yield for all points in that region is:

o _ 1 ;
J(x) =Yg, = o ZiERmy(l) (10)

Thus, the prediction is the mean yield of all training
samples in that leaf.

Formally, stop if:
Var(R) < eor | R |< min_samples leaf (112)
The DT model is the sum of predictions over all leaf regions:

165

M
F=) I lxERn) (12

4.3.3. Random Forest

RF is an ensemble regression model, which builds a
series of DT through bootstrapped data and random selection
of features at each split [25]. The trees are independent
predictors of crop vyield, and the ultimate prediction is
achieved by averaging the results of all trees. This reduces
the variance and improves accuracy compared to an
individual DT [26]. The model helps capture nonlinearity
between climatic and environmental factors that affect crop
yield. If T,,T,,...,TgRepresent Bindividual DT, the RF
prediction is given by:

y=2 2, T (13)

Trees are trained on a random sample (bootstrap) of the
data, and a random selection of features is employed at every
split, bringing variety to the trees. This method is effective in
minimizing overfitting and enhancing the capacity to
generalize [27].

4.3.4. Bagging Regressor (Bootstrap Aggregating)

Another ensemble method that enhances the stability of
the model is Bagging, which involves the combination of
various estimators that are trained on various bootstrap
samples of the dataset [28].

1. Let the dataset be
D = {(x©,yD)}Ly, y® = crop yield (hg/ha).

2. Choose the number of base models (trees) B.
3. Foreachmodel b =1, ..., B, draw a bootstrap sample

D, ~ Bootstrap(D).
4. Train a base regressor (DT)

Tp = TrainTree(Dy).
5. Each tree recursively minimizes node variance:
[ R, | | Rg |
(j*,s*) = argmin| L Var(R;) + —RVar(RR)].
js "I R IR
6. Ateach leaf region R,,,, tree prediction is
1 .
T = ). v,
bm i€Rpm
7. Bagging prediction for any crop-yield input xis
B
1
Drag () =5 Y Ty(x).
b=1
8. Since bootstrap samples differ, individual trees are
decorrelated.

9. Variance reduction due to averaging:
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1
— Var[T](if independent).

Var [yBag] B

10. Final predicted crop yield for a new sample x,,,:
?yield = yBag (xnew)'

4.3.5. Gradient Boosting
Let D = {(x®, yO)N  with y®= crop yield (hg/ha).

1. Initialize model with a constant (stage 0):

Fy(x) = argmin Z Liy®,y).
v

i=1
2. Form =1,..., M(number of boosting rounds) compute
pseudo-residuals:
L (y(i), F(x(i))) .
Tim = — aF(X(l)) — |lF=Fp_q» L= 1,...,N.
3. Fitaweak learner h,,(x)(e.g., shallow regression tree)
to {(x®, r;,,,) by minimizing the squared error of
residuals.
4. Optionally compute optimal step size. y,, By line search:
m = argmin > L®, By (x0) +7 ().
v i=1
5. Update model with learning rate v € (0,1]:
En(x) = Fpo1 (%) + v ¥ A (%).
6. Repeat steps 2-5 until m = M (or early stopping via
validation loss).
7. Final ensemble predictor after Mrounds:
M
Fi () = o)+ ) in i (2).
m=1
8. For squared-error loss L(y,F) = %(y — F)2, residuals
simplify to ry,,, = y® — F,,_; (x®)and y,, It is the least-
squares fit coefficient.
9. Evaluate on test set with metrics (e.g., MSE, MAE,

MAPE, R?) using § = F,,(x)(units: hg/ha).
10. Final crop-yield prediction for new input x,:

yyield = FM (xnew)
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4.3.6. XGBoost (Extreme Gradient Boosting)

XGBoost extends GB with additional regularization and
optimization improvements [29]. It minimizes an objective
function that balances accuracy and model complexity:

Obj(6) = Z e 90 + Z )

Where:
e [(y;, y;)= differentiable convex loss function (e.g.,
MSE),
o Q(fi) =yT+ %/1 Il w 1I%= regularization term,

e T=number of leaves in the tree,
e A= L2 regularization parameter,
o w= leaf weights.

Each new tree f;(x)is added to minimize the loss using
the second-order Taylor expansion:
n

(®) 1,
Obj* ~ Z[gift(xi) + Ehift ()] + Q)

i=1

Where g;and h;These are the first and second
derivatives (gradients and Hessians) of the loss function.
This second-order optimization and built-in regularization
make XGBoost one of the most efficient and accurate
boosting methods.

4.3.7. K-Nearest Neighbors (KNN)

KNN is a nonparametric, instance-based learning
algorithm [30]. It predicts the target value for a new data
point based on the average yield of its k nearest neighbors in
the training dataset.

1. Choose an integer k(number of neighbors).

2. Foranew input x, compute the Euclidean distance to all
training points:
d(x,x®D) =
3. Sortall distances d(x, x®)in ascending order.
4. Select the set IV, (x)of the knearest neighbors.
5. Retrieve the corresponding yield values:
y®:x® € N (1)},
6. Compute the KNN prediction as the mean yield of
neighbors:
{ 1 ®
yKNN(x):E .
xDeNy(x)
7. If using distance-weighted KNN, weight by inverse

distance:
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z : 1 .
S ()]
( )d(x'x(l))y
~ IEN(x
Jw(x) = ‘
g 1
d(x, x®)
[EN(X)

8. Normalize continuous features (rainfall, temperature,
pesticides) to avoid scale bias.

9. Encode categorical features (Area, Item) using label or
one-hot encoding.

10. The final crop-yield prediction for any new data point

xnew "

yyield = j)KNN (xnew)'

4.4. Model Parameters and Configuration

The parameter configuration was standardized across all
models to ensure fair comparison and reproducibility. Key
configurations are summarized below in Table 3:

Table 3. Key parameters applied

Model Key Parameters

Linear Default parameters

Regression

Random random_state = 42

Forest

Gradient n_estimators = 100, learning_rate =
Boosting 0.1, max_depth = 3, random_state = 42
XGBoost random_state = 42

KNN n_neighbors =5

Decision Tree | random_state = 42

Bagging n_estimators = 150, random_state = 42

To maintain consistency, the train-test split ratio was
kept at 80/20 for training and testing. In addition, 5-fold
cross-validation (k=5) was used to reduce bias and ensure
that every model was tested on several subsets of the
dataset. The method enhances the generalization of the
models, since the performance is tested to be stable
between different data partitions.

4.5. Model Training and Validation

The implementation of all the models was made in
Python 3.10 and its data science ecosystem, which included
Scikit-learn, XGBoost, Pandas, NumPy, and Matplotlib.
The training and validation steps used included the
following:

4.5.1. Training Phase
Each model was trained on 80% of the dataset using
preprocessed features and the target variable (hg/ha_yield).

4.5.2. Validation Phase

Models were validated on the 20% test dataset. Cross-
validation results were recorded for accuracy consistency.
Predictions were generated and compared with actual yield
values.
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4.5.3. Performance Evaluation

Predicted and actual values were analyzed to compute
performance metrics (R2, MSE, MAE, and MAPE). Results
were tabulated and visualized to facilitate model comparison.

4.6. Evaluation Metrics
To evaluate model performance comprehensively, four
key statistical metrics were utilized [22, 31]:

4.6.1. R? Score

Measures how well the model explains the variance in
the dependent variable.

Higher values (closer to 1) indicate better performance
and stronger predictive capability.

4.6.2. Mean Squared Error (MSE)

Quantifies the average squared difference between
actual and predicted values.

Lower MSE signifies higher model accuracy and fewer
significant prediction errors.

1 ~
MSE = n Z?Zl(}’i - 9)? (14)
4.6.3. Mean Absolute Error (MAE)
e Represents the average magnitude of absolute

differences between predicted and actual yields.
Provides an intuitive measure of average model
deviation.

1 ~
MAE =151 1y~ 9,1

(15)

4.6.4. Mean Absolute Percentage Error (MAPE)

Expresses prediction error as a percentage of actual yield
values.

Enables easy interpretability across scales.

100

MAPE = =2 | 255

Vi

(16)

i=1

The comparison of several metrics allows assessing the
models reliably by measuring accuracy (R2) and error size
(MSE, MAE, MAPE). The multi-metric design helps to
avoid the over-dependence on one measure and to have a
more balanced picture of the model functionality in various
conditions.

5. Results and Analysis

In this section, the experimental results obtained through
the use of seven machine learning ML) regression models to
predict crop yields are presented and analyzed.

Every model was tested in a uniform experimental setup,
an 80-20 train-test split, five-fold cross-validation, and four
performance metrics were used, such as R? Score, MSE,
MAE, and MAPE.
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5.1. Model Performance Comparison
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Fig. 2 MSE of different ML models in CYP

The comparison of the MSE of ML models to predict
crop yield is presented in Figure 2. MSE is used to determine
the extent to which the actual values of the predicted yield
are close to the actual values, and a smaller MSE means a
good prediction. The findings clearly indicate that the best
EL models based on decision-tree architecture are better than
the traditional regression models since they yield much fewer
squared errors. Bagging, RF, and DT are the models that
have a high ability to generalize and effectively reduce
prediction errors. Conversely, less complex models, such as
LR and KNN, have significantly larger error values, which
confirms their inability to learn complicated nonlinear
relationships in agricultural data effectively. GB and
XGBoost are average in performance, yet they continue to
produce more errors than the best-performing ensemble
techniques. All in all, the MSE comparison confirms the fact
that tree-based ensemble models are the most accurate and
consistent in their yield estimation and thus are most
effective in real-world agricultural forecasting.

Bagging N
Decision Tree
KNN
XGBoost
Gradient Boost

Random Forest

Linear Regression
0 20000 40000 60000 80000
Fig. 3 MAE of different ML models in CYP

The values of the MAE of the various ML models are
reported in Figure 3. MAE is the mean value of the errors in
the estimated crop yield, and it is quantified in the same unit
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as the target variable. A more petite MAE indicates a higher
predictive quality and less variation of the actual yields. The
Bagging Regressor had the least MAE (3,450.50), followed
closely by the RF (3,480.84) and DT (3,559.26), indicating
that these models have high accuracy in estimating yields
with low average error. XGBoost also exhibited a fair
performance of an MAE of 7341.94, but not as accurate as
the best ensemble models. On the contrary, the values of
MAE in LR and KNN were much larger (60955.31 and
47716.35, respectively), which proves that these models are
more likely to miss the nonlinear and complex relationships
within the data. GB was fairly good but still demonstrated a
relatively high error relative to the top ensemble methods. In
general, the MAE comparison also confirms that tree-based
ensemble models are more precise in yield prediction and can
be more effectively applied to the agricultural forecasting
case.
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Fig. 4 MAPE of different ML models in CYP

Figure 4 illustrates the MAPE results for the tested
models. MAPE is a decipherable measure that defines the
error of prediction as a percentage, with lower scores
indicating better results. The findings indicate that the DT
model provided the lowest MAPE (0.096101), closely
preceded by Bagging (0.101199) and RF (0.102571), which
means that they have high predictive accuracy. These
findings indicate that the prediction error of these models is
lower than 0.11 percent, which is very tolerable in
agricultural prediction. LR and KNN, on the other hand, had
very large values of MAPE (2.419536 and 1.631186,
respectively), which implies significant inaccuracy and
proves that they are not able to model the complex
interactions in the data. GB and XGBoost exhibited moderate
performance, but were still not as accurate as the most
successful ensemble tree-based models. Comprehensively,
these findings from the MAPE do reinforce the fact that EL
models provide more accurate and effective forecasts of crop
yields and are therefore suitable for real-life applications in
agricultural decision-support systems.
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Fig. 5 R? of different ML models in CYP

Figure 5 presents the performance of the ML models in
crop yield prediction in terms of R? score. R? value is the
percentage of the change in the yield of crops that is
attributed to the input features. The higher the value, the
more accurate and reliable the predictions are. The highest R?
value of 0.985881 was obtained by the Bagging Regressor,
with a close second value of 0.985628, indicating the high
predictive power and the high generalization of the model.
The level of accuracy was also high (0.976174) in the DT
model, which proved the usefulness of tree-based learning
methods to model nonlinear agricultural data. LR and KNN
models, on the contrary, had significantly lower values of R?
(0.073724 and 0.288206, respectively), which means that
they failed to represent the intricate associations between
climatic variables and crop yield. XGBoost and GB had
moderate performance and were still lower than the best
ensemble models because they had a relatively high
prediction variance. These findings support the fact that
ensemble tree models are most appropriate in the prediction
of crop yields because they are able to cope with
environmental variability, nonlinearity, and feature
interaction in agricultural data.

5.2. Key Observations
5.2.1. Best Performers

Bagging (R? = 0. 985881) and RF (R? = 0. 985628) had
almost the same best accuracy. The two models help capture
nonlinearities and multivariate dependencies.

5.2.2. Moderate Performers

DT (R? = 0.9761) and XGBoost (R? = 0.9732) were also
good but not the best ensemble methods because of variance
and tuning effects.

5.2.3. Weak Performers

KNN and gradient Boost had high variance and
dimensionality issues. LR had the lowest adaptability as it
assumes the existence of linear relationships.
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5.2.4. Overall Observation

Ensemble models that used trees were shown to be most
effective in predicting in different environmental conditions
and species of crops.

5.3. Summary of Findings

Ensemble models work better than simple regression and
distance-based approaches because they learn nonlinear and
more  complicated  relationships  between  climate
characteristics and crop yield. The Bagging Regressor had
the minimum overall prediction error and maximum stability,
and this proves its applicability in real-life agricultural
forecasting. The mathematical analysis of error
decomposition proves that ensemble averaging is an effective
method of model variance, and it is optimal in the case of
heterogeneous agricultural data.

6. Discussion
6.1. Key Findings

The findings of this paper are a clear indication that
ML models built by an ensemble are a far better predictor
of crop yield than the conventional and simple regression
models. The Bagging Regressor and the RF were among
the seven models assessed and had the highest predictive
accuracy with the R? scores of 0.985881 and 0.985628,
respectively.

The lowest error rates were also generated by these
models, with values of MSE of 9.59 x 107 and 9.76 x 107,
meaning that the models have an exceptional accuracy in
estimating the yield. Tree-based ensemble models are used
to effectively model a complex and nonlinear interaction
between agricultural inputs like rainfall, temperature, and
pesticide application. Their capacity to pool forecasts of
numerous weak learners (DT) lowers variance and avoids
overfitting, which is essential in heterogeneous agricultural
data of varied climatic areas and crops.

Conversely, other models, including LR and KNN, did
not work well, having the R? of 0.0737 and 0.2882,
respectively. XGBoost (R? = 0.9732) and DT (R? = 0.9761)
were also competitive in terms of results, but not better
than ensemble bagging methods in terms of stability or
generalization. All in all, the comparative analysis
established that the EL methods, especially Bagging and
RF, provide strong and stable yield predictions in diverse
agricultural settings, which can be considered the best
option to implement them in the real-life context of
precision agriculture systems.

6.2. Practical Applications and Use Cases

The applied implications of these results are at various
levels of the agricultural system, such as in policy making,
making farm-level decisions, and in the agri-business
process.
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6.2.1. Government and Policy Planning

Correct ML-based vyield prediction models can be used
by governments to forecast food supply, regulate food
imports and exports, and design agricultural policies. An
ability to predict the performance of yields in regions will be
helpful to authorities in predicting shortages or surpluses,
efficient food distribution, and reducing drought or flood
risks. Moreover, these models can be used to inform the
allocation of subsidies, irrigation, and food security measures
at the national level.

6.2.2. Agricultural Practitioners and Farmers

In the case of farmers, yield prediction models will
enable them to have actionable intelligence on how to
optimize agricultural practices.

ML models could be used. Choose the right species of
crops that are adapted to the existing climatic and soil
conditions. Optimize the use of fertilizers and pesticides,
reducing the damage to the environment and maximizing
the yield. Schedule irrigation schedules depending on the
predictions of the rainfall and yield forecasts. Such insights
are helpful in precision farming, enabling farmers to make
informed and data-driven decisions to make farming more
profitable and sustainable.

6.2.3. Agri-Tech Companies and Researchers.

Agri-tech companies will be able to incorporate the ML-
based prediction models into the digital farming platform,
mobile apps, and decision-support systems. These systems
can provide real-time predictions on yields, weather, and
cultivation advice specific to the regions or types of crops.

Moreover, ML advances agricultural research by making
it possible to simulate crop performance in different climatic
conditions to facilitate innovation in sustainable food
production technologies. To conclude, ML-based vyield
prediction systems can revolutionize the agricultural sector
by providing data-driven information to all stakeholders,
including policymakers and farmers, promptly.

6.3. Addressing Challenges
Although this study produced good prediction results, a
number of challenges and limitations were identified:

6.3.1. Data Imbalance and Regional Bias

The sample does not have the same number of records
per country and crop (e.g., India and Potatoes take the
leading positions in the sample). This may bias model
learning towards commonly represented areas or types of
crops and hinder generalization to less commonly
represented data samples.

6.3.2. Missing Agronomic Variables
The dataset lacks important agronomic variables, such as
soil fertility, irrigation, and type of fertilizer, which have
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been proven to have a significant impact on yield. Lack of
these makes model predictions incomplete.

6.3.3. Model Interpretability

Climatic changes and extreme weather conditions (e.g.,
droughts, floods, heatwaves) add high temporal variability in
yield patterns. These new changes may not be well predicted
by the historical dataset (1990-2013), compromising long-
term predictive performance.

6.3.4. Model Interpretability
Despite the high performance of ensemble models, they
are complex black-box systems, and thus, it is challenging

for non-technical stakeholders, such as farmers or
policymakers, to interpret what individual predictions
represent.

6.3.5. Data Granularity

The dataset is mainly run at the country level of
aggregation, as opposed to field-level data. This lowers the
spatial resolution and can hide the micro-level differences
that can be used in localized decision-making. To solve these
issues, more detailed datasets and more explainable Al
methods will be needed, which can enhance the
interpretability and reliability of models.

6.4. Model Complexity vs Interpretability
There is a trade-off between model performance and
interpretability, which is critical.

Although ensemble models like Bagging and the RF
had the best R?, they are more complex and opaque. They
are the product of a large number of FT joined together, so
it is not easy to track the contribution of each of the input
variables to the output. LR, on the contrary, is fully
transparent and can be easily interpreted, but does not work
well with nonlinear data in terms of prediction accuracy.
This trade-off implies that high-accuracy models are
preferable for use in operational deployment. However,
explainable and interpretable Al systems are necessary for
stakeholders to adopt.

To address these points, future work needs to consider
Explainable Al (XAIl) methods, such as SHAP (SHapley
Additive exPlanations) and LIME (Local Interpretable
Model-Agnostic Explanations), to visualize and interpret
feature contributions. Such practices can help stakeholders
understand why certain predictions were achieved, thereby
increasing their confidence in Al-guided agricultural
recommendations.

6.5. Role of Evaluation Metrics in Model Selection

The assessment of regression models across multiple
performance measures is critical for achieving a holistic
understanding of the models' behavior. Although the R?
Score is used to measure the extent to which the model can
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account for the variation in crop vyield, it by itself does not
give the extent or magnitude of prediction errors.

For example, two models can be similar in terms of R-
squared but differ significantly in terms of absolute errors.
Therefore, the complementary error measures, i.e., MSE,
MAE, and MAPE, were employed. MSE lends a quadratic
penalty to large errors and rewards models that occasionally
make extreme deviations.

MAE is an easily understood average of the magnitude
of absolute errors, which is good in determining the overall
reliability of the prediction. MAPE, which is in percent form,
is interpretable, and therefore, the results of model errors can
be easily compared across scales. The combination of these
metrics also provided a balanced model assessment,
indicating that the ensemble models had high explanatory
power and low error deviation. Therefore, the multi-metric
test confirmed the effectiveness of EL models and avoided
over-dependence on a particular indicator.

6.6. Computational Efficiency and Scalability

The scale of ML models to large-scale or real-time
agricultural  applications directly depends on their
computational complexity. LR and KNN are not only
computationally inexpensive but also do not offer sufficient
accuracy for complex data. DT and the RF tree-based models
are moderate in terms of training time but exhibit significant
predictive accuracy. Ensemble techniques (Bagging, GB,
XGBoost) are computationally expensive because of model
training and aggregation (repeated training and aggregation),
particularly when using very large datasets.

In order to make it more scalable, subsequent studies
may utilize cloud-based ML solutions and accelerate training
models with the help of GPUs. Moreover, offline-trained
lightweight models may be deployed to mobile or edge
devices and used to make real-time predictions for farmers
with limited computational capacity.

6.7. Data Availability Constraints

The limitation of the data diversity is one of the major
limitations of this study. Despite having climatic and vyield
data for more than 100 countries, the dataset lacks several
important agronomic factors, including soil type, irrigation
level, fertilizer composition, and crop genetics.

The lack of these parameters restricts the ability of these
models to explain variation in crop yield completely,
especially in areas where non-climatic factors are the major
ones. In order to overcome this, future research should focus
on incorporating multisource agricultural data, such as:

loT sensor data: in soil moisture, pH, and nutrient
levels. Satellite and remote sensing data: to track vegetation
indices and the land-use patterns.
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Weather station networks: to measure real-time climatic
variables such as humidity, speed of wind, and solar
radiation.

By combining all these data streams with ML and Al, it
is possible to produce more granular, real-time, and region-
specific models of crop yield predictions.

7. Conclusion and Future Work

The paper examined the performance of different ML
models to predict crop yield based on environmental and
climatic factors, including rainfall, temperature, and
pesticide use. A total of 28,242 records were used to test
seven machine learning ML) models under a set of
consistent experimental conditions. The findings indicate
that EL models outperform traditional and distance-based
methods. The Bagging had the best predictive performance
with an R2 equal to 0.985881, and the RF closely follows it
with an R2 of 0.985628. The models also yielded extremely
low error values, indicating their strength and applicability
in predicting yield in various agricultural settings.

The paper also adds to the field of agricultural analytics
by conducting a comprehensive dataset characterization,
comparing dozens of ML models, and finding ensemble-
based techniques to be the most effective at estimating crop
yields with reasonable accuracy. The variables observed to
be the dominant predictors of yield variability were rainfall,
temperature, and pesticides, underscoring the significance of
environmental dynamics in agricultural modeling. The
results highlight the power of ensemble models in capturing
nonlinear relationships and reducing prediction variance.
Therefore, they could be widely used in practice and
decision support in agriculture. Nevertheless, several
weaknesses were identified. The dataset lacked important
agronomic factors, including soil fertility, irrigation rates,
and crop genetics, which limits the integrity of the
prediction framework. The imbalance on the regional level,
particularly the prevailing status of such nations and the
timeframe ending in 1990-2013, can also be reasons to
question the model's applicability to current climatic
conditions. Additionally, although ensemble models are
highly accurate, they cannot be fully interpreted without the
aid of additional explainability methods. Large-scale or real-
time deployment is also problematic due to computational
intensity.

Further studies are needed to examine hybrid structures
that combine deep learning and ensemble methods, enabling
models to leverage both hierarchical feature abstraction and
variance reduction. Temporal responsiveness can be
enhanced by integrating real-time sensor data from loT,
allowing crop yield predictions to become more responsive
and field-specific. Techniques such as SHAP and LIME
should be employed as explainable Al methods to enhance
the transparency and trust of stakeholders. It is possible to
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solve the imbalance in datasets and localized predictions by
creating region-specific or crop-specific models. Also, the
environmental signals can be extended using satellite and
remote sensing data, including NDVI and soil moisture
indices, to forecast yields at a higher resolution.

To conclude, ensemble learning, especially Bagging
and RF, is a powerful and precise model to predict the crop

integration are improved, machine learning ML) can make a
significant contribution to precision agriculture and help
ensure food security worldwide.

Data Availability

Data is publicly accessible at
https://www.kaggle.com/datasets/patelris/crop-yield-
prediction-dataset/data

yield. As data diversity, model interpretability, and real-time
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