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Abstract - Compression algorithms are absolutely necessary for the effective storage and speedy transfer of remote imaging
data. The present manuscript proposes a transform-based hyperspectral image compression algorithm that exploits both the
inter- and intra-subband correlations among the transform coefficients. The compression algorithm is based on the Spatial
Oriented Trees (SOTSs), which are the basic unit in block cubes. In contrast to the hierarchical tree compression approach,
which only uses a single coefficient for 3D set partitioning, the block cube data structure takes the form of a cube and has the
coefficients m*m*m. The root node of each SOT is located in the LLL band, while child and descendant blocks are located in
the high-frequency sub-band. The proposed compression algorithm exploits the best features of the zeroblock cube and

zerotree compression algorithms.
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efficiency.

1. Introduction

The integration of two-dimensional plane imaging and
spectroscopy is made possible by Hyperspectral (HS)
imaging, which allows for the recording of spectral diagrams
and signatures as well as the spatial distribution of objects
within an area of interest [1, 2]. Spectroscopy can extract the
individual spectrum of each pixel from the visible to near-
infrared wavelength range (four hundred nanometres to
twenty-five hundred nanometres, having a spectral spacing of
two nanometres to ten nanometres) and divide it into a large
number of continuous narrow spectral bands [3, 4]. This
makes it easier to characterise pixels that have the same
spectral signature [5]. Due to this vast information, HS
images are used in many applications such as Aerospace [6],
Agriculture [7], Archaeology [8], Biotechnology [9], Climate
Monitoring [10], Document Verification [11], Environment
Monitoring [12], Food Quality Measurement [13], Geology
[14], Human Health Care [15], Infection Detection (Plant)
[16], Military Reconnaissance [17], Mineralogy [18],
Oceanography [19], Pharmaceuticals [20] etc. Besides the
above-mentioned applications (Fields), remote sensing is a
field that is expanding at the quickest rate [21]. The
scientists/researchers are developing the computer-based
algorithms for Change Detection [22], Classification [23],
Compression [24], Denoising [25], Fusion [26], Feature
Extraction [27], Feature Identification [28], Inpainting [29],
Segmentation [30], and Unmixing [31] of HS images. HS
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images are often acquired by satellite-based HS image
sensors, and after that, they are transmitted to an earth station
via radio channels [32]. Because every HS image has both
spatial and spectral dimensions, the datasets associated with
HS images typically have a very high size [33]. The third
dimension of an HS image is called "Wavelength," while the
third dimension of video data corresponds to the "Time"
[34].

Hyperspectral data are comparable to video data in this
regard. Due to the fact that a memory capacity of this
magnitude is required, it is essential to eliminate any
unnecessary redundancy prior to the high-speed image's
transmission to the ground station [35]. HS image has two
types of redundancy (Spectral and Spatial) that need to be
reduced or eliminated to achieve compression of any HS
image [36]. Compression of the HS image is required before
the transmission of the image data to save the onboard
memory storage, reduce transmission bandwidth, lower
coding complexity (processing speed), and save image sensor
energy [37]. The HS image Compression Ratio (CR) is
defined as a measurement of the relative reduction in the size
of reconstructed HS images by the Hyper Spectral Image
Compression Algorithm (HSICA) [38]. It is defined as in
Equation 1.

Bits per pixel in HS image before compression
CR = (1)

Bits per pixel in HS image after compression
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HSICAs can be split into the different categories either
on the basis of data loss or coding process (compression
process execution) [35]. HSICAs are split into three
categories: lossless, near lossless, or lossy compression [36].
There is no data loss in lossless compression, while CR has a
low numeric value that ranges from 1 to 3. In the same way,
near-lossless compression has very minimal data loss, and
CR has a slightly higher value than the lossless compression
process. The lossy compression has a very high CR, while
there is a significant loss of image data [39].

HSICAs are divided into six categories named as
Transform Coding (TC) based HSICA [40], Predictive
Coding (PC) based HSICA [41], Vector Quantization (VQ)
based HSICA [42], Compressive Sensing (CS) based HSICA
[43], Tensor Decomposition (TD) based HSICA [44],
Learning-based Compression (LC) based HSICA [45], and
Neural Network (NN) based HSICA [46].

The PC based HSICA uses a different predictor to
determine the next (future) pixel value through prediction
error. Prediction errors are encoded using several methods of
entropy coding, such as Huffman coding and arithmetic
coding, amongst others. The prediction-based methods are
reliable with data, and these algorithms can only be used
with lossless compression [41].

The VQ-based HSICA, also known as a dictionary-
based method, uses the codebook that is present at the
transmitter (encoder) and receiver (decoder) ends. The
compression algorithm divides the HS image into small
blocks at the encoder end and gives a unique code according
to the codebook. The unique code had been used for the
transmission. The decoder uses the received code word to
reconstruct the HS image. If any error occurs during the
transmission process, the whole reconstructed HS image can
be distorted [42].

The performance of TD-based HSICAs is high, and this
high performance is not dependent on the data type of the HS
image. The tensor is an easily decomposable three-
dimensional matrix. A 3D tensor representing the HS image
is decomposed into lower-dimensional tensors via the
technique. The channel carries an encoded version of these

tensors in lower dimensions [44].

The three-stage compression is carried out by CS-based
HSICAs. The encoder initially takes the HS image and, using
a minimal number of samples, transforms the resulting 3D
HS image into a compact 2D matrix. In the next step, this
matrix is reduced in size by following the procedures
outlined in the CS-based HSICA, and the data is then sent
through the transmission channel. This method is repeated as
many times as necessary until the entire HS image has been
sent. The decoder is responsible for recreating the HS image
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using the entirety of the data that was received via the
transmission channel [43].

The compression process is carried out with the help of
Machine Learning (ML) and Deep Learning (DL) using LC-
based HSICAs. In conjunction with the LC process, the PC
application is carried out. Although a high compression ratio
was attained, it came at the expense of increased complexity
and utility [45].

Neural Networks (NN) such as autoencoders, Support
Vector Machines (SVM), backpropagation networks, and
Convolutional Neural Networks (CNN), have been used to
minimize the dimensionality of HS images, convert HS
images to compressed binary codes for retrieval, and to
extract compact visual representations. Every NN has
multiple layers of structures. Outstanding predictive
capability may be found in the NN network that makes use of
predictive coding. The coding gain improves as a result of a
reduction in prediction error [46].

The TC-based HSICAs utilize a mathematical transform
to transform the image data into a domain where the data is
represented by the less correlated high-energy coefficients.
Both lossy and lossless compression methods are supported
by transform-based HS image compression techniques.
When it comes to lossy compression, these compression
algorithms work admirably even at low bit rates. The HS
image's spatial and spectral correlation has been removed
thanks to the mathematical transform. Low-frequency
coefficients are compressed to hold the full power of the HS
image [40].

The remaining manuscript is organized as follows:
Section 2 gives theoretical background details of the
proposed compression algorithm, while Section 3 sheds light
on the motivation for the development of the compression
algorithm, with the major Contribution in the development of
the compression algorithm. Section 4 proposed the 3D
Shearlet Transform-based Block Cube Tree Coding (3D-
STBCTC). Result and discussion, including the detailed
comparative analysis with other state-of-the-art compression
algorithms, were explained in Section 5. Conclusion and
future scope are covered in the last part of the manuscript.

2. Theoretical Background

The transform-based HSICA wuses a mathematical
transform (Fourier, cosine, dyadic wavelet, curvelet,
fractional wavelet filter, etc) to convert the time domain HS
image to the frequency domain HS image [34, 47]. They use
the properties of the transform to identify the significant
coefficients. Among all transform-based HSICAs, set
partitioned (also known as bit plane coding) HSICAs are a
special type of compression algorithms that use the set
structure of the transform image to define the
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significant/insignificant  coefficients [35, 48]. The
insignificant coefficients are either arranged in the zero block
cube or zero tree or zero block cube tree fashion. It has been
known that at the top bit plane, there are a lot of insignificant
coefficients, and these compression algorithms use a single
‘0’ to define a lot of insignificant coefficients [35]. Tang et
al. proposed 3D-Set Partitioned Embedded Block (3D-
SPECK), which 3D zero block cube structure to define the
insignificant coefficients [49]. In the same way, 3D-Set
Partitioning In Hierarchical Trees (3D-SPIHT) uses the
zerotree structure to define the insignificant coefficients [50].
There are many modified versions of the 3D-SPIHT, and 3D-
SPECK has been proposed in the past. 3D-Wavelet Block
Tree Coding (3D-WBTC) uses the features of 3D-SPECK
and 3D-SPIHT and shows the high coding gain at the low bit
rates [51]. These HSICA uses a linked list for tracking the
significance/insignificance of the sets or coefficients. These
compression algorithms have higher coding gain, but they
have high coding complexity and huge coding memory
demand. These issues are addressed by the listless HSICAs.

Instead of the linked lists, these compression algorithms
use the marker and state table to define the significance. The
demand for memory for listless HSICA is fixed and only
depends on the size of the HS image [34]. The complexity is
also reduced significantly because of a very small number of
read/write operations happening in the listless compression
process. 3D-Listless SPECK (3D-LSK) [52], 3D-No List
SPIHT (3D-NLS) [53] and 3D-Low Memory Block Tree
Coding (3D-LMBTC) [54] are the popular listless HSICAs.
The Low Complexity Bock Tee Coding (3D-LCBTC) uses
the two small lists and markers to define the state of the sets
or coefficients [48]. Zero Memory Set Partitioned Embedded
Block (3D-ZM-SPECK) employs linear indexing for
identification of the sets and does not require any coding
memory [55]. But it has higher coding complexity than 3D-
LSK. The issue of coding complexity had been solved by
using parallel processing.

The whole transformed HS image is divided into small
block cubes, and ZM-SPECK is applied to each block in a
parallel processing way. Through this, the complexity of the
compression algorithm is reduced. 3D-Modified Zero
Memory Set Partitioned Embedded Block (3D-M-ZM-
SPECK) also solves the issue of complexity, but it requires
some coding memory [35]. 3D-Block Cube-based Parallel
Modified Zero Memory Set Partitioned Embedded Block
(3D-BCP-ZM-SPECK) reduces the complexity of 3D-ZM-
SPECK. Chandra and Bajpai proposed 3D-Block Partitioning
Embedded Coding (3D-BPEC), which is based on an array
instead of lists and markers [56]. Recently, Bajpai and
Kidwai proposed a Fractional wavelet filter-based HSICA,
which reduces the transform memory, but it had a very poor
error resilience capability [57]. Spatial-orientation Tree
Wavelet (STW) uses a hybrid mathematical transform to
achieve the compression of the HS image [58].
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Table 1 gives the comparative analysis (performance
metric, advantage, and limitation) between different
mathematical ~ transform-based = HSICAs.  Algorithm
Performance Metric (IPM) used in the HSICA mentioned in
Table 1 are Peak Signal to Noise Ratio (IPM 1), Structural
Similarity Index (APM II), feature-similarity index (APM
I11), Bjontegaard Delta PSNR (APM 1V), Coding Memory
(APM V), and Coding Complexity (APM V1) [38].

2.1. Shearlet Transform

Despite their widespread use, classical wavelet
approximations are for one-dimensional piecewise
continuous functions, but they have poor performance in the
representation of the edges present in the different objects
present in the HS image. But, now multidimensional
mathematical transforms such as curvelet, ripplet, shearlet,
etc, have efficient representation of multivariate functions
with spatially distributed discontinuities [59]. The shearlet
transform was introduced by Negi and Labate as a
multidimensional image representation tool. It has been able
to show bivariate functions sparsely. It has been known that
classical wavelet has optimal approximations with only one
direction having a piecewise continuous function [60, 62].

3. Motivation and Contribution

In the past, many compression algorithms were proposed
for lossy and lossless compression, but they suffer from low
coding efficiency, high coding complexity, or high coding
memory. The list-based HSICAs have high coding
efficiency, but they suffer from exponentially rising
complexity and coding memory requirements with the
increasing bit rate. To reduce the coding memory and coding
complexity, list-based HSICAs are proposed. 3D-LSK, 3D-
NLS, and 3D-LCBTC reduce the complexity but still have
high fixed-size coding memory. 3D-LMBTC required a
small piece of coding memory with a cost of 0.5 dB to 1 dB
loss of coding efficiency. Further, 3D-ZM-SPECK needs no
coding memory due to the use of linear indexing, but has a
higher coding complexity than 3D-LSK. 3D-BCP-ZM-
SPECK and 3D-M-ZM-SPECK further reduce coding
complexity at the cost of coding efficiency. The coding gain
can increase with the use of another mathematical transform.
Curvelet transform and shearlet transform are the two other
mathematical transformations that can show good results for
image compression. The curvelet transform needs fewer
coefficients to represent the non-singularities (edge, curve,
etc). 3D-Listless Embedded Zerotree Set Partitioning Coding
(3D-LEZSPC) uses curvelet transform and gives superior
performance than other wavelet transform-based HSICA.
But the shearlet transform can also work for the geometrical
features of the HS images. With the block cube tree coding
and shearlet transform, the coding efficiency increased with
reference to the other state-of-the-art HSICA.

3.1. Major Contribution of this Manuscript
The major contributions to the manuscript are listed
below.
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Table 1. Mathematical transform-based hyperspectral compression algorithms

HSICA APM Advantage Limitation
3D-SPIHT | Uses the block tree structure to obtain | Complexity increases exponentially with
[50] compression an increase in bit rate
3D-Trap Coding | Low implementation complexity on the Poor coding efficiency at the high bit
[69] hardware rates
3D-SPECK | Uses the block cube structure to obtain Not fit for the low-bit-rate HS image
[49] compression compression
3D SPEZBC | It had a better rate distortion Low coding memory requirement
[70] performance than other HSICAs compared to other list-based HSICA
Anisotropic SPIHT | Coding Efficiency increased due to the | Complexity is very high compared to the
[71] classical isotropic decomposition listless HSICA
3-D Wavelet Fractal | Wavelet-Fractal coding increases Two different transform mechanisms
[72] coding efficiency increase the load on the sensor
3D-LSK | Coding complexity reduces Coding memory is very high for the
[52] significantly for any bit rate small-sized HS image
3D-NLS Demand for coding memory is reduced . -
53] 1L significantly compared to 3D-SPIHT Coding memory is higher than 3D-LSK
3D-WBTC LV VI Optimized performance at the low bit Coding complexity is very high for high
[51] ' rates bit rates
3D-LMBTC LV VI Low memory lossy compression Coding complexity is higher than 3D-
[54] e algorithm LSK and 3D-NLS
3D-STW | High coding efficiency is achieved with | The requirement of the coding memory is
[58] the use of multiple transforms huge during the transformation process
3D-ZM-SPECK (VA Zero coding memory is required for Ineffective increase in computation
[55] V, VI compression complexity compared to 3D-LSK
3D-LCBTC I, 1, 11, Reduce coding complexity than 3D- Very high coding memory requirement
[48] v, V, Vi LMBTC compared to 3D-LMBTC
3D-LEZSPC I, 10, 1 High coding efficiency is due to the use Demand for transform memory is very
[59] v, V, Vi of the curvelet transform high in the curvelet transform
3D-BPEC VI Complexity reduces significantly from | Complexity increases with an increase in
[56] ' 3D-WBTC bit rate
FrwF-Based ZM- Spectral correlation exploited by the Very poor error resilience capability
SPECK 111, prediction during the transmission process
57] V, VI
3D-BCP-ZM-PECK I, 1, 1, Reduce the complexity of the 3D-ZM- Effect on the coding efficiency of the
[61] v, V, VI SPECK 3D-ZM-SPECK
3D-M-ZM-PECK [, 11, 1, Reduce the complexity of the 3D-ZM- Small coding memory is also required
[35] vV, V, Vi SPECK with reference to 3D-ZM-SPECK
3D-LBCSPC I, 1, 1, Reduce the complexity of the zeoblock High complexity with the use of spatial
[34] v, V, Vi compression algorithm trees
3D-SLS I, 1, 1, Reduce the number of lists based on Still, coding memory is high with an
[66] IV, V, VI 3D-SPIHT increase in the bit rate

e The proposed HSICA uses the Shearlet Transform to
achieve the high coding gain.

e It uses the Zero Block Cube Tree structures to achieve a
high compression ratio at a low data rate.

4. 3D Shearlet Transform Block Cube Tree
Coding (3D-STBCTC)

The 3D Shearlet Transform Block Cube Tree Coding
compression algorithm combines the good features of both
zero-tree-based HSICA and zero block cube-based HSICA. It
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partitions the transformed HS image into coefficient block
cubes and then constructs trees of block cubes with roots in
the topmost sub-band in a tree fashion. In a block cube tree,
significant block cubes are found using the tree partitioning
concept of 3D-SPIHT [50], whereas significant coefficients
within each block cube are found using the octa-tree
partitioning of 3D-SPECK [49]. A significant block cube tree
is recursively partitioned until significant coefficients are
found, till a single coefficient level or bit budget is available.
Like 3D-SPIHT and 3D-SPECK, 3D-STBCTC is also a bit
plane compression scheme.
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4.1. Compression Algorithm
Let us consider an HS image data of ‘M x M x M’

coefficients after taking the 3D shearlet transform, which

transforms the image into a pyramidal sub-band structure.

The transformed HS image is characterized by an indexed set

of transform coefficients as C,, p, y with row index ‘o’ and

column index ‘B’ of frame “y’. The coefficients are grouped
in block cubes of size ‘6 x 6 x &’ coefficients, and then block
cube trees are formed with roots in the topmost (LLL) sub-
band situated at the left-hand side of the transform HS image.

This block cube tree structure has three distinct advantages

over the tree structure used in 3D-SPIHT.

1. It merges a large number of 3D-SPIHT clustered zero
trees, which may appear in the early passes, to produce
zero trees with more coefficients.

Zero-block can be used to describe a collection of ‘6

x & x 8’ insignificant coefficients for that bit plane.

This will enable more effective and less complex

frame-to-frame  exploitation of intra-subband

correlations.

Because of its block cube-based design, encoding time

and memory requirements are both dramatically

decreased at low bit rates compared to pixel (coefficient)
based approaches.

Within the 3D sub-band hierarchy, each block cube
(with the exception of those in the highest resolution band)
has eight progeny cubes occupying the corresponding spatial
location in the next higher frequency sub-band. Two specific
cases exist: firstly, the lowest frequency band (LLL) is
structured as groups of ‘2x2x2’ cubes. Within each group,
the top-left cube is a leaf node with no descendants, while the
other seven cubes each have eight progeny in higher-
frequency sub-bands. Secondly, all cubes in the highest
resolution band are leaf nodes with no progeny.

The associated notations and nomenclatures mentioned
in Table 2 are used in the 3D-STBCTC.

Many of the Spatial Orientation Trees (SOTSs) generated
by 3D-SPIHT are integrated into one single spatial
orientation block cube tree in 3D-STBCTC through the
process of producing a block cube tree. The set of all
descendant block cubes is referred to as a type 'A' block cube
tree. On the other hand, the set of grand descendant block
cubes is referred to as a type 'B' block cube tree. This is
calculated by subtracting the set of descendant block cubes
from the set of offspring block cubes. In particular, for a
block cube size of 2x2x2’, eight SOTs of 3D-SPIHT are
combined into a single 3D-STBCTC SoT. The significant
information about the wavelet coefficients is stored in the
three ordered lists:

e List of Insignificant Block Cubes (LIBC)
List of Insignificant Block Cube Sets (LIBCS)
List of Significant Pixels (LSP)
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At the first step of the proposed algorithm, all block
cubes in the LLL band are added to LIBC, and others with
their descendants are added to LIBCS as type ‘A’ entries.
LSP starts as an empty list. In the same way as 3D-SPIHT
and 3D-WBTC, the proposed compression algorithm 3D-
STBCTC is also bit plane coding, having two sub-stages
named as sorting pass and refinement pass

The 3D-STBCTC algorithm employs a top-down, bit-
plane encoding strategy, commencing with the most
significant bit plane. The initial step in the sorting pass
involves traversing the List of Insignificant Block Cubes
(LIBC). Each block cube within the LIBC is evaluated for its
significance against the prevailing threshold. This test
generates a single binary output. '1' is emitted if the block
becomes significant, prompting its promotion to the LIS (List
of Insignificant Sets) for further partitioning. Conversely, a
'0' indicates the block remains insignificant at the current
threshold; it is retained in the LIBC, and no additional bits
are allocated to it for that bit plane.

So, information about the ‘m x m x m’ insignificant
coefficients for the current threshold is sent by a single ‘0’
bit, whereas 3D-SPIHT generates ‘axoxa’, ‘0’ bits.

The coding procedure for a threshold pass is as follows:

Block Cube Testing: Each block cube in the dominant

list is tested for significance.

a. Insignificant: Encoded with a single '0" bit.

b. Significant: Encoded with a '1' bit and partitioned
into eight sub-cubes via octree partitioning.

Recursive Partitioning: Step 1 is repeated recursively on

significant sub-cubes until the individual coefficient

level is reached.

Coefficient-Level Processing: For a cube of individual

coefficients:

(a) Each coefficient is tested. A '0' denotes an
insignificant coefficient, which is added to the List
of Insignificant Block Cubes (LIBC). A '1' denotes a
significant coefficient, and its sign bit is encoded;
the coefficient is then moved to the List of
Significant Pixels (LSP).

(b) The processed block cube is deleted from the LIBC.

Set Processing: The algorithm then processes sets of

block cubes in the List of Insignificant Block Cube Sets

(LIBCS), partitioning significant sets into smaller

subsets.

A significant type ‘A’ set with a root block cube B;50*
is partitioned into a type ‘B’ set LJF7,* with eight
offspring’s block cubes 07;%“ . Following the partitioning
of a significant block cube, the resulting offspring are
immediately assessed for their significance. The type 'B' set
is appended to the List of Insignificant Block Cube Sets
(LIBCS) for subsequent processing. When a type 'B' set is
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found to be significant, it is subdivided into eight type 'A'
sets, which are also added to the end of the LIBCS. This
iterative process continues for a given threshold, with all
newly generated insignificant sets being queued at the end of
the LIBCS until every set has been examined. Upon
completing this sorting pass, a refinement pass is executed.
This pass encodes the next bit of precision for coefficients
already in the List of Significant Pixels (LSP) from previous
thresholds, excluding those newly added in the current
sorting pass. The entire cycle sorting followed by refinement
is then repeated with the threshold halved until the target
bitrate is attained. The proposed algorithm demonstrates
superior rate distortion performance compared to 3D-SPIHT,
particularly at low bitrates. The architecture of the proposed
system (HSICA) is depicted in Figure 1, with the
corresponding pseudo-code detailed in Table 3.

4.2. Coding Complexity of Proposed Compression
Algorithm

The coding complexity of any HSICA depends upon the
number of mathematical, arithmetical, and logical
competitions and how complex these operations are. It has
been known that list-based HSICA has high coding
complexity, which is due to accessing the coefficients from
the different lists. At low bit rates, these list-based HSICAS
have comparable complexity, but with the increased bit rates,
the coding complexity increases exponentially. There are
three ways to reduce the coding complexity, which are the
use of markers, the use of state tables, or the use of the 1D
array system. But when these ways are used, there is a
significant reduction in the coding efficiency. Thus, for the
high coding efficiency, the list-based compression algorithm
performs best. With the use of advanced mathematical
transforms, the coding efficiency also increased. The coding
complexity of 3D-STBCTC is slightly higher than that of
3D-SPECK, 3D-SPIHT, and 3D-WBTC.

5. Result and Discussion

The performance of the proposed compression algorithm
was evaluated on four HS images and benchmarked against
state-of-the-art transform-based HSICAs. The detailed
descriptions of the simulation test images are summarized in
Table 4.

The comparative analysis of the proposed compression
algorithm was conducted on the basis of coding efficiency,
coding memory, and coding complexity. The Peak Signal to
Noise Ratio (PSNR), Structural Similarity Index (SSIM), and
Feature-Similarity (FSIM) index are used to define the
coding efficiency of any HS image [73, 74]. PSNR is
mentioned as Image Quality Metric 1 (IQM 1), SSIM is
mentioned as Image Quality Metric Il (IQM II), and FSIM is
mentioned as Image Quality Metric 11l (IQM 1II) in the
manuscript.

The original HS image is transformed with the 3D
shearlet transform. The transform 3D HS image is mapped to
a 1D array with the help of Morton Mapping (Linear
Indexing) [63]. The transform coefficients of the 1D array
have been encoded with the compression algorithm. After the
compression of the HS image, it is converted to the 3D
matrix [66-68]. The inverse transform is applied to the 3D
matrix, and the coefficients are quantized to the nearest
integers. In order to obtain an accurate assessment of the
proposed 3D-STBCTC in relation to the other HSICAs, the
compression algorithms have been programmed on the
numerical computing software Matlab, which is running on a
computer terminal running Windows 11 and containing 20
GB of storage space.

The 3D-STBCTC is compared with 3D-SPECK
(Compression Algorithm 1) [49], 3D-SPIHT (Compression
Algorithm I1) [50], 3D-WBTC (Compression Algorithm I11)
[51], 3D-LSK (Compression Algorithm V) [52], 3D-NLS
(Compression Algorithm V) [53], 3D-LMBTC (Compression
Algorithm VI) [54], 3D-LCBTC (Compression Algorithm
VII) [48], 3D-ZM-SPECK (Compression Algorithm VIII)
[55] and 3D-LEZSPC (Compression Algorithm IX) [59].

5.1. Coding Efficiency

To quantify the Rate-Distortion (RD) performance of the
compression algorithm, the Peak Signal-to-Noise Ratio
(PSNR) is employed. The original and reconstructed
Hyperspectral (HS) images are defined as A (x,y,z) and B
(x,y,2). Given the Total Number Of Coefficients (pixel),
Npix, the Mean Squared Error (MSE) is computed as shown
in Equation 3. The PSNR is subsequently calculated based
on this MSE value.

Table 2. Notations used in the proposed 3D-STBCTC

. B&*g*pog A block cube with dimensions of ‘m’ and transform coefficients is arranged ina 1D
array form.
{capy : MSa < m+8),0<B < (0+8), p<y < (p+6)}
Where (1,0,p) are the coordinates of the top left coefficient of the block cube. The
coordinate of the block cube's top-left corner is used to identify each individual block
cube.

. Quap | Setofall octa-block cubes of a parent block cube BJ:>50
It is defined as
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Qo= 553 5,58
(m.0.p) { B2 22 B2 2 26
(o}
n,0,0 n,0.p+
§,8.8 §,8.8
272 2 272 2
B 8 B 5 S5
T],U'+E,p T],D’+E,p+z
5§ 8§ 6 5§ 8§ 6
272°2 BE*E*E
B+8 S5
n+5,0.p n+30.p+7
5§ 6 6 § 6 6
2°2"2 BE*Z*E
8 5 S5 5 5 }
T]+E,O'+E,p T]+E O-+E'p+5
. H Block cubes in the LLL band (lowest resolution)

On,0.0) Set of all offspring block cubes of the root block cube.
It is defined as

= Sx8*6 6*x8*8
0(77’047) - { BZ;,Z*O',Zp BZn,ZU,2p+6
36*6*5 85*5*6
21n,20+6,2p 21,20+8,2p+8
Bé’*&*é’ 35*5*6
2n+68,20,2p 2n+8,20,2p+8
38*5*8 B *6x8 }
2n,+68,20+6,2r 2n+68,20+6,2p+6
. Dinop) | Setofall descendant blocks of root block cube By;%;°
. Linspy | Setof all descendants except immediate offspring of the root block cube B2:2;¢
. Sn() significant function in the n'" most significant bit plane applied to set T, defined as

Sn(T) = 1 lf max({|c77.0.ll|} = Zn) \/Cin,a,p eET

0 ; otherwise
Where set T may either be an individual block cube of a*a*a wavelet coefficients or
a block cube tree.

For a givenn, if S{T) =1,
then set T is said to be significant; otherwise, it is insignificant.

Table 3. Pseudo code for encoder of 3D shearlet transform block cube tree coding

1. Initialization

Output n = [logz[max ;e {|Ca.em 3]

LSP = ¢

Add all Bf,* € Hg, 4, ToLIBC, and those with descendants also to LIBCS, as type 'A’ entries.
2. Sorting Pass

/* LIBC testing */

For each entry B7'77* in LIBC
do:

o Output S,[Bgs%@

= if S,[B%%%] = 1 then,
if (a # 1 call fn_bcp()
else
add (n, o, p) to LSP, and output the sign of ¢(y 5,0
Remove entry BF;%* from the LIBC

n.9.p
/* Testing of LIBCS list*/
For each entry By2% % in LIBC
do:

> If the entry is of type 'A'; then

. Output S,, [D(n,c.p)]

if Sy [Dinopy] =1 then,
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For each Bf 5% € O

do

Output S, [Bs%“]

if Sy[Bfs%%] =1 then call fn_bcp()
else add B¥:%“ to the end of LIBC

1.0.p
if Loy # ¢, then
Change the type of B';%;* from type ‘A’ to type ‘B.’
> ifthe entry is of type 'B';
then
. Output S, [L(H,G,P)]
o ifoOutput S, [Lyyop] =1
then

add each [Bf;%%] € 06, to the end of the LIBCS

3. Refinement Pass

For every entry (a, 8,y) in the List of Significant Pixels (LSP), except those coefficients included in
the last sorting pass (i.e., with the current bit plane)

Output the 'n' most significant bit of |c, 5]

4. Quantization Step

The counter n is decremented by one, and the algorithm returns to Step 2. This iterative process
continues until the termination condition n = 0 is met or till the bit budget is exhausted.

fn_bcp()

{ /I* Function for block cube partitioning */
For a block cube Byg%®

Do.
o Foreach BJ7," € O
Do :
o if(w =1

Output S,[Brvs7]

if S,[BY:s’] = 1then

call fn_bcp()

else

add By ;" tothe LIBC

< else

output Sy [cen,o,0]

if

Output S, [cop] =1 then

add (, o, p) to LSP and output the sign of the coefficient

else

add By ;" to LIBC as asingle pixel block cube

}
Table 4. Details of HS images used for the simulation test
HS Image HS Sensor HS Image Dimensions Pixel Depth

Washington DC Mall (HS Image 1) HYDICE 1280 x 307 x 191 14
Yellowstone Scene 0 (HS Image I1) AVIRIS 512 x 680 x 224 16
Yellowstone Scene 3 (HS Image 1) AVIRIS 512 x 680 x 224 16
Yellowstone Scene 18(HS Image V) AVIRIS 512 x 680 x 224 16
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MAX, * MAX,

PSNR = 10 1og10( o @)

)

MSE = £ 3,5y ol A(x,y,2) = By, 2 @3)

The 3D-STBCTC uses the same partition rule as 3D-
WBTC, 3D-LMBTC, and 3D-LCBTC (zeroblock cube tree
set partitioned). Table 5 gives the comparative analysis of the
PSNR. SSIM and FSIM. It is clear from Table 5 that 3D-
STBCTC outperforms for almost every bit rate compared to
other HSICA. The variation of the PSNR between 3D-
STBCTC and 3D-SPECK is 0.69 dB to 1.09 dB for the HS
image |, 0.45 dB to 0.98 dB for the HS image 1, 0.22 dB to
0.57 dB for the HS image 111, and -0.25 dB to 0.89 dB for the
HS image IV. The variation of the PSNR between proposed
3D-STBCTC and 3D-SPIHT is 0.69 dB to 1.12 dB for the
HS image |, 0.46 dB to 1.34 dB for the HS image 11, 0.55 dB
to 0.88 dB for the HS image 111, and -0.13 dB to 1.04 dB for
the HS image 1V. In the same way, the variation of the PSNR
between proposed 3D-STBCTC and 3D-WBTC is 0.71 dB to
1.14 dB for the HS image I, 0.48 dB to 1 dB for the HS
image 11, 0.24 dB to 0.67 dB for the HS image Il1, and -0.23
dB to 0.9 dB for the HS image IV. The variation of the
PSNR between proposed 3D-STBCTC and 3D-LMBTC is
0.83 dB to 1.74 dB for the HS image I, 0.56 dB to 1.34 dB
for the HS image 11, 0.16 dB to 1.22 dB for the HS image III,
and -0.13 dB to 1.17 dB for the HS image IV. The variation
between the PNSR of the proposed 3D-STBCTC and 3D-
LCBTC is 0.63 dB to 1.08 dB for the HS image I, 0.49 dB to
1.22 dB for the HS image 11, -0.03 dB to 0.73 dB for the HS
image Ill, and -0.41 dB to 0.8 dB. The proposed 3D-
STBCTC has a high PSNR due to the high number of
significant coefficients compared to other compression
algorithms for that bit rate. It has been known that a
significant coefficient has more weight than a refinement
coefficient.

The SSIM is a metric for measuring picture quality that
determines how similar two HS images (original and
reconstructed) are to one [74, 75]. It has been clear that the
proposed compression algorithm has a slight gain (1% to
3%) over other compression algorithms. It is calculated as in
Equation 4.

uapp + C)(204p + C3)
(5 + g + C)(0f + 05 + Cp)

SSIM (A, B) = ©))

The mean average of the original and reconstructed HS
image is defined. u, & pg While the variance of the HS
images is defined as o2 & 62. g4 It is defined as the
covariance between the HS images [48, 76]. The original HS
image and the reconstructed HS image are compared using
the Feature-Similarity index metric, which maps the features
and measures the degree to which they are similar [38, 77].
The comparative analysis of the FSIM metric has been
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compared with different compression algorithms, as covered
in Table 5. The Bjontegaard metric calculation, also referred
to as BD-PSNR, is computed for each of the four HS images
that are being evaluated and covered in Table 6. It has been
clear from Table 6 that the proposed compression algorithm
outperforms the other compression algorithms for all four HS
images, as it has been clear with Table 6 (higher numeric
value of the PSNR for many bit rates).

5.2. Coding Memory

It has been known that 3D-SPECK, 3D-SPIHT, 3D-
WBTC, and 3D-STBCTC use linked lists to track the
significance of the coefficients or partitioned sets. 3D-
STBCTC uses three different lists for the same. While the
rest of the compression algorithms are listless, they do not
use any linked lists. These listless compression algorithms
use state tables or markers for tracking the significance of the
coefficients or partitioned sets. The coding memory required
by the listless compression algorithm is fixed for all bit rates
and only depends on the size of the HS image. Thus, at the
very low bit rates, the demand for coding memory is very
high. It is obvious that the memory requirement of 3D-
SPECK and 3D-SPIHT is significantly higher in the early
passes than it is in the later passes. This is due to the fact that
at the lowest threshold level of later passes, more sets will
become relevant, and set partitioning will result in more
entries in linked lists. From Table 7, it is clear that the
proposed compression algorithm 3D-STBCTC has almost the
same coding memory requirement as 3D-SPECK, 3D-
SPIHT, and 3D-WBTC but has a lower coding memory
demand than the listless compression algorithm 3D-NLS at
almost every bit rate.

5.3. Coding Complexity

Coding complexity of any compression algorithm is
measured as the time required by the compression algorithm
for the encoding and decoding process [68, 78]. It has been
known that the decoding process requires less execution time
than the encoding process [79]. This is because the encoding
process requires one more step for the identification of the
set (size) and testing of the test for every bit plane. From
Table 8, it is clear that listless compression algorithms have a
very minimum coding time requirement, while the list-based
compression algorithms have a high coding time requirement
[55, 80]. This is due to the multiple read/write/memory
access operations, which require a lot of time. The Encoding
Time (ET) and Decoding Time (DT) are measured in
seconds in Table 7, while Total Time (TT) is the sum of time
required by the algorithm to complete the encoding and
decoding process for the given bit rate [38, 81-86].

The visual representation of the two HS images
(Yellowstone Scene 0 and Washington DC MALL) for four
different frequency frames (before compression and after
compression process) has been shown in Figures 2 and 3.
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6. Conclusions and Future Work fact that it is a block cube-based encoder, in comparison to
In the present manuscript, it is proposed that a  3D-SPIHT, it needs a significantly smaller amount of

compression algorithm be used for leveraging inter- and ~ Memory space to store the lists. In addition, the speed of the

intra-subband correlations in transformed HS images. The ~ Proposed encoder is significantly higher than that of the 3D-

compression algorithm makes use of intra-subband SPIHT encoder. Further, implementation of the sherelet and

correlations in the form of zeroblock cubes and inter-subband ~ curvelet transform with the listless compression algorithm

correlations in the form of block cube trees to achieve  decreases the coding complexity, and it also decreases

optimal compression. According to the findings, the  coding memory.

suggested coding method consistently performs better than

both the tree-based 3D-SPIHT algorithm and the block cube-  Acknowledgements

based 3D-SPECK algorithm for all of the most common test The manuscript bears communication  number

images. When bit rates are lowered, performance IU/R&D/2025-MCNO0003909 from Integral University,

improvements become more pronounced. Also, due to the  Lucknow, India.
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Appendix
Table 5. Coding efficiency of the different HSICAs for seven different bit rates for four HS images
o| 28 [9E 95| 8E_|SE9E |85 | %50 | %585 ©
| P |1ELTE LTE LCE LB ATELTE LTE TR LD
= 2> |E25 €2 2= | 2> €25 23| €22 | 22| 2| °E
5% S < S < S < S < S < S < S <> SIC>| 6« 0
o O ¢ O c O ¢ O ¢ O c O < O c O c O c
HS Image |
0.00 IQM | 26.28 | 26.28 26.25 26.14 25.90 26.26 26.41 26.32 26.41 | 27.09
'1 IQM 11 0.08 0.08 0.08 0.07 0.06 0.08 0.07 0.08 0.08 0.09
1IQM 111 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.38 0.4
0.00 IQM | 28.95 | 28.95 28.93 28.71 28.71 28.70 28.66 28.73 28.97 | 29.74
'5 IQM 11 0.20 0.20 0.19 0.19 0.18 0.19 0.19 0.19 0.19 0.21
1IQM 111 0.43 0.43 0.43 0.43 0.44 0.44 0.44 0.44 0.44 0.44
IQM | 30.08 | 30.08 30.04 29.99 29.83 29.98 30.01 29.99 30.21 | 30.81
0.01 IQM 11 0.23 0.23 0.23 0.24 0.22 0.23 0.24 0.24 0.23 0.26
1IQM 111 0.55 0.55 0.55 0.56 0.55 0.55 0.55 0.55 0.56 0.58
IQM | 34.23 | 34.23 34.21 34.04 33.81 33.99 34.29 34.06 34.42 | 34.92
0.05 IQM 11 0.37 0.37 0.37 0.38 0.37 0.38 0.37 0.38 0.38 0.42
1IQM 111 0.69 0.68 0.69 0.69 0.68 0.68 0.68 0.68 0.69 0.7
IQM | 37.22 | 37.22 37.20 36.96 37 36.83 37.34 36.87 37.34 | 38.02
0.1 IQM 11 0.42 0.42 0.42 0.44 0.42 0.43 0.43 0.44 0.43 0.44
1IQM 111 0.74 0.74 0.74 0.75 0.75 0.75 0.75 0.75 0.75 0.76
IQM | 42.17 | 42.17 42.16 41.62 41.69 41.34 42.28 41.37 42.38 | 43.08
0.25 IQM 11 0.5 0.5 0.5 0.52 0.52 0.52 0.52 0.52 0.52 0.53
1IQM 111 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.81 0.83
IQM | 48.02 | 47.99 47.97 47.01 47.79 47.51 48.11 47.55 48.21 | 49.11
0.5 IQM 11 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.6
1IQM 111 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.91 0.92
HS Image Il

0.00 IQM | 27.11 | 26.75 27.09 26.83 26.61 26.75 26.87 26.82 26.87 | 28.09
'1 IQM 11 0.27 0.27 0.27 0.27 0.26 0.27 0.27 0.26 0.27 0.28
IQM 111 0.59 0.58 0.59 0.59 0.58 0.58 0.59 0.58 0.59 0.6
0.00 IQM | 29.45 | 29.31 29.43 29.27 29.25 29.24 29.41 29.25 29.54 | 29.97
'5 IQM 11 0.37 0.37 0.37 0.37 0.36 0.37 0.37 0.36 0.37 0.39
IQM 111 0.69 0.68 0.69 0.69 0.68 0.69 0.69 0.69 0.7 0.71

IQM | 30.28 | 30.19 30.27 30.27 30.15 30.31 30.53 30.33 30.48 | 31.08

0.01 IQM 11 0.42 0.42 0.42 0.42 0.41 0.42 0.42 0.42 0.42 0.43
IQM 111 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.71 0.73

IQM | 33.76 | 33.61 33.73 33.56 33.59 33.51 33.69 33.54 33.93 | 34.21

0.05 IQM 11 0.61 0.60 0.61 0.61 0.60 0.61 0.61 0.61 0.61 0.63
IQM 111 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.72 0.73

IQM | 35.57 | 35.44 35.56 35.49 35.41 33.45 35.55 35.46 35.69 | 36.32

0.1 IQM 11 0.67 0.66 0.67 0.67 0.66 0.67 0.67 0.67 0.67 0.69
IQM 111 0.73 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74

0.25 IQM | 39.30 | 39.19 39.29 39.26 39.17 39.22 39.37 39.23 39.41 | 39.94
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IQM 11 0.76 0.76 0.76 0.77 0.76 0.76 0.76 0.77 0.76 0.77
IQM 111 0.77 0.77 0.77 0.77 0.77 0.78 0.77 0.77 0.78 0.78
IQM | 43.62 | 43.65 43.51 43.57 43.26 43.55 43.62 43.58 43.74 | 44.11
0.5 IQM 11 0.82 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.84
IQM 111 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.82
HS Image 111
0.00 IQM | 27.82 | 27.49 27.8 27.78 27.28 27.88 28.07 27.92 271.77 | 28.04
'1 IQM 11 0.16 0.17 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.18
IQM 111 0.54 0.54 0.54 0.54 0.53 0.53 0.53 0.53 0.54 0.55
0.00 IQM | 30.24 | 30.09 30.22 30.03 30.03 30.01 30.44 30.02 30.28 | 30.81
'5 IQM 11 0.29 0.29 0.29 0.29 0.28 0.29 0.28 0.29 0.29 0.31
IQM 111 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.67
IQM | 31.27 | 31.14 31.25 31.17 31.1 31.13 31.42 31.14 31.38 | 31.83
0.01 IQM 11 0.34 0.34 0.34 0.33 0.33 0.33 0.33 0.33 0.33 0.35
IQM 111 0.69 0.69 0.70 0.69 0.69 0.69 0.69 0.69 0.69 0.7
IQM | 34.57 | 34.39 34.55 34.58 34.27 34.44 34.67 34,51 34.63 | 35.05
0.05 IQM 11 0.48 0.48 0.48 0.49 0.48 0.48 0.48 0.48 0.48 0.5
IQM 111 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.72
IQM | 36.63 36.49 36.64 36.42 36.49 36.35 36.74 36.37 36.71 | 37.08
0.1 IQM 11 0.54 0.54 0.54 0.55 0.54 0.54 0.53 0.54 0.54 0.56
IQM 111 0.74 0.74 0.74 0.74 0.75 0.74 0.74 0.74 0.75 0.76
IQM | 40.83 | 40.63 40.84 40.46 40.59 40.29 40.81 40.31 40.85 | 4151
0.25 IQM 11 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.67
IQM 111 0.77 0.77 0.78 0.77 0.77 0.77 0.77 0.77 0.77 0.79
IQM | 45.88 | 45.66 45.87 45.39 45.57 45.13 45.58 45.15 4592 | 46.31
0.5 IQM 11 0.72 0.72 0.72 0.73 0.72 0.72 0.73 0.72 0.72 0.73
IQM 111 0.81 0.82 0.81 0.81 0.82 0.80 0.80 0.80 0.82 0.83
HS Image IV
0.00 IQM | 28.11 | 27.94 28.06 28.08 27.88 28.07 28.14 28.16 28.15 | 28.81
'1 IQM 11 0.21 0.21 0.21 0.21 0.20 0.21 0.21 0.20 0.21 0.23
IQM 111 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.4
0.00 IQM | 30.44 | 30.32 30.43 30.27 30.03 30.26 30.22 30.28 30.52 | 31.02
'5 IQM 11 0.32 0.31 0.32 0.32 0.31 0.31 0.32 0.31 0.31 0.33
IQM 111 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.59
IQM | 31.41 | 31.29 31.39 31.32 31.1 31.29 31.57 31.43 3152 | 31.16
0.01 IQM 11 0.37 0.37 0.36 0.36 0.37 0.36 0.36 0.36 0.37 0.39
IQM 111 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.69
IQM | 3446 | 34.3 34.45 34.41 34.27 34.25 34.62 34.28 3453 | 35.11
0.05 IQM 11 0.53 0.53 0.53 0.54 0.53 0.53 0.53 0.53 0.53 0.55
IQM 111 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.75
IQM | 36.43 | 36.29 36.43 36.25 36.49 36.19 36.51 36.2 36.55 | 37.14
0.1 IQM 11 0.60 0.59 0.60 0.60 0.60 0.60 0.60 0.60 0.59 0.61
IQM 111 0.74 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.76
IQM | 40.08 | 39.93 40.07 39.92 40.59 39.8 40.19 39.84 40.17 | 40.97
0.25 IQM 11 0.71 0.71 0.71 0.71 0.71 0.71 0.72 0.71 0.71 0.73
IQM 111 0.78 0.78 0.79 0.78 0.79 0.79 0.79 0.79 0.79 0.8
IQM | 4451 | 44.47 44.5 44.31 44.46 44.22 44.63 44.22 44.62 | 45.19
0.5 IQM 11 0.79 0.78 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.81
IQM 111 0.81 0.82 0.81 0.81 0.81 0.81 0.81 0.81 0.82 0.83
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Table 6. BD-PSNR gain of 3D-STBCTC with the other HSICAs

o ST | 8% | s« §2 | §> | §> | 5¢ S g §=

=3 % £ n £ @ = @ n £ 7] ‘B = k7] k7]

IS NE | 9 25 —| 8 E Q= AE | 85 — 85 _ | 8 E—

IS 0| x| 8Cc=d| ES5So| Cxm| 25| EEcZ x| S Tc=zv|l 2592

- S5 st ao=L oEl St ST so>F| SscoSE| sEX

2 | E8TIEBT| BT 287 5|7 e27 | gk

o< o< @) o< o< o< O &) o<

HS Image | 0.7943 0.7963 0.8205 1.0663 1.1025 1.0812 0.8102 1.0433 0.6659
HS Image Il 0.6575 0.7961 0.6805 0.7788 0.8659 1.0937 0.6458 0.7814 0.5560
HS Image 11 0.5005 0.6781 0.5126 0.6649 0.7511 0.7352 0.3902 0.7085 0.4477
HS Image IV 0.4850 0.6179 0.4998 0.6050 0.6351 0.6687 0.4346 0.6152 0.3958

consumption (Measured in KB)

Table 7. Analysis compares the memory efficiency of the 3D-STBCTC algorithm with other HSICAs, with a specific focus on coding memory

s §= §= §= | §> §> | 5§35 | 5 §X
Bt | 3E_|2E_| BE_ |3E | FE_|FE_|%e | 2EF FE_| .0
Rate ol 2xs9 g = S 2@ 2S5y o ST 259 A0
as53| a5 oTL | ot oTl oty afES 2ag=| 2T ®»@D
c2T €5 | E5 |ES |52 |ES |55 52555 | 5
@) o< O < O < o< O < 0% ) O <
HS Image |
0.001 26.67 37.33 28.08 4096 8192 96 2318 0 2304 30.05
0.005 102.3 99.21 89.33 4096 8192 96 2318 0 2304 86.19
0.01 232.2 222.7 202.4 4096 8192 96 2318 0 2304 198.1
0.05 1084 1041 991.7 4096 8192 96 2318 0 2304 9215
0.1 1846 1931 1756 4096 8192 96 2318 0 2304 1698
0.25 4571 4463 4289 4096 8192 96 2318 0 2304 4019
0.5 8644 8555 8514 4096 8192 96 2318 0 2304 8411
HS Image 11
0.001 22.58 21.51 22.69 4096 8192 96 2318 0 2304 19.87
0.005 91.12 98.91 91.29 4096 8192 96 2318 0 2304 90.25
0.01 265.9 267.8 266.4 4096 8192 96 2318 0 2304 264.9
0.05 982.4 1036 985.4 4096 8192 96 2318 0 2304 987.2
0.1 2219 2326 2229 4096 8192 96 2318 0 2304 2177
0.25 5450 5611 5464 4096 8192 96 2318 0 2304 5514
0.5 10005 9981 9832 4096 8192 96 2318 0 2304 9609
HS Image 111
0.001 25.28 24.94 25.06 4096 8192 96 2318 0 2304 24.71
0.005 101.2 105.8 101.5 4096 8192 96 2318 0 2304 99.25
0.01 205.1 218.9 208.6 4096 8192 96 2318 0 2304 2121
0.05 1108 1149 1136 4096 8192 96 2318 0 2304 1109
0.1 1855 1808 1854 4096 8192 96 2318 0 2304 1819
0.25 4401 4449 4412 4096 8192 96 2318 0 2304 4408
0.5 7918 7805 7935 4096 8192 96 2318 0 2304 8002
HS Image IV
0.001 24.67 2241 24.55 4096 8192 96 2318 0 2304 23.28
0.005 100.8 105.5 101.1 4096 8192 96 2318 0 2304 102.2
0.01 210.9 229.9 2144 4096 8192 96 2318 0 2304 211.8
0.05 1088 1212 1106 4096 8192 96 2318 0 2304 1084
0.1 1970 2083 1980 4096 8192 96 2318 0 2304 1971
0.25 4867 5047 4878 4096 8192 96 2318 0 2304 4759
0.5 9078 8488 9093 4096 8192 96 2318 0 2304 8948

189




Purushottam Lal Nagar & Shrish Bajpai / 1JECE, 13(1), 174-192, 2026

Table 8. A comparative analysis of the coding complexity for various set-partitioning algorithms used in hyperspectral image compression, evaluated
at different bit rates

o & S% §= | 8 |&2 | §2 | &> |&5 | &% |&% 0
5 8 o 2 | 2E_| BeE_|82E_| 8E_| 8E_| 8| 82— BE .F
o 5 € SES Cx9| L5H | &5 vx| EEY| €co| 20| €59 Q0O
- 2= o5 oSl ofTR| ot o5l ot ofd| 228 2t om
& £ E2 ES | ES |ES | ES | ES |Es | Es |ES &
@) O o< o< o< o< o< oz oz o<
HS Image |
0. ET 3.99 4.06 5.94 2.67 14.18 5.91 3.17 3.24 | 20.09 5.67
0 DT 1.78 2.92 1.59 2.08 12.79 2.48 2.21 3.02 3.57 1.51
0 TT 5.77 6.98 7.53 4.75 26.97 8.39 5.38 6.26 | 23.66 7.18
1
0. ET 9.85 9.73 8.2 2.78 61.33 8.35 3.35 483 |82.29 7.91
0 DT 5.18 5.25 2.41 2.43 48.29 3.86 2.68 465 | 14.87 2.32
0 TT 15.13 14.98 10.61 521 | 109.62 | 12.21 6.03 9.48 | 97.16 10.23
5
0. ET 20.45 29.93 10.99 3.25 73.64 9.26 441 597 | 9355 10.28
0 DT 10.78 14.31 4.51 2.68 57.16 4.04 3.08 5.61 21.59 3.94
1 TT 31.23 44.24 155 5.93 130.8 13.3 7.49 11.58 |115.14 14.22
0. ET 222.2 303.4 94.36 5 90.57 19.45 5.49 12.18 [102.89 | 90.25
0 DT 172.7 236.2 84.75 4.02 69.23 12.01 4.34 11.79 | 51.47 67.22
5 TT 394.9 539.6 | 179.11 | 9.02 159.8 31.46 9.83 23.97 |154.38 | 157.47
0 ET 1163 1297 762.6 7.31 102.5 34.74 7.94 19.55 | 117.8 711.2
1’ DT 1081 1078 762.11 | 6.24 77.57 21.79 6.71 18.36 | 59.6 657.7
TT 2244 2375 | 1524.71 | 1355 | 180.07 | 56.53 | 14.65 | 37.91 | 1774 | 1368.9
0. ET 6234 6871 4703 13.35 | 120.8 68.15 | 14.02 | 40.25 | 131.8 4641
2 DT 6012 6305 4358 11.68 | 90.45 5091 | 12.02 | 3786 | 67.2 4129
5 TT 12246 13176 9061 25.03 | 21125 | 119.06 | 26.04 | 78.11 | 199 8770
0 ET 17995 18742 19551 24.12 151.3 122.5 26.03 74.87 | 160.8 18925
5‘ DT 17597 18534 | 15400 | 22.65 | 100.5 96.84 | 25.07 | 69.02 | 89.7 14950
T 35592 37276 | 34951 | 46.77 | 251.8 | 219.34 | 51.10 | 143.89 | 250.5 | 33875
HS Image 11
0. ET 3.42 4.33 5.94 2.35 15.97 5.73 2.47 2.94 17.89 4.57
0 DT 1.87 1.52 1.46 1.4 12.18 2.18 1.61 2.79 9.78 1.36
0 TT 5.29 5.85 7.4 3.75 28.15 7.91 4.08 573 | 27.67 5.93
1
0. ET 9.84 5.85 8.5 2.71 75.93 7.36 3.87 6.44 | 84.67 8.11
0 DT 5.4 2.45 2.77 2.49 66.24 3.21 3.01 6.05 | 54.94 2.54
0 TT 15.24 8.3 11.27 5.2 142.17 | 10.57 6.88 12.49 [139.61 | 10.65
5
0. ET 22.53 9.41 10.83 2.88 90.43 16.99 4.29 10.28 | 99.47 10.21
0 DT 10.01 4.92 3.86 2.71 81.48 6.23 3.27 10.04 | 66.38 3.38
1 TT 32.54 14.33 14.69 5.59 171.9 23.22 7.56 20.32 |165.85 | 13.59
0. ET 250.3 134.4 131.5 4.14 | 106.55 27.4 5.02 16.02 | 121.8 128.2
0 DT 207.2 127.8 130.1 3.38 94.49 14.94 3.94 1135 | 79.7 120.1
5 TT 457.5 262.2 261.6 7.52 | 201.04 | 42.34 8.96 27.37 | 2015 248.3
0 ET 966.7 570.8 632.6 6.04 | 125.87 | 36.27 7.21 18.42 | 143.8 600.2
1’ DT 887.6 717.5 614.3 5.98 106.8 23.01 6.64 17.81 | 80.3 581.7
TT 1854.3 1288.3 | 1246.9 | 12.02 | 232.67 | 59.28 | 13.85 | 36.23 | 224.1 | 11819
0. ET 4973 3032 4100 10.24 | 1344 96.34 | 12.21 | 56.67 | 155.9 4084
2 DT 4796 3029 4040 6.74 | 113.86 | 58.62 7.18 47.06 | 875 4011
5 TT 9769 6161 8240 16.98 | 248.26 | 154.96 | 19.39 | 103.73 | 2434 9095
0. ET 12007 10112 | 12975 | 17.25 | 15441 | 177.73 | 18.95 | 67.74 | 180.9 | 12874
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5 DT 11898 9954 12299 14.7 125.56 | 120.33 | 15.34 | 60.13 99.5 12511
TT 23905 20066 | 25274 | 31.95 | 279.97 | 298.06 | 34.29 | 127.87 | 280.4 | 25386
HS Image 111
0. ET 4.08 4.03 5.85 2.07 15.97 5.68 2.76 3.19 17.79 5.77
0 DT 1.74 1.39 1.32 1.89 8.43 4.1 2.11 3.02 6.54 1.29
0 TT 5.82 5.42 7.17 3.96 244 9.78 4.87 6.21 24.33 7.06
1
0. ET 9.12 5.96 7.87 2.89 75.93 7.78 3.28 4.74 88.54 7.57
0 DT 5.13 2.24 2.44 247 66.02 6.02 2.74 3.99 49.87 231
0 TT 14.25 8.2 10.31 5.36 141.95 13.8 6.02 8.73 |138.41| 9.88
5
0. ET 20.18 9.7 11.64 3.34 90.43 8.55 4.01 7.52 1015 | 11.37
0 DT 12.51 5.18 5.14 2.69 84.96 7.06 3.02 6.33 79.5 4.74
1 TT 32.69 14.88 16.78 6.03 175.39 | 15.61 7.03 13.85 181 16.08
0. ET 204.3 125.2 89.77 4.57 106.55 | 19.48 5.31 22.88 | 1195 | 81.29
0 DT 160.3 114.7 80.01 4.46 92.68 14.84 5.19 18.56 87.4 74.35
5 TT 364.6 239.9 169.78 | 9.03 199.23 | 34.32 10.5 41.44 | 206.9 | 155.64
0 ET 1183 775.8 835.9 5.91 125.87 | 32.46 6.47 30.14 | 138.8 | 798.3
1’ DT 1074 760.5 827.8 5.59 104.98 | 21.49 6.37 27.82 | 100.5 | 766.1
TT 2257 1536.3 | 1663.7 | 115 230.85 | 53.95 12.84 | 57.96 239.3 | 1564.4
0. ET 8499 5151 6309 10.41 | 134.14 70.4 1191 | 4349 | 1495 6281
2 DT 8387 5832 6233 9.27 115.94 | 48.95 10.34 | 39.95 | 108.2 6008
5 TT 16886 10983 12858 | 19.68 | 250.08 | 119.35 | 22.25 | 83.44 | 257.7 | 12289
0 ET 29849 18383 | 23861 | 16.19 | 154.41 | 12542 | 17.09 72.62 | 165.8 | 22589
5‘ DT 26948 15672 23161 | 14.97 | 14197 | 11452 | 16.68 67.23 | 130.1 | 21598
TT 56797 34055 | 47022 | 31.16 | 296.38 | 239.94 | 33.77 | 139.85 | 2959 | 44187
HS Image IV
0. ET 4.56 5.6 7.23 2.39 6.03 5.74 2.89 2.82 7.85 6.94
0 DT 2.41 1.64 1.73 2.02 5.27 2.1 2.24 2.74 4.34 1.59
0 TT 6.97 7.24 8.96 441 11.3 7.84 5.13 5.56 12.19 8.53
1
0. ET 15.24 6.23 8.15 2.81 11.53 7.53 3.34 4.44 12.94 7.91
0 DT 9.57 2.33 2.55 2.34 8.26 2.88 247 4.28 7.19 241
0 TT 24.81 8.56 10.7 5.15 19.79 10.41 581 8.72 20.13 10.32
5
0. ET 21.67 10.2 12.64 3.18 18.44 8.93 3.98 5.64 21.18 11.59
0 DT 12.68 5.23 6.11 2.89 14.44 3.91 3.23 5.41 12.78 5.87
1 TT 34.35 15.43 18.75 6.07 32.88 12.84 7.21 11.05 | 33.96 17.46
0. ET 269.6 130.4 98.12 4.3 22.64 18.61 4.88 13.02 | 2491 | 94.23
0 DT 226.5 120.5 89.08 3.74 19.5 11.48 4.29 11.36 | 17.47 | 84.51
5 TT 496.1 250.9 187.2 8.04 42.14 30.09 9.17 2438 | 42.38 | 178.74
0 ET 1336 893.4 882.3 6.11 25.53 32.45 6.41 18.18 | 30.58 | 841.2
1’ DT 1241 829.1 866.3 5.96 21.07 21.02 6.57 17.22 | 20.17 | 801.1
TT 2577 17225 | 1748.6 | 12.07 46.6 53.47 12.98 35.4 50.75 | 1642.3
0. ET 8435 5133 5501 10.35 34.5 69.66 11.38 36.3 38.54 5204
2 DT 9067 4536 5494 6.62 29.65 48.91 7.08 33.79 | 24.25 5129
5 TT 17502 9669 10995 | 16.97 | 64.15 | 118.57 | 18.46 70.09 | 62.79 | 10333
0 ET 27917 17945 18818 | 17.43 | 65.13 | 125.19 | 19.01 66.91 | 70.04 | 18429
5’ DT 25042 17677 18136 | 12.03 | 55.03 92.97 12.87 62.31 | 48.95 | 17922
TT 52959 35622 | 36954 | 29.46 | 120.16 | 218.16 | 31.88 | 129.22 |118.99 | 36351
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—>

3D Forward Transform
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Pa—

3D Inverse Transform

3D STBCTC Decoder

Fig. 1 A block diagram illustrating the operational flow of the proposed HSICA 3D-STBCTC

(9)
Fig. 2 Original HS image 11 of different frames (with frame number) (a) 25, (b) 50, (c) 75, (d) 100, reconstructed HS image 11 with CR 16 of
different frames (with frame number), (e) 25, (f) 50, (g) 75, and (h) 100.

©) ® ()
Fig. 3 Original HS image | of different frames (with frame number), (a) 30, (b) 60, (c) 90, (d) 150, reconstructed HS
frames (with frame number), (e) 30, (f) 60, (g) 90, and (h) 150.
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(h)

image | with CR 14 of different



