
SSRG International Journal of Electronics and Communication Engineering                                 Volume 13 Issue 1, 157-173, January 2026 

ISSN: 2348-8549/ https://doi.org/10.14445/23488549/IJECE-V13I1P114                                                      © 2026 Seventh Sense Research Group® 

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Original Article 

Ensemble-Driven Machine Learning Regression Models 

for Climate-Sensitive Crop Yield Prediction: A 

Comparative Performance Analysis  

Siva Subramanian R1*, M Elumalai2, B.Saratha3 , K.Ramesh4, K.Sudha5, J.Gnana Jeslin6 

 

1Department of Computer Science and Engineering, School of Computing, SRM Institute of Science and Technology, 

Tiruchirappalli Campus, Tamil Nadu, India.  
2Department of CSE, Asan Memorial College of Engineering and Technology, India. 

3Department of Artificial Intelligence and Data Science, R.M.K.Engineering College, Kavarpettai, India. 
4Department of Information Technology, Panimalar Engineering College, Chennai, India.  

5Department of CSBS, Associate Professor, R.M.D Engineering College Kavarpettai, India. 

6Department of CSE, R.M.K College of Engineering and Technology, Puduvoyal, India.  

 
1Corresponding Author : sivamr8@gmail.com  

 

Received: 08 November 2025 Revised: 10 December 2025 Accepted: 09 January 2026 Published: 14 January 2026 

 

Abstract - Precise forecasting of crop yields is the key to food security, resource management, and sustainable food farming. 

This paper will examine how different Machine Learning (ML) models can be used to predict crop yield in relation to climatic 

and other environmental conditions, like rainfall, temperature, and the use of pesticides. Multiple performance metrics, such 

as R², Mean Squared Error (MSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) were used to 

train and evaluate seven ML models which were Linear Regression (LR), Decision Tree (DT), K-Nearest Neighbors (KNN), 

Gradient Boosting (GB), XGBoost, Random Forest (RF), and Bagging. The experimental findings showed that the ensemble-

based models were very effective compared to the traditional regression and distance-based algorithms. The Bagging 

recorded the best prediction accuracy in terms of R² score, closely followed by the RF. The two models were effective in 

capturing nonlinear relationships and high generalization in varied climatic and crop conditions. On the other hand, the 

simplicity of models like LR and KNN demonstrated low predictive abilities. The results highlight the scalability and the 

strength of the Ensemble Learning(EL) techniques in crop yield forecasting. The paper concludes with a set of 

recommendations on how to incorporate Explainable AI, real-time data that uses IoT, and region-specific hybrid deep 

learning systems to improve the interpretability, adjustment, and accuracy of agricultural forecasting systems in the future. 

Keywords - Bagging, Crop Yield Prediction (CYP), Ensemble Learning, Machine Learning, Random Forest.  

1. Introduction  
1.1. Background 

One of the most important sectors that contributes to the 

survival of human beings and the economy is agriculture, 

which supplies food, raw materials, and jobs to billions of 

people across the world. Proper prediction of crop yield is an 

issue of focus in agricultural research and management since 

it allows agricultural policy makers, farmers, and 

agribusiness to make good decisions about food security, 

food prices, and allocation of resources. Nevertheless, crop 

yield is a complicated process that is affected by a great 

variety of environmental, agronomic, and socio-economic 

factors. The interaction of variables like rain, temperature, 

use of pesticides, soil fertility, and climatic patterns in the 

region is not linear, and in fact, interacts in complex 

nonlinear manners to influence crop productivity [1]. The 

world agricultural industry has been experiencing increasing 

challenges in recent years owing to climate change, erratic 

weather patterns, and soil erosion.  

The changes in rainfall and the increase in temperature 

have had a significant impact on crop production and food 

availability, especially in areas that rely on rain-fed crops. 

These issues reveal the pressing necessity to have more data-

driven, adaptive, and reliable prediction systems that can 

help reduce risk and guarantee sustainable agricultural 

production [2]. Historical trends, statistical methods that are 

based on regression, as well as domain knowledge, are key 

elements in the traditional methods of predicting crop yield. 

In spite of a certain degree of accuracy, such models do not 

always represent the sophisticated relationships between 

climatic, biological, and geographical variables. Moreover, 
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these traditional methods have limitations of linear 

assumptions, lack scalability, and are sensitive to missing or 

noisy data. Machine learning ML) has become an effective 

tool for improving the accuracy of crop yield prediction in 

this respect [3]. ML methods can be trained to capture the 

latent patterns and nonlinear relationships in large datasets 

and can provide superior generalization and flexibility to 

changing agricultural conditions. Using ML algorithms, it is 

possible to process agricultural data, including temperature 

measurements, precipitation, pesticide application, and soil 

properties in large volumes to produce high-quality 

predictive models that are both interpretable and accurate [4].  

 

As a result, prediction models based on ML have 

become a part of the development of precision agriculture 

systems that should maximize the use of the resources, 

enhance their efficiency, and minimize their environmental 

impact [5, 6]. ML-based crop yield prediction has, therefore, 

tremendous opportunities to transform the existing 

agricultural processes and allow making decisions based on 

data, and play a significant role in the overall objectives of 

global food security [7]. This paper discusses and analyzes 

the performance of various ML algorithms to determine the 

most dependable method of predicting crop production based 

on climatic and environmental data. 

 
1.2. Problem Definition 

The forecasting of agricultural production is, by its 

nature, a challenging task because of the dynamic and 

multivariate character of influencing factors. Conventional 

yield estimation techniques, including regression-based 

prediction, time series forecasting, or expert-based 

evaluation, tend to be restricted by their assumption of fixed 

assumptions and simplistic relations.  

These models do not usually account for the nonlinear 

interaction between the major environmental factors, such as 

temperature, rainfall, and pesticide use, which, in 

combination, define the outcome of crop yield [7, 8]. 

Moreover, the fact that the agricultural conditions of various 

regions, soils, and crops vary complicates the accurate 

modeling of yield. As an illustration, two areas that receive 

the same amount of rainfall can yield vastly different 

amounts of yield because of differences in soil fertility or 

pesticides used.  

 

Moreover, climatic fluctuations have increased the 

uncertainty of the agricultural results, and thus, the use of 

conventional linear models is not practical in contemporary 

times. Another weakness of conventional methods is that 

they cannot effectively analyze large and heterogeneous data 

sets. Agricultural data typically includes thousands of 

observations gathered across multiple regions, crops, and 

years. Such high-dimensional data cannot be handled with 

algorithms that can only learn more complicated 

relationships, but also be generalized to previously unknown 

conditions. Thus, it is increasingly necessary to have 

automated and scalable solutions capable of forecasting crop 

yields with a high degree of accuracy, taking into account a 

combination of several interacting variables simultaneously.  
 

The alternative to traditional prediction methods is the 

use of machine learning ML) models, including ensemble 

techniques, regression trees, and boosting algorithms. They 

can understand the past trends in agriculture, adjust to the 

shifting climatic trends, and produce exact forecasts of Yield 

[9].  
 

The primary issue this study aims to address is the 

enhancement of the accuracy, strength, and explainability of 

crop yield forecasting based on various machine learning 

ML) methods trained on actual agricultural data [10]. The 

study will identify the best-performing algorithm by 

systematically comparing various models under different 

geographical and climatic conditions to understand which 

algorithm is most effective at modeling crop production in 

nonlinear conditions. 

 
1.3. Research Motivation and Objectives 

Efficient CYP is crucial in addressing some of the most 

pressing issues in global agriculture, including food 

insecurity, resource scarcity, and climate-related production 

losses. The rationale of the study is the growing demand for 

data-driven intelligence in agricultural decision-making 

processes.  

 

As the Artificial Intelligence industry rapidly evolves 

and open agricultural data sets are provided, it has become a 

possibility to use advanced ML methods to model yields with 

an even greater degree of accuracy than before. 
  
1.3.1. Three Main Reasons Drive this Research 

First, it will offer a comparative analysis of several ML 

models, i.e., LR, RF, GB, XGBoost, KNN, DT, and Bagging, 

on a large, real-world dataset, obtained on Kaggle. The 

comparative approach enables the identification of models 

that offer the best trade-offs in terms of accuracy, 

complexity, and interpretability.  
 

Second, the research aims to understand how major 

environmental elements, such as rainfall, average 

temperature, and pesticide use, impact agricultural 

productivity. Through the analysis of the feature importance 

of various ML models, the study identifies which variables 

are the most important in explaining the variation in the yield 

across the countries and crop types. 
 

Third, the study has been inspired by the desire to 

promote sustainable agriculture and policy formulation. With 

improved and more precise predictive systems, governments 

and farmers can plan crop production more effectively, 

allocate resources more efficiently, and predict potential 

yield deficits resulting from climate change. 
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The following are the objectives of this study, 

1. To pre-process and analyze a multi-country crop yield 

dataset of climatic and agricultural characteristics. 

2. The work aims to deploy and train several ML models to 

predict crop yield. 

3. To measure and compare the model performance based 

on the statistical measures like R2 score, MSE, MAE, 

and MAPE. 

4. To determine the most performing model according to 

predictive accuracy and generalization. 

5. To examine how the environmental variables impact 

yield results. 

6. The study achieves these objectives in relation to a 

broader objective of incorporating AI in agricultural 

forecasting and decision-making. 

 

1.4. Scope and Contribution 
This paper aims to apply, compare, and evaluate the use 

of various ML algorithms in predicting crop yield based on a 

real-world dataset of various regions and crops. The data 

consists of the key climatic and environmental data, as well 

as specific and regional data.  
 

Specific information about soil or irrigation is not 

considered in the research because these variables are not 

available in the data set; instead, it focuses on the effects of 

climatic and environmental variables on yield outcomes. The 

researchers employ seven ML-based models to compare their 

performance and find the most effective model to use in 

predicting yield accurately. 

 
The main contributions of this paper can be presented as 

follows, 

1. Creation of an efficient ML pipeline to predict crop 

yields, such as the processing of data, encoding of 

features, and evaluation of the model. 

2. Extensive comparative study of seven ML models (LR, 

RF, Gradient Boost, XGBoost, KNN, DT, and Bagging). 

3. Detection of the Bagging and the RF as the most 

successful models with the highest R2 scores and the 

lowest error scores. 

4. An in-depth investigation into feature significance 

reveals that rainfall, temperature, and pesticide use are 

the most significant factors in predicting yield. 

5. Further, the cause of sustainable agriculture is achieved 

by showing how ML-driven systems can be used to 

improve the accuracy of forecasting, facilitating 

informed decision-making, and resource optimization. 

6. The given paper thereby contributes to the expanding 

literature on the topic of AI-based agricultural analytics 

by offering an evidence-based assessment of the model 

performance on a large and heterogeneous dataset. 

 

1.5. Paper Organization 

The remainder of the paper is structured in the following 

way: 

Section 2 (Literature Review) gives a summary of 

previous studies that have been conducted on predicting crop 

yield using traditional and ML models, with their key 

variables and gaps in the research. 

 

Section 3 (Dataset Description) describes the dataset that 

was utilized in this study, including its features, statistical 

features, and pre-processing stages. 

 

Section 4 (Methodology) includes the ML models used, 

model configurations, training plan, and performance 

assessment measures. 

 

Section 5 (Results and Analysis) expounds on the 

comparative findings of all models, article feature 

significance, and best-performers. 

 

Section 6 (Discussion) explains the findings in 

connection to the practical application in agriculture, 

challenges, and implications on sustainability. 

 

Section 7 (Conclusion and Future Work) recaps the 

overall findings, contributions, and future research directions 

in ML-based agricultural forecasting. 

 

2. Literature Survey 
ML-based crop yield prediction has become one of the 

significant areas of research in precision agriculture. 

Different researchers have investigated the use of traditional, 

hybrid, and deep learning methods to predict yield by using 

climatic, soil, and environmental factors. This section is a 

summary and analysis of the current literature on CYP, with 

the emphasis on datasets employed, dependencies between 

features, models, and important conclusions. 

 

2.1. Machine Learning for Crop Yield Prediction 

ML is a critical component of agricultural decision 

support systems that determines the pattern of yield and crop 

management optimization. 

 

[11] ML is the key decision support tool in predicting 

crop yields and informing agricultural practices. A 

Systematic Literature Review located and synthesized 50 

articles out of an original sample of 567 relevant articles in 

six electronic databases. Analysis showed that the most 

commonly used features were temperature, rainfall, and soil 

type, with Artificial Neural Networks being the most used 

algorithm. Furthermore, another search found 30 studies that 

were dedicated to deep learning, and CNN were the most 

popular Deep Learning algorithms, as well as LSTM and 

DNN. [12] ML can be helpful in forecasting harvest 

production and informing agricultural choices. The ML 

techniques are beneficial as the farming system is a 

complicated system that entails different data points. This 

paper discusses various methods of soil and environmental-

based methods of predicting yields. The aim is to create an 
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ML model that would help farmers to select crops and 

improve the yield, which would result in fewer losses and 

better prices. These models can be either descriptive or 

predictive, depending on the research objectives. [6] 

Agriculture plays a vital role in the Indian economy, with a 

significant percentage of the population, over 50 percent, 

depending on it. Climate change is a threat to the health of 

agriculture. ML is a decision support tool that supports CYP, 

which helps in the management and choice of crops. This 

study provides a systematic review of features applied in 

CYP and identifies various AI techniques for studying CYP. 

Neural Networks have their limitations, such as amplified 

errors in predictions, and supervised learning fails to work 

with the nonlinear relationship of the data. It aims at creating 

proper models to classify crops and estimate their yield, 

taking into account such factors as weather and crop 

diseases, to achieve higher accuracy in the estimation of crop 

yield using different methods of ML. 

 
2.2. Deep Learning Approaches for Crop Yield Prediction 

Recent studies have increasingly focused on DL to 

predict crop yields due to its ability to automatically extract 

spatial and temporal features from extensive and non-

homogeneous data. 

 

[13] DL is also being considered an important technique 

in crop yield forecasting, and it succeeds in learning with 

data sets and thus automatically discovers the important 

features. This literature review identifies gaps in the study of 

DL methods and assesses the impact of vegetation indices 

and environmental conditions on crop yields. A review of 

recent literature (2012-2022) indicates that the most 

commonly used DL methods are LSTM and CNN with 

satellite remote sensing technology. The most prevalent 

features in predictions are vegetation indices, but the 

effectiveness of vegetation indices differs among the 

methodologies. Some of the significant issues are to increase 

the accuracy of the model, its practical use by stakeholders, 

and the black box character of these models. [14] Remote 

sensing and the use of UAVs in smart farming are becoming 

popular in the detection of crops and weeds, biomass 

analysis, and the prediction of yields. This paper uses CNN 

to forecast crop yields using NDVI and RGB data. The 

methodological tests involving CNN parameters such as 

training algorithm, network depth, and hyperparameter 

optimization provided an average absolute error (MAE) of 

484.3 kg/ha and an average absolute percentage error 

(MAPE) of 8.8 percent in early growth stages (June 2017). 

To allow subsequent growth (July and August 2017), the 

MAE was 624.3 kg/ha (MAPE: 12.6%). Interestingly, the 

CNN model worked well when using RGB data as opposed 

to using NDVI data. [15] The article presents a DL model 

that uses the CNN and the RNN to predict the yields of corn 

and soybean crops in the U.S. Corn Belt between 2016 and 

2018. CNN-RNN model outperformed the other methods, 

such as RF and deep fully-connected neural networks, by a 

significant margin with an RMSE of 9 percent of average 

yields and an 8 percent of average yields. The main 

characteristics of the model are the possibility to model time 

dependencies related to the environment, predictive 

generalization to new environments, and the measurement of 

the influence of weather, soil conditions, and management 

practices on the changes in yield. 

 

2.3. Hybrid and Comparative Models 

Combination models that incorporate the advantages of 

both linear and nonlinear algorithms have also been 

considered. 

 

[16] The genotype, environment, and interaction 

between genotype and environment affect crop yield. These 

relationships are essential for making accurate predictions, 

which require large datasets and sophisticated algorithms. 

Yield prediction in 2017 was performed using datasets of 

2,267 maize hybrids across 2,247 locations in the 2018 

Syngenta Crop Challenge. The DNN model of our winning 

team had a Root-Mean-Square-Error (RMSE) of 12% of the 

average yield using predicted weather data, and the perfect 

data had a Root-Mean-Square-Error (RMSE) of 11%. The 

input dimensions were reduced through feature selection 

without compromising accuracy. The model performed 

better than other techniques, such as Lasso, shallow neural 

networks, and regression trees. It was found that 

environmental factors are more influential on crop yield 

than the genotype. [17] Crop yield prediction is a highly 

complicated process that has been widely studied with the 

help of ML, especially ANN and Multiple LR. This paper 

discusses the connection between MLR and ANN and 

suggests a hybrid model of MLR-ANN, which may be used 

to provide better predictive accuracy. The model uses the 

coefficients of MLR to set the weights and biases of the 

input layer of the ANN instead of using random values. This 

hybrid model is compared to the conventional models, such 

as ANN, MLR, Support Vector Regression (SVR), KNN, 

and RF. It has been found that the MLR-ANN hybrid model 

is more accurate and takes into account computational time 

compared to traditional methods. 

 

2.4. Application-Specific Studies 

[2] Forecasting of crop production is essential in 

financial analyses of the agricultural sector, affecting import-

export policies and the income of farmers. This paper 

provides a review of machine learning ML) algorithms in 

crop yield prediction, with a focus on palm oil. It discusses 

the current state of palm oil production, its popular 

characteristics, and forecasting algorithms. A critical analysis 

of the current machine learning ML) application in the palm 

oil industry, along with comparative research, is presented. 

The article highlights the benefits and challenges of machine 

learning ML) in predicting yields and proposes potential 

solutions for the future. It discusses remote sensing, plant 

growth, and disease detection, and suggests a future 
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architecture of palm oil yield prediction to improve the 

accuracy and minimize computation challenges. [18] 

Agriculture plays a significant role in India's economy and is 

the foundation of the country's civilization. Being an agrarian 

country, crop choice is crucial for economic development, as 

it depends on market prices, production rates, and 

government policies. To increase agricultural productivity, 

the application of ML methods can streamline crop choices, 

solve farmers' problems, and improve yield level, ultimately 

yielding positive results for the Indian economy. 

 

2.5. Comparative Analysis and Research Gaps 

In the literature that has been reviewed, there are several 

patterns and gaps in research: 
 

Dominating Features and Data Sources: Temperature, 

rainfall, and soil features are the most dominant features. 

Spatial yield estimation is also commonly performed using 

satellite-based vegetation indices. 
 

Algorithmic Trends: The classical models of ML, such 

as the RF and SVM, are not out of competition, yet DL 

architectures, particularly CNN, LSTM, and the hybrid CNN-

RNN, demonstrate greater ability to process large volumes of 

unstructured agricultural data. 
 

Hybrid Approaches: Predictive performance is better, 

and the training time of models is lower when linear and 

nonlinear methods are combined (e.g., MLR-ANN, CNN-

RNN). 

Difficulties: The typical limitations are an imbalance of 

data, absence of soil and management data, insufficient 

temporal coverage, and inability to interpret deep models. 
 

Future Directions: It is evident that there has been a shift 

towards Explainable AI (XAI) to enhance the model 

transparency, IoT-based real-time predictive systems, and 

region-specific adaptive systems to meet local agricultural 

requirements. 
 

Overall, the literature suggests that ML, primarily 

ensemble and DL techniques, can be used to provide 

practical solutions to the accurate forecasting of crop yields. 

The recent researches are dominated by the ANN, CNNs, 

LSTMs, and ensemble tree models (RF, Bagging) because of 

their ability to address nonlinear relationships and large 

datasets.  
 

Nevertheless, there are still significant limitations, such 

as data availability, interpretability, and scalability, that 

future research should address with the help of hybrid 

modeling, IoT integration, and explainable frameworks. The 

knowledge of previous research works gives a powerful 

background to the present study, which further elaborates this 

area through conducting a comparative study of several ML 

models utilizing a worldwide agricultural dataset, assessing 

their precision, reliability, and calculating efficiency in crop 

output prediction. 

 

Table 1. Overview of the dataset 

 
Unnamed: 

0 
Area Item Year hg/ha_yield 

average_rain_fall_mm 

_per_year 
pesticides_tonnes avg_temp 

0 0 Albania Maize 1990 36613 1485.0 121.00 16.37 

1 1 Albania Potatoes 1990 66667 1485.0 121.00 16.37 

2 2 Albania 
Rice, 

paddy 
1990 23333 1485.0 121.00 16.37 

3 3 Albania Sorghum 1990 12500 1485.0 121.00 16.37 

4 4 Albania Soybeans 1990 7000 1485.0 121.00 16.37 

... ... ... ... ... ... ... ... ... 

28237 28237 Zimbabwe 
Rice, 

paddy 
2013 22581 657.0 2550.07 19.76 

28238 28238 Zimbabwe Sorghum 2013 3066 657.0 2550.07 19.76 

28239 28239 Zimbabwe Soybeans 2013 13142 657.0 2550.07 19.76 

28240 28240 Zimbabwe 
Sweet 

potatoes 
2013 22222 657.0 2550.07 19.76 

28241 28241 Zimbabwe Wheat 2013 22888 657.0 2550.07 19.76 

 

3. Dataset Description 
3.1. Dataset Overview 

The data used in this study were obtained from the CYP 

Dataset on Kaggle [19]. It is an extensive set of agricultural, 

climatic, and environmental data on several countries and 

types of crops, making it suitable for creating and testing ML 

models to predict yields. The dataset comprises 8 key 

features and 28,242 records, encompassing both categorical 

and numerical variables. The records represent the 

agricultural output of a specific type of crop produced in a 

given country during a particular year, taking into account 

climatic and input-related factors such as rainfall, pesticide 
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use, and temperature. This dataset was selected due to its 

geographical diversity, broadness of climatic conditions, and 

various aspects of yield that influence it, which is critical in 

training ML models that can represent the complex and 

nonlinear interactions. It also shows the diversity of 

environmental conditions and agricultural methods in 

different countries, which is important in determining the 

generalization of models. The data is stored in CSV format, 

and preprocessed and explored data analysis was done with 

Python-based libraries like Pandas and NumPy. There were 

no missing or null values, which guarantees the consistency 

and reliability of data in training ML models. 

 

3.2. Data Attributes and their Significance 

The data set has eight columns, which are important 

determinants of crop yield. The variables and their 

importance are explained as follows: 

1. Unnamed: 0 (Serial Number): The index of each record 

in the dataset. Though not a predictive feature, it helps in 

the identification of records and the management of data. 

2. Area (Country): A categorical variable that states the 

country/region of cultivation of the crop. It is important 

because geography greatly influences agricultural output, 

as it determines the type of soil, climate, and farming 

methods. The sample comprises 101 different countries, 

representing a wide geographical range. 

3. Item (Crop Type): Categorical variable that shows the 

type of crop grown (e.g., Maize, Wheat, Rice, Potatoes, 

Soybeans, Sorghum, etc.). Crop type is important 

because all crops have different biological 

characteristics, water requirements, fertilizer needs, and 

sensitivity to climate conditions. The dataset has 10 

different types of crops. 

4. Year: The Year of data collection, which is between 

1990 and 2013. This time-varying aspect allows models 

to include the trends and changes in yield that vary with 

time due to technological advancement, changes in 

policies, or changes in climate. 

5. hg/hayield (Target Variable): Represents the product 

of crops in hectograms/hectare (hg/ha). It is the target 

variable (dependent variable) in the research, and the 

leading indicator of agricultural productivity. 

6. Average rainfall mm per Year: The mean amount of 

rainfall (in millimeters) in a country and Year. Rainfall 

is among the most important variables in crop yield, as 

it influences soil moisture, the need for irrigation, and 

plant growth in general. 

7. Pesticides tonnes: The total pesticides used (in tonnes). 

The feature helps capture the effect of pest control 

practices on crop health and productivity. 

Nevertheless, its impact is nonlinear because it has 

environmental side effects when used excessively. 

8. Avgtemp ( Average Temperature): Means the average 

temperature per Year (in °C). Temperature affects the 

stages of crop development, including germination, 

flowering, and yield development. Both low and high 

extremes can negatively impact yield, making it a 

critical variable in prediction. 

 

Data Types: The majority of the columns (6 out of 8) 

are of the int64 (or float64) data type. The only object data 

type columns are the Item and Area ones. Missing Values: 

There are no missing values within the dataset because 

every column contains 28242 non-null values. 

 

3.3. Statistical Overview of the Dataset 

In order to have a more comprehensive view of the 

structure and variation of the dataset, descriptive statistical 

analysis was performed on the numerical attributes. Table 2 

shows the summary statistics of the key numerical 

variables.  

 
 

Table 2. Descriptive summary of numerical attributes 
 count mean std min 25% 50% 75% max 

Unnamed: 0 28242.0 14120.500000 8152.907488 0.00 7060.2500 14120.50 21180.75 28241.00 

Year 28242.0 2001.544296 7.051905 1990.00 1995.0000 2001.00 2008.00 2013.00 

hg/ha_yield 28242.0 77053.332094 84956.612897 50.00 19919.2500 38295.00 104676.75 501412.00 

average_rain_fall 

_mm_per_year 
28242.0 1149.055980 709.812150 51.00 593.0000 1083.00 1668.00 3240.00 

pesticides_tonnes 28242.0 37076.909344 59958.784665 0.04 1702.0000 17529.44 48687.88 367778.00 

avg_temp 28242.0 20.542627 6.312051 1.30 16.7025 21.51 26.00 30.65 

 
Table 2 is the summary of the descriptive statistics of 

the numerical variables in the crop yield prediction dataset 

of 28,242 observations. The data covers a variety of 

geographical areas and time periods. The statistical 

summary illustrates the variation and dispersion of the 

major agricultural indicators, including crop yield (kg/ha), 

annual rainfall (mm), pesticide application (tonnes), and 

average temperature (°C).  
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The average crop yield is nearly 77,053 hg/ha, and the 

standard deviation is very high, which means that there is a 

big difference in crop yield among different crops as well as 

among different locations. The annual rainfall ranges from 51 

mm to 3240 mm, reflecting the diverse climatic conditions. 

Similarly, the use of pesticides is not evenly distributed, 

indicating that agricultural practices vary. 

 

This dataset is particularly effective in training ML 

models that can generalize to other agricultural settings due 

to its variety in both geographic and climatic dimensions. 

 

3.4. Key Insights and Observations 

The initial data analysis indicates some crucial 

information regarding the model development and 

interpretation: 

 

Variation in Climatic Conditions: The data set represents 

a broad range of environmental situations, from arid areas 

with low rainfall to tropical areas with substantial rainfall. 

This will enable ML models to be trained on heterogeneous 

data, improving their capability to be applied to various 

regions. 

 

Great Diversity of Crop Yield: The standard deviation of 

the yield variable (~84,956) is very high, indicating that other 

factors, such as rainfall, temperature, and the type of 

pesticide used, vary differently according to the crop type 

and region. 

 

Temporal Range and Technological Influence: The 

inclusion of data between 1990 and 2013 enables the analysis 

one trends over time, such as the advancement of agricultural 

technology, fertilizer use, and irrigation systems that could 

impact yield. 

 

Good Representations of Particular Crops and Areas: 

Different nations have a very good number of records, which 

give a consistent data sample on the major types of crops. In 

the same way, a large percentage of crops such as Potatoes, 

Maize, and Wheat gives more reliability to the models of the 

category. 

 

Balanced Data Quality: There is no imbalance in the 

data, as all attributes have 28,242 non-null entries. This 

feature enables the models to train uniformly without the 

need for data imputation. 

 

Possible Correlation between Features: According to the 

preliminary correlation analysis, it is observed that rainfall, 

temperature, and pesticide use are likely to be correlated with 

yield to some degree. The feature importance analysis can 

further be used to explore these relationships. 

 

In general, the dataset is highly suitable for predictive 

modeling, featuring a wide range of high-quality data, as well 

as abundant climatic, geographical, and agricultural data. It 

lays a concrete foundation for training, testing, and validating 

ML models to predict crop yields, both individually and at 

scale, accurately. 

 

4. Methodology 
The following section describes the general structure, 

pre-processing, ML models, configuration, training, 

validation plan, and evaluation metrics of this study. The 

methodology framework was developed to provide the right, 

stable, and repeatable crop yield forecasting based on ML 

algorithms, based on multiple regression. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 1 Overall research framework of the CYP 

 
Algorithm: CYP Framework 

 

4.1. Research Framework 

The research framework proposed for conducting the 

study on CYP is systematic and features a workflow that 

incorporates data acquisition, preprocessing, model 

training, evaluation, and prediction. The conceptual flow of 

the process is shown in Figure 1 below. Also, the research 

framework is given in Algorithm 1. 

Data Collection 

Data Preprocessing 
Label Encode 

Min-Max Scaling 

Outlier Removal 

 

Initialize Machine 

Learning Models 
LR, DT, RF, BG, 

GB, XGB, KNN 

 

Training and Validation 

Train on Training Set 

(80%) 

Predict on Test Data(20%) 

Model Evaluation 

R2, MSE, MAE, 

MAPE Computation 

 

Final Prediction 
ŷ = 

BestModel.predict(x_n

ew) 

Model 

Comparison 

Select Best Model 
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Algorithm: 
Input: 

Raw dataset 𝒟 = {(𝑥(𝑖), 𝑦(𝑖))}𝑖=1
𝑁 , 

where 𝑥(𝑖) ={Area, Item, Year, Rainfall, Temperature, 

Pesticides} 

and 𝑦(𝑖) =  yield (hg/ha) 

ML Models: 

ℳ ={LR, DT, RF, BG, GB, XGB, KNN} 
Output: 

Best model ℳ∗ 

Performance metrics: R², MSE, MAE, MAPE 

Predicted yield values 𝑦̂ 

 

Algorithm 

Dataset Collection: Raw dataset 𝒟 = {(𝑥(𝑖), 𝑦(𝑖))}𝑖=1
𝑁  

Data Preprocessing  

Encode categorical variables Areaenc
(𝑖) =

ℓ𝐴(Area(𝑖)), Itemenc
(𝑖) = ℓ𝐼(Item(𝑖)) 

Normalize numerical features 𝑋
scaled

(𝑖)
=

𝑋(𝑖)−𝑋min

𝑋max−𝑋min
 

Remove outliers 𝑋(𝑖) ∉ [𝑄1 − 1.5 IQR,  𝑄3 +
1.5 IQR] ⇒ discard 

Split dataset 𝒟 = 𝒟𝑡𝑟𝑎𝑖𝑛 ∪ 𝒟𝑡𝑒𝑠𝑡 , ∣ 𝒟𝑡𝑒𝑠𝑡 ∣= 0.2𝑁 

Train each model  ℳ𝑘 = arg min 
𝜃𝑘

∑ (𝑦(𝑖) − ℳ𝑘(𝑥̃(𝑖)))2
𝑖

 

Predict on the test set. 𝑦̂𝑘
(𝑖)

= ℳ𝑘(𝑥̃test

(𝑖)
) 

Evaluate metrics 𝑅𝑘
2,  MSE𝑘 ,  MAE𝑘 ,  MAPE𝑘 

Select the best model. ℳ∗ =
arg max 

𝑘
𝑅𝑘

2with minimal error 

Final prediction 𝑦̂𝑛𝑒𝑤 = ℳ∗(𝑥new) 

 

4.2. Data Preprocessing 

Preprocessing of data is crucial in preparing the data for 

use in machine learning ML). It assists in removing 

inconsistencies and ensures that the input features are 

properly formatted for ingestion by the model. There were 

the following preprocessing operations: 

 
4.2.1. Handling of Categorical Variables (Area and Item) 

The dataset has two categorical variables, i.e., Area 

(country name) and Item (crop type). These variables 

represent contextual information on geographical and 

biological diversity; however, most machine learning ML) 

algorithms cannot interpret these variables directly. As such, 

the categorical encoding was done through the process of 

Label Encoding, which assigns each category a unique 

numerical value. For example, other crops like "Maize," 

"Wheat and Potatoes were translated into numerical labels. 

The transformation enables the models to identify country 

and crop differences without increasing dimensionality, as 

would be the case with one-hot encoding. 

Scaling of Numerical Attributes: Numerical attributes 

can be scaled to a specific range, resulting in a continuous 

numerical variable. The attributes 

average_rainfall_mm_per_year, pesticides_tonnes, 

avg_temp, and Year were normalized using Min-Max 

Scaling. The scaling operation converts all numerical 

variables to a normalized scale (0 to 1), thus not causing 

models such as K-Nearest Neighbors or GB to be biased 

towards variables that have larger numerical values. 

Mathematically: 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
                   (1) 

 
4.2.2. Outlier Detection and Removal 

Since the dataset was broad in terms of geography and 

climate, it contained possible outliers, including extreme 

values of rainfall, pesticide use, or yield. To reduce their 

effect, simple statistical thresholding (using the interquartile 

range) was employed to identify and eliminate anomalies that 

exceeded the 99th percentile. This made the model's learning 

process stable, unaffected by unrealistic and erroneous data 

points. 

 
4.2.3. Data Consistency and Validation 

The final validation test ensured that all 28,242 records 

were complete and that none were missing or contained a 

null value. Following the preprocessing, the data was split 

into training and testing sets so as to continue with model 

development. 

 
4.3. Machine Learning Models 

The proposed study uses seven regression-based ML 

algorithms, which are supervised to predict crop yield using 

climatic and environmental factors. The algorithms capture 

various relationships and levels of data complexity. The 

mathematical expressions of the models are as follows. 

 
4.3.1. Linear Regression 

One of the most straightforward and most interpretable 

predictive models is the LR. It presupposes the linear 

connection between the dependent variable (crop yield) and 

the independent variables (rainfall, temperature, pesticide 

usage, etc.) [20, 21]. 

 

The model can be modeled mathematically as: 

 

𝑦̂ = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑛𝑥𝑛 + 𝜖              (2) 

Where: 

 𝑦̂= predicted crop yield (hg/ha), 

 𝛽0= intercept term, 

 𝛽𝑖= coefficients of feature 𝑥𝑖, 

 𝑥𝑖= input features (e.g., rainfall, temperature, pesticide 

use), 

 𝜖= random error term. 

 

The model parameters 𝛽𝑖Are estimated using Ordinary 

Least Squares (OLS) by minimizing the residual sum of 

squares: 

minimize ∑ (𝑦𝑖 − 𝑦̂𝑖)
2𝑚

𝑖=1
                (3) 
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Despite its computing efficiency, LR is inefficient in the 

presence of nonlinear data such as agricultural data, whose 

yield and environmental relationships are nonlinear [22]. 

 
4.3.2. Decision Tree  

DT Regressor predicts the crop yield by splitting the 

feature space recursively into regions in which the target 

value (Yield) is essentially the same [21]. It is a 

nonparametric, nonlinear model that can be used to identify 

intricate associations among rainfall, temperature, pesticide 

application, crop type, and yield [23, 24]. 

 

Given dataset: 

𝒟 = {(𝑥(𝑖), 𝑦(𝑖))}𝑖=1
𝑁 ,                (4) 

Where 

𝑥(𝑖) = [𝐴𝑟𝑒𝑎,  𝐼𝑡𝑒𝑚,  𝑌𝑒𝑎𝑟,  𝑟,  𝑝,  𝑡](𝑖), 

𝑦(𝑖) = 𝑌𝑖𝑒𝑙𝑑 (ℎ𝑔/ℎ𝑎). 
 

Goal: learn a function 

𝑦̂ = 𝑓(𝑥)                (5) 

 

That predicts yield based on environmental and crop 

features. 

 

At each node, the tree chooses feature 𝑗and threshold 

𝑠that best split the data into two child nodes: 

Left child: 

𝑅𝐿(𝑗, 𝑠) = {(𝑥, 𝑦): 𝑥𝑗 ≤ 𝑠}                 (6) 

 

 

Right child: 

𝑅𝑅(𝑗, 𝑠) = {(𝑥, 𝑦): 𝑥𝑗 > 𝑠}                 (7) 

 
The optimal split minimizes the Sum of Squared Errors 

(SSE) or variance: 

 

(𝑗∗, 𝑠∗) = arg min 
𝑗,𝑠

[
∣𝑅𝐿∣

∣𝐷∣
Var (𝑅𝐿) +

∣𝑅𝑅∣

∣𝐷∣
Var (𝑅𝑅)]              (8) 

 

Where 

Var (𝑅) =
1

∣𝑅∣
∑ (𝑦(𝑖) − 𝑦̄𝑅)2

𝑖∈𝑅
               (9) 

 

Once the tree assigns a set of samples to a leaf region 

𝑅𝑚, the predicted crop yield for all points in that region is: 

 

𝑦̂(𝑥) = 𝑦̄𝑅𝑚
=

1

∣𝑅𝑚∣
∑ 𝑦(𝑖)

𝑖∈𝑅𝑚
              (10) 

 

Thus, the prediction is the mean yield of all training 

samples in that leaf. 

 

Formally, stop if: 

Var (𝑅) < 𝜖or ∣ 𝑅 ∣< min_samples_leaf              (11) 
The DT model is the sum of predictions over all leaf regions: 

𝑓(𝑥) = ∑ 𝑦̄𝑅𝑚
 𝟏(𝑥 ∈ 𝑅𝑚)

𝑀

𝑚=1
               (12) 

 

4.3.3. Random Forest 
RF is an ensemble regression model, which builds a 

series of DT through bootstrapped data and random selection 

of features at each split [25]. The trees are independent 

predictors of crop yield, and the ultimate prediction is 

achieved by averaging the results of all trees. This reduces 

the variance and improves accuracy compared to an 

individual DT [26]. The model helps capture nonlinearity 

between climatic and environmental factors that affect crop 

yield. If 𝑇1, 𝑇2, … , 𝑇𝐵Represent 𝐵individual DT, the RF 

prediction is given by: 

𝑦̂ =
1

𝐵
∑ 𝑇𝑏(𝑥)

𝐵

𝑏=1
               (13) 

 

         Trees are trained on a random sample (bootstrap) of the 

data, and a random selection of features is employed at every 

split, bringing variety to the trees. This method is effective in 

minimizing overfitting and enhancing the capacity to 

generalize [27]. 

 

4.3.4. Bagging Regressor (Bootstrap Aggregating) 

Another ensemble method that enhances the stability of 

the model is Bagging, which involves the combination of 

various estimators that are trained on various bootstrap 

samples of the dataset [28]. 

1. Let the dataset be 

𝒟 = {(𝑥(𝑖), 𝑦(𝑖))}𝑖=1
𝑁 , 𝑦(𝑖) = crop yield (hg/ha). 

 

2. Choose the number of base models (trees) 𝐵. 

3. For each model 𝑏 = 1, … , 𝐵, draw a bootstrap sample 

𝒟𝑏 ∼ Bootstrap(𝒟). 
 

4. Train a base regressor (DT) 

𝑇𝑏 = TrainTree(𝒟𝑏). 
 

5. Each tree recursively minimizes node variance: 

(𝑗∗, 𝑠∗) = arg min 
𝑗,𝑠

[
∣ 𝑅𝐿 ∣

∣ 𝑅 ∣
Var(𝑅𝐿) +

∣ 𝑅𝑅 ∣

∣ 𝑅 ∣
Var(𝑅𝑅)]. 

 

6. At each leaf region 𝑅𝑏𝑚, tree prediction is 

𝑇𝑏(𝑥) =
1

∣ 𝑅𝑏𝑚 ∣
∑ 𝑦(𝑖).

𝑖∈𝑅𝑏𝑚

 

 

7. Bagging prediction for any crop-yield input 𝑥is 

𝑦̂𝐵𝑎𝑔(𝑥) =
1

𝐵
∑ 𝑇𝑏(𝑥).

𝐵

𝑏=1

 

 

8. Since bootstrap samples differ, individual trees are 

decorrelated. 

9. Variance reduction due to averaging: 
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Var[𝑦̂𝐵𝑎𝑔] =
1

𝐵
Var[𝑇](if independent). 

 

10. Final predicted crop yield for a new sample 𝑥new: 

𝑦̂𝑦𝑖𝑒𝑙𝑑 = 𝑦̂𝐵𝑎𝑔(𝑥new). 

 

4.3.5. Gradient Boosting  

Let 𝒟 = {(𝑥(𝑖), 𝑦(𝑖))}𝑖=1
𝑁 with 𝑦(𝑖)= crop yield (hg/ha). 

1. Initialize model with a constant (stage 0): 

𝐹0(𝑥) = arg min 
𝛾

∑ 𝐿(𝑦(𝑖), 𝛾)

𝑁

𝑖=1

. 

 

2. For 𝑚 = 1, … , 𝑀(number of boosting rounds) compute 

pseudo-residuals: 

𝑟𝑖𝑚 = −
∂𝐿 (𝑦(𝑖), 𝐹(𝑥(𝑖)))

∂𝐹(𝑥(𝑖))
∣𝐹=𝐹𝑚−1

, 𝑖 = 1, … , 𝑁. 

 

3. Fit a weak learner ℎ𝑚(𝑥)(e.g., shallow regression tree) 

to {(𝑥(𝑖), 𝑟𝑖𝑚)}by minimizing the squared error of 

residuals. 

4. Optionally compute optimal step size. 𝛾𝑚By line search: 

𝛾𝑚 = arg min 
𝛾

∑ 𝐿(𝑦(𝑖), 𝐹𝑚−1(𝑥(𝑖)) + 𝛾 ℎ𝑚(𝑥(𝑖)))

𝑁

𝑖=1

. 

 

5. Update model with learning rate 𝜈 ∈ (0,1]: 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝜈 𝛾𝑚 ℎ𝑚(𝑥). 
 

6. Repeat steps 2–5 until 𝑚 = 𝑀(or early stopping via 

validation loss). 

7. Final ensemble predictor after 𝑀rounds: 

𝐹𝑀(𝑥) = 𝐹0(𝑥) + 𝜈 ∑ 𝛾𝑚 ℎ𝑚(𝑥)

𝑀

𝑚=1

. 

 

8. For squared-error loss 𝐿(𝑦, 𝐹) =
1

2
(𝑦 − 𝐹)2, residuals 

simplify to 𝑟𝑖𝑚 = 𝑦(𝑖) − 𝐹𝑚−1(𝑥(𝑖))and 𝛾𝑚It is the least-

squares fit coefficient. 

9. Evaluate on test set with metrics (e.g., MSE, MAE, 

MAPE, 𝑅2) using 𝑦̂ = 𝐹𝑀(𝑥)(units: hg/ha). 

10. Final crop-yield prediction for new input 𝑥new: 

𝑦̂yield = 𝐹𝑀(𝑥new) 

4.3.6. XGBoost (Extreme Gradient Boosting) 

XGBoost extends GB with additional regularization and 

optimization improvements [29]. It minimizes an objective 

function that balances accuracy and model complexity: 

Obj(𝜃) = ∑ 𝑙(𝑦𝑖 , 𝑦̂𝑖)

𝑛

𝑖=1

+ ∑ Ω(𝑓𝑘)

𝐾

𝑘=1

 

Where: 

 𝑙(𝑦𝑖 , 𝑦̂𝑖)= differentiable convex loss function (e.g., 

MSE), 

 Ω(𝑓𝑘) = 𝛾𝑇 +
1

2
𝜆 ∥ 𝑤 ∥2= regularization term, 

 𝑇= number of leaves in the tree, 

 𝜆= L2 regularization parameter, 

 𝑤= leaf weights. 

 

Each new tree 𝑓𝑡(𝑥)is added to minimize the loss using 

the second-order Taylor expansion: 

Obj
(𝑡) ≈ ∑[𝑔𝑖𝑓𝑡(𝑥𝑖) +

1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)]

𝑛

𝑖=1

+ Ω(𝑓𝑡) 

 

Where 𝑔𝑖and ℎ𝑖These are the first and second 

derivatives (gradients and Hessians) of the loss function. 

This second-order optimization and built-in regularization 

make XGBoost one of the most efficient and accurate 

boosting methods. 

 

4.3.7. K-Nearest Neighbors (KNN)  

KNN is a nonparametric, instance-based learning 

algorithm [30]. It predicts the target value for a new data 

point based on the average yield of its k nearest neighbors in 

the training dataset. 

1. Choose an integer 𝑘(number of neighbors). 

2. For a new input 𝑥, compute the Euclidean distance to all 

training points: 

𝑑(𝑥, 𝑥(𝑖)) = √∑(𝑥𝑗 − 𝑥
𝑗

(𝑖)
)2

𝑑

𝑗=1

. 

 

3. Sort all distances 𝑑(𝑥, 𝑥(𝑖))in ascending order. 

4. Select the set 𝒩𝑘(𝑥)of the 𝑘nearest neighbors. 

5. Retrieve the corresponding yield values: 

{𝑦(𝑖): 𝑥(𝑖) ∈ 𝒩𝑘(𝑥)}. 
 

6. Compute the KNN prediction as the mean yield of 

neighbors: 

𝑦̂𝐾𝑁𝑁(𝑥) =
1

𝑘
∑ 𝑦(𝑖)

𝑥(𝑖)∈𝒩𝑘(𝑥)

. 

 

7. If using distance-weighted KNN, weight by inverse 

distance: 
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𝑦̂𝑤(𝑥) =

∑
1

𝑑(𝑥, 𝑥(𝑖))
𝑦(𝑖)

𝑖∈𝒩𝑘(𝑥)

∑
1

𝑑(𝑥, 𝑥(𝑖))
𝑖∈𝒩𝑘(𝑥)

. 

 

8. Normalize continuous features (rainfall, temperature, 

pesticides) to avoid scale bias. 

9. Encode categorical features (Area, Item) using label or 

one-hot encoding. 

10. The final crop-yield prediction for any new data point 

𝑥new: 

𝑦̂yield = 𝑦̂𝐾𝑁𝑁(𝑥new). 

 

4.4. Model Parameters and Configuration 

The parameter configuration was standardized across all 

models to ensure fair comparison and reproducibility. Key 

configurations are summarized below in Table 3: 
 

Table 3. Key parameters applied 

Model Key Parameters 

Linear 

Regression 

Default parameters 

Random 

Forest  

random_state = 42 

Gradient 

Boosting  

n_estimators = 100, learning_rate = 

0.1, max_depth = 3, random_state = 42 

XGBoost  random_state = 42 

KNN  n_neighbors = 5 

Decision Tree  random_state = 42 

Bagging  n_estimators = 150, random_state = 42 
 

To maintain consistency, the train-test split ratio was 

kept at 80/20 for training and testing. In addition, 5-fold 

cross-validation (k=5) was used to reduce bias and ensure 

that every model was tested on several subsets of the 

dataset. The method enhances the generalization of the 

models, since the performance is tested to be stable 

between different data partitions. 
 

4.5. Model Training and Validation 
The implementation of all the models was made in 

Python 3.10 and its data science ecosystem, which included 

Scikit-learn, XGBoost, Pandas, NumPy, and Matplotlib. 

The training and validation steps used included the 

following: 

 

4.5.1. Training Phase 

Each model was trained on 80% of the dataset using 

preprocessed features and the target variable (hg/ha_yield). 

4.5.2. Validation Phase 

Models were validated on the 20% test dataset. Cross-

validation results were recorded for accuracy consistency. 

Predictions were generated and compared with actual yield 

values. 

4.5.3. Performance Evaluation 

Predicted and actual values were analyzed to compute 

performance metrics (R², MSE, MAE, and MAPE). Results 

were tabulated and visualized to facilitate model comparison.  

4.6. Evaluation Metrics 

To evaluate model performance comprehensively, four 

key statistical metrics were utilized [22, 31]: 

 

4.6.1. R² Score 

 Measures how well the model explains the variance in 

the dependent variable. 

 Higher values (closer to 1) indicate better performance 

and stronger predictive capability. 

 

4.6.2. Mean Squared Error (MSE) 

 Quantifies the average squared difference between 

actual and predicted values. 

 Lower MSE signifies higher model accuracy and fewer 

significant prediction errors. 

 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛

𝑖=1
                          (14) 

 

4.6.3. Mean Absolute Error (MAE) 

 Represents the average magnitude of absolute 

differences between predicted and actual yields. 

 Provides an intuitive measure of average model 

deviation. 

𝑀𝐴𝐸 =
1

𝑛
∑ ∣ 𝑦𝑖 − 𝑦̂𝑖 ∣𝑛

𝑖=1                              (15) 

 
4.6.4. Mean Absolute Percentage Error (MAPE) 

 Expresses prediction error as a percentage of actual yield 

values. 

 Enables easy interpretability across scales. 

 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑ ∣

𝑦𝑖−𝑦̂𝑖

𝑦𝑖
∣

𝑛

𝑖=1
                            (16) 

 
The comparison of several metrics allows assessing the 

models reliably by measuring accuracy (R2) and error size 

(MSE, MAE, MAPE). The multi-metric design helps to 

avoid the over-dependence on one measure and to have a 

more balanced picture of the model functionality in various 

conditions. 

 

5. Results and Analysis 
In this section, the experimental results obtained through 

the use of seven machine learning ML) regression models to 

predict crop yields are presented and analyzed.  

Every model was tested in a uniform experimental setup, 

an 80-20 train-test split, five-fold cross-validation, and four 

performance metrics were used, such as R2 Score, MSE, 

MAE, and MAPE. 
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5.1. Model Performance Comparison 

 
Fig. 2 MSE of different ML models in CYP 

 
The comparison of the MSE of ML models to predict 

crop yield is presented in Figure 2. MSE is used to determine 

the extent to which the actual values of the predicted yield 

are close to the actual values, and a smaller MSE means a 

good prediction. The findings clearly indicate that the best 

EL models based on decision-tree architecture are better than 

the traditional regression models since they yield much fewer 

squared errors. Bagging, RF, and DT are the models that 

have a high ability to generalize and effectively reduce 

prediction errors. Conversely, less complex models, such as 

LR and KNN, have significantly larger error values, which 

confirms their inability to learn complicated nonlinear 

relationships in agricultural data effectively. GB and 

XGBoost are average in performance, yet they continue to 

produce more errors than the best-performing ensemble 

techniques. All in all, the MSE comparison confirms the fact 

that tree-based ensemble models are the most accurate and 

consistent in their yield estimation and thus are most 

effective in real-world agricultural forecasting. 

 
Fig. 3 MAE of different ML models in CYP 

 

The values of the MAE of the various ML models are 

reported in Figure 3. MAE is the mean value of the errors in 

the estimated crop yield, and it is quantified in the same unit 

as the target variable. A more petite MAE indicates a higher 

predictive quality and less variation of the actual yields. The 

Bagging Regressor had the least MAE (3,450.50), followed 

closely by the RF (3,480.84) and DT (3,559.26), indicating 

that these models have high accuracy in estimating yields 

with low average error. XGBoost also exhibited a fair 

performance of an MAE of 7341.94, but not as accurate as 

the best ensemble models. On the contrary, the values of 

MAE in LR and KNN were much larger (60955.31 and 

47716.35, respectively), which proves that these models are 

more likely to miss the nonlinear and complex relationships 

within the data. GB was fairly good but still demonstrated a 

relatively high error relative to the top ensemble methods. In 

general, the MAE comparison also confirms that tree-based 

ensemble models are more precise in yield prediction and can 

be more effectively applied to the agricultural forecasting 

case. 

 

 
Fig. 4 MAPE of different ML models in CYP 

 
Figure 4 illustrates the MAPE results for the tested 

models. MAPE is a decipherable measure that defines the 

error of prediction as a percentage, with lower scores 

indicating better results. The findings indicate that the DT 

model provided the lowest MAPE (0.096101), closely 

preceded by Bagging (0.101199) and RF (0.102571), which 

means that they have high predictive accuracy. These 

findings indicate that the prediction error of these models is 

lower than 0.11 percent, which is very tolerable in 

agricultural prediction. LR and KNN, on the other hand, had 

very large values of MAPE (2.419536 and 1.631186, 

respectively), which implies significant inaccuracy and 

proves that they are not able to model the complex 

interactions in the data. GB and XGBoost exhibited moderate 

performance, but were still not as accurate as the most 

successful ensemble tree-based models. Comprehensively, 

these findings from the MAPE do reinforce the fact that EL 

models provide more accurate and effective forecasts of crop 

yields and are therefore suitable for real-life applications in 

agricultural decision-support systems. 
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Fig. 5 R2 of different ML models in CYP 

 
Figure 5 presents the performance of the ML models in 

crop yield prediction in terms of R2 score. R2 value is the 

percentage of the change in the yield of crops that is 

attributed to the input features. The higher the value, the 

more accurate and reliable the predictions are. The highest R2 

value of 0.985881 was obtained by the Bagging Regressor, 

with a close second value of 0.985628, indicating the high 

predictive power and the high generalization of the model. 

The level of accuracy was also high (0.976174) in the DT 

model, which proved the usefulness of tree-based learning 

methods to model nonlinear agricultural data. LR and KNN 

models, on the contrary, had significantly lower values of R2 

(0.073724 and 0.288206, respectively), which means that 

they failed to represent the intricate associations between 

climatic variables and crop yield. XGBoost and GB had 

moderate performance and were still lower than the best 

ensemble models because they had a relatively high 

prediction variance. These findings support the fact that 

ensemble tree models are most appropriate in the prediction 

of crop yields because they are able to cope with 

environmental variability, nonlinearity, and feature 

interaction in agricultural data. 

 
5.2. Key Observations  

5.2.1. Best Performers 

Bagging (R2 = 0. 985881) and RF (R2 = 0. 985628) had 

almost the same best accuracy. The two models help capture 

nonlinearities and multivariate dependencies.  

 

5.2.2. Moderate Performers 

DT (R2 = 0.9761) and XGBoost (R2 = 0.9732) were also 

good but not the best ensemble methods because of variance 

and tuning effects.  

 

5.2.3. Weak Performers 

KNN and gradient Boost had high variance and 

dimensionality issues. LR had the lowest adaptability as it 

assumes the existence of linear relationships.  

5.2.4. Overall Observation 

Ensemble models that used trees were shown to be most 

effective in predicting in different environmental conditions 

and species of crops.  

 

5.3. Summary of Findings 

Ensemble models work better than simple regression and 

distance-based approaches because they learn nonlinear and 

more complicated relationships between climate 

characteristics and crop yield. The Bagging Regressor had 

the minimum overall prediction error and maximum stability, 

and this proves its applicability in real-life agricultural 

forecasting. The mathematical analysis of error 

decomposition proves that ensemble averaging is an effective 

method of model variance, and it is optimal in the case of 

heterogeneous agricultural data. 

 

6. Discussion 
6.1. Key Findings 

The findings of this paper are a clear indication that 

ML models built by an ensemble are a far better predictor 

of crop yield than the conventional and simple regression 

models. The Bagging Regressor and the RF were among 

the seven models assessed and had the highest predictive 

accuracy with the R2 scores of 0.985881 and 0.985628, 

respectively.  

 

The lowest error rates were also generated by these 

models, with values of MSE of 9.59 x 107 and 9.76 x 107, 

meaning that the models have an exceptional accuracy in 

estimating the yield. Tree-based ensemble models are used 

to effectively model a complex and nonlinear interaction 

between agricultural inputs like rainfall, temperature, and 

pesticide application. Their capacity to pool forecasts of 

numerous weak learners (DT) lowers variance and avoids 

overfitting, which is essential in heterogeneous agricultural 

data of varied climatic areas and crops. 

 

Conversely, other models, including LR and KNN, did 

not work well, having the R2 of 0.0737 and 0.2882, 

respectively. XGBoost (R2 = 0.9732) and DT (R2 = 0.9761) 

were also competitive in terms of results, but not better 

than ensemble bagging methods in terms of stability or 

generalization. All in all, the comparative analysis 

established that the EL methods, especially Bagging and 

RF, provide strong and stable yield predictions in diverse 

agricultural settings, which can be considered the best 

option to implement them in the real-life context of 

precision agriculture systems. 

 
6.2. Practical Applications and Use Cases 

The applied implications of these results are at various 

levels of the agricultural system, such as in policy making, 

making farm-level decisions, and in the agri-business 

process. 
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6.2.1. Government and Policy Planning 

Correct ML-based yield prediction models can be used 

by governments to forecast food supply, regulate food 

imports and exports, and design agricultural policies. An 

ability to predict the performance of yields in regions will be 

helpful to authorities in predicting shortages or surpluses, 

efficient food distribution, and reducing drought or flood 

risks. Moreover, these models can be used to inform the 

allocation of subsidies, irrigation, and food security measures 

at the national level. 

 

6.2.2. Agricultural Practitioners and Farmers 

In the case of farmers, yield prediction models will 

enable them to have actionable intelligence on how to 

optimize agricultural practices. 

 

ML models could be used. Choose the right species of 

crops that are adapted to the existing climatic and soil 

conditions. Optimize the use of fertilizers and pesticides, 

reducing the damage to the environment and maximizing 

the yield. Schedule irrigation schedules depending on the 

predictions of the rainfall and yield forecasts. Such insights 

are helpful in precision farming, enabling farmers to make 

informed and data-driven decisions to make farming more 

profitable and sustainable. 

 
6.2.3. Agri-Tech Companies and Researchers. 

Agri-tech companies will be able to incorporate the ML-

based prediction models into the digital farming platform, 

mobile apps, and decision-support systems. These systems 

can provide real-time predictions on yields, weather, and 

cultivation advice specific to the regions or types of crops.  

 

Moreover, ML advances agricultural research by making 

it possible to simulate crop performance in different climatic 

conditions to facilitate innovation in sustainable food 

production technologies. To conclude, ML-based yield 

prediction systems can revolutionize the agricultural sector 

by providing data-driven information to all stakeholders, 

including policymakers and farmers, promptly. 

 
6.3. Addressing Challenges 

Although this study produced good prediction results, a 

number of challenges and limitations were identified: 

 

6.3.1. Data Imbalance and Regional Bias 

The sample does not have the same number of records 

per country and crop (e.g., India and Potatoes take the 

leading positions in the sample). This may bias model 

learning towards commonly represented areas or types of 

crops and hinder generalization to less commonly 

represented data samples. 

 

6.3.2. Missing Agronomic Variables 

The dataset lacks important agronomic variables, such as 

soil fertility, irrigation, and type of fertilizer, which have 

been proven to have a significant impact on yield. Lack of 

these makes model predictions incomplete. 

 

6.3.3. Model Interpretability 

Climatic changes and extreme weather conditions (e.g., 

droughts, floods, heatwaves) add high temporal variability in 

yield patterns. These new changes may not be well predicted 

by the historical dataset (1990-2013), compromising long-

term predictive performance. 

 

6.3.4. Model Interpretability 

Despite the high performance of ensemble models, they 

are complex black-box systems, and thus, it is challenging 

for non-technical stakeholders, such as farmers or 

policymakers, to interpret what individual predictions 

represent. 

 

6.3.5. Data Granularity 

The dataset is mainly run at the country level of 

aggregation, as opposed to field-level data. This lowers the 

spatial resolution and can hide the micro-level differences 

that can be used in localized decision-making. To solve these 

issues, more detailed datasets and more explainable AI 

methods will be needed, which can enhance the 

interpretability and reliability of models. 

 
6.4. Model Complexity vs Interpretability 

There is a trade-off between model performance and 

interpretability, which is critical. 

 

Although ensemble models like Bagging and the RF 

had the best R2, they are more complex and opaque. They 

are the product of a large number of FT joined together, so 

it is not easy to track the contribution of each of the input 

variables to the output. LR, on the contrary, is fully 

transparent and can be easily interpreted, but does not work 

well with nonlinear data in terms of prediction accuracy. 

This trade-off implies that high-accuracy models are 

preferable for use in operational deployment. However, 

explainable and interpretable AI systems are necessary for 

stakeholders to adopt. 

 

To address these points, future work needs to consider 

Explainable AI (XAI) methods, such as SHAP (SHapley 

Additive exPlanations) and LIME (Local Interpretable 

Model-Agnostic Explanations), to visualize and interpret 

feature contributions. Such practices can help stakeholders 

understand why certain predictions were achieved, thereby 

increasing their confidence in AI-guided agricultural 

recommendations. 

6.5. Role of Evaluation Metrics in Model Selection 

The assessment of regression models across multiple 

performance measures is critical for achieving a holistic 

understanding of the models' behavior. Although the R2 

Score is used to measure the extent to which the model can 
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account for the variation in crop yield, it by itself does not 

give the extent or magnitude of prediction errors.  

 

For example, two models can be similar in terms of R-

squared but differ significantly in terms of absolute errors. 

Therefore, the complementary error measures, i.e., MSE, 

MAE, and MAPE, were employed. MSE lends a quadratic 

penalty to large errors and rewards models that occasionally 

make extreme deviations.  

 

MAE is an easily understood average of the magnitude 

of absolute errors, which is good in determining the overall 

reliability of the prediction. MAPE, which is in percent form, 

is interpretable, and therefore, the results of model errors can 

be easily compared across scales. The combination of these 

metrics also provided a balanced model assessment, 

indicating that the ensemble models had high explanatory 

power and low error deviation. Therefore, the multi-metric 

test confirmed the effectiveness of EL models and avoided 

over-dependence on a particular indicator. 

 

6.6. Computational Efficiency and Scalability 
The scale of ML models to large-scale or real-time 

agricultural applications directly depends on their 

computational complexity. LR and KNN are not only 

computationally inexpensive but also do not offer sufficient 

accuracy for complex data. DT and the RF tree-based models 

are moderate in terms of training time but exhibit significant 

predictive accuracy. Ensemble techniques (Bagging, GB, 

XGBoost) are computationally expensive because of model 

training and aggregation (repeated training and aggregation), 

particularly when using very large datasets. 

 

In order to make it more scalable, subsequent studies 

may utilize cloud-based ML solutions and accelerate training 

models with the help of GPUs. Moreover, offline-trained 

lightweight models may be deployed to mobile or edge 

devices and used to make real-time predictions for farmers 

with limited computational capacity. 

 
6.7. Data Availability Constraints 

The limitation of the data diversity is one of the major 

limitations of this study. Despite having climatic and yield 

data for more than 100 countries, the dataset lacks several 

important agronomic factors, including soil type, irrigation 

level, fertilizer composition, and crop genetics.  

The lack of these parameters restricts the ability of these 

models to explain variation in crop yield completely, 

especially in areas where non-climatic factors are the major 

ones. In order to overcome this, future research should focus 

on incorporating multisource agricultural data, such as: 

IoT sensor data: in soil moisture, pH, and nutrient 

levels. Satellite and remote sensing data: to track vegetation 

indices and the land-use patterns. 

Weather station networks: to measure real-time climatic 

variables such as humidity, speed of wind, and solar 

radiation. 

 

By combining all these data streams with ML and AI, it 

is possible to produce more granular, real-time, and region-

specific models of crop yield predictions. 

 

7. Conclusion and Future Work  
The paper examined the performance of different ML 

models to predict crop yield based on environmental and 

climatic factors, including rainfall, temperature, and 

pesticide use. A total of 28,242 records were used to test 

seven machine learning ML) models under a set of 

consistent experimental conditions. The findings indicate 

that EL models outperform traditional and distance-based 

methods. The Bagging had the best predictive performance 

with an R² equal to 0.985881, and the RF closely follows it 

with an R² of 0.985628. The models also yielded extremely 

low error values, indicating their strength and applicability 

in predicting yield in various agricultural settings. 

 

The paper also adds to the field of agricultural analytics 

by conducting a comprehensive dataset characterization, 

comparing dozens of ML models, and finding ensemble-

based techniques to be the most effective at estimating crop 

yields with reasonable accuracy. The variables observed to 

be the dominant predictors of yield variability were rainfall, 

temperature, and pesticides, underscoring the significance of 

environmental dynamics in agricultural modeling. The 

results highlight the power of ensemble models in capturing 

nonlinear relationships and reducing prediction variance. 

Therefore, they could be widely used in practice and 

decision support in agriculture. Nevertheless, several 

weaknesses were identified. The dataset lacked important 

agronomic factors, including soil fertility, irrigation rates, 

and crop genetics, which limits the integrity of the 

prediction framework. The imbalance on the regional level, 

particularly the prevailing status of such nations and the 

timeframe ending in 1990-2013, can also be reasons to 

question the model's applicability to current climatic 

conditions. Additionally, although ensemble models are 

highly accurate, they cannot be fully interpreted without the 

aid of additional explainability methods. Large-scale or real-

time deployment is also problematic due to computational 

intensity. 

 

Further studies are needed to examine hybrid structures 

that combine deep learning and ensemble methods, enabling 

models to leverage both hierarchical feature abstraction and 

variance reduction. Temporal responsiveness can be 

enhanced by integrating real-time sensor data from IoT, 

allowing crop yield predictions to become more responsive 

and field-specific. Techniques such as SHAP and LIME 

should be employed as explainable AI methods to enhance 

the transparency and trust of stakeholders. It is possible to 
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solve the imbalance in datasets and localized predictions by 

creating region-specific or crop-specific models. Also, the 

environmental signals can be extended using satellite and 

remote sensing data, including NDVI and soil moisture 

indices, to forecast yields at a higher resolution.  

To conclude, ensemble learning, especially Bagging 

and RF, is a powerful and precise model to predict the crop 

yield. As data diversity, model interpretability, and real-time 

integration are improved, machine learning ML) can make a 

significant contribution to precision agriculture and help 

ensure food security worldwide. 

 

Data Availability 
Data is publicly accessible at  

https://www.kaggle.com/datasets/patelris/crop-yield-

prediction-dataset/data
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