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Abstract - Compression algorithms are absolutely necessary for the effective storage and speedy transfer of remote imaging 

data. The present manuscript proposes a transform-based hyperspectral image compression algorithm that exploits both the 

inter- and intra-subband correlations among the transform coefficients. The compression algorithm is based on the Spatial 

Oriented Trees (SOTs), which are the basic unit in block cubes. In contrast to the hierarchical tree compression approach, 

which only uses a single coefficient for 3D set partitioning, the block cube data structure takes the form of a cube and has the 

coefficients m*m*m. The root node of each SOT is located in the LLL band, while child and descendant blocks are located in 

the high-frequency sub-band. The proposed compression algorithm exploits the best features of the zeroblock cube and 

zerotree compression algorithms.  

Keywords - Transform Coding, Hyperspectral Image Compression, Shearlet transform, Transform coefficients, Coding 

efficiency. 

1. Introduction 
The integration of two-dimensional plane imaging and 

spectroscopy is made possible by Hyperspectral (HS) 

imaging, which allows for the recording of spectral diagrams 

and signatures as well as the spatial distribution of objects 

within an area of interest [1, 2]. Spectroscopy can extract the 

individual spectrum of each pixel from the visible to near-

infrared wavelength range (four hundred nanometres to 

twenty-five hundred nanometres, having a spectral spacing of 

two nanometres to ten nanometres) and divide it into a large 

number of continuous narrow spectral bands [3, 4]. This 

makes it easier to characterise pixels that have the same 

spectral signature [5]. Due to this vast information, HS 

images are used in many applications such as Aerospace [6], 

Agriculture [7], Archaeology [8], Biotechnology [9], Climate 

Monitoring [10], Document Verification [11], Environment 

Monitoring [12], Food Quality Measurement [13], Geology 

[14], Human Health Care [15], Infection Detection (Plant) 

[16], Military Reconnaissance [17], Mineralogy [18], 

Oceanography [19], Pharmaceuticals [20] etc. Besides the 

above-mentioned applications (Fields), remote sensing is a 

field that is expanding at the quickest rate [21]. The 

scientists/researchers are developing the computer-based 

algorithms for Change Detection [22], Classification [23], 

Compression [24], Denoising [25], Fusion [26], Feature 

Extraction [27], Feature Identification [28], Inpainting [29], 

Segmentation [30], and Unmixing [31] of HS images. HS 

images are often acquired by satellite-based HS image 

sensors, and after that, they are transmitted to an earth station 

via radio channels [32]. Because every HS image has both 

spatial and spectral dimensions, the datasets associated with 

HS images typically have a very high size [33]. The third 

dimension of an HS image is called "Wavelength," while the 

third dimension of video data corresponds to the "Time" 

[34].   

Hyperspectral data are comparable to video data in this 

regard. Due to the fact that a memory capacity of this 

magnitude is required, it is essential to eliminate any 

unnecessary redundancy prior to the high-speed image's 

transmission to the ground station [35]. HS image has two 

types of redundancy (Spectral and Spatial) that need to be 

reduced or eliminated to achieve compression of any HS 

image [36]. Compression of the HS image is required before 

the transmission of the image data to save the onboard 

memory storage, reduce transmission bandwidth, lower 

coding complexity (processing speed), and save image sensor 

energy [37]. The HS image Compression Ratio (CR) is 

defined as a measurement of the relative reduction in the size 

of reconstructed HS images by the Hyper Spectral Image 

Compression Algorithm (HSICA) [38]. It is defined as in 

Equation 1. 

𝐶𝑅 =  
𝐵𝑖𝑡𝑠 𝑝𝑒𝑟 𝑝𝑖𝑥𝑒𝑙 𝑖𝑛 𝐻𝑆 𝑖𝑚𝑎𝑔𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝐵𝑖𝑡𝑠 𝑝𝑒𝑟 𝑝𝑖𝑥𝑒𝑙 𝑖𝑛  𝐻𝑆 𝑖𝑚𝑎𝑔𝑒 𝑎𝑓𝑡𝑒𝑟 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛
        (1) 
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HSICAs can be split into the different categories either 

on the basis of data loss or coding process (compression 

process execution) [35]. HSICAs are split into three 

categories: lossless, near lossless, or lossy compression [36]. 

There is no data loss in lossless compression, while CR has a 

low numeric value that ranges from 1 to 3. In the same way, 

near-lossless compression has very minimal data loss, and 

CR has a slightly higher value than the lossless compression 

process. The lossy compression has a very high CR, while 

there is a significant loss of image data [39]. 

HSICAs are divided into six categories named as 

Transform Coding (TC) based HSICA [40], Predictive 

Coding (PC) based HSICA [41], Vector Quantization (VQ) 

based HSICA [42], Compressive Sensing (CS) based HSICA 

[43], Tensor Decomposition (TD) based HSICA [44], 

Learning-based Compression (LC) based HSICA [45], and 

Neural Network (NN) based HSICA [46]. 

The PC based HSICA uses a different predictor to 

determine the next (future) pixel value through prediction 

error. Prediction errors are encoded using several methods of 

entropy coding, such as Huffman coding and arithmetic 

coding, amongst others. The prediction-based methods are 

reliable with data, and these algorithms can only be used 

with lossless compression [41]. 

The VQ-based HSICA, also known as a dictionary-

based method, uses the codebook that is present at the 

transmitter (encoder) and receiver (decoder) ends. The 

compression algorithm divides the HS image into small 

blocks at the encoder end and gives a unique code according 

to the codebook. The unique code had been used for the 

transmission. The decoder uses the received code word to 

reconstruct the HS image. If any error occurs during the 

transmission process, the whole reconstructed HS image can 

be distorted [42]. 

The performance of TD-based HSICAs is high, and this 

high performance is not dependent on the data type of the HS 

image. The tensor is an easily decomposable three-

dimensional matrix. A 3D tensor representing the HS image 

is decomposed into lower-dimensional tensors via the 

technique. The channel carries an encoded version of these 

tensors in lower dimensions [44]. 

The three-stage compression is carried out by CS-based 

HSICAs. The encoder initially takes the HS image and, using 

a minimal number of samples, transforms the resulting 3D 

HS image into a compact 2D matrix. In the next step, this 

matrix is reduced in size by following the procedures 

outlined in the CS-based HSICA, and the data is then sent 

through the transmission channel. This method is repeated as 

many times as necessary until the entire HS image has been 

sent. The decoder is responsible for recreating the HS image 

using the entirety of the data that was received via the 

transmission channel [43]. 

The compression process is carried out with the help of 

Machine Learning (ML) and Deep Learning (DL) using LC-

based HSICAs. In conjunction with the LC process, the PC 

application is carried out. Although a high compression ratio 

was attained, it came at the expense of increased complexity 

and utility [45]. 

Neural Networks (NN) such as autoencoders, Support 

Vector Machines (SVM), backpropagation networks, and 

Convolutional Neural Networks (CNN), have been used to 

minimize the dimensionality of HS images, convert HS 

images to compressed binary codes for retrieval, and to 

extract compact visual representations. Every NN has 

multiple layers of structures. Outstanding predictive 

capability may be found in the NN network that makes use of 

predictive coding. The coding gain improves as a result of a 

reduction in prediction error [46]. 

The TC-based HSICAs utilize a mathematical transform 

to transform the image data into a domain where the data is 

represented by the less correlated high-energy coefficients. 

Both lossy and lossless compression methods are supported 

by transform-based HS image compression techniques. 

When it comes to lossy compression, these compression 

algorithms work admirably even at low bit rates. The HS 

image's spatial and spectral correlation has been removed 

thanks to the mathematical transform. Low-frequency 

coefficients are compressed to hold the full power of the HS 

image [40]. 

The remaining manuscript is organized as follows: 

Section 2 gives theoretical background details of the 

proposed compression algorithm, while Section 3 sheds light 

on the motivation for the development of the compression 

algorithm, with the major Contribution in the development of 

the compression algorithm. Section 4 proposed the 3D 

Shearlet Transform-based Block Cube Tree Coding (3D-

STBCTC). Result and discussion, including the detailed 

comparative analysis with other state-of-the-art compression 

algorithms, were explained in Section 5. Conclusion and 

future scope are covered in the last part of the manuscript. 

2. Theoretical Background 
The transform-based HSICA uses a mathematical 

transform (Fourier, cosine, dyadic wavelet, curvelet, 

fractional wavelet filter, etc) to convert the time domain HS 

image to the frequency domain HS image [34, 47]. They use 

the properties of the transform to identify the significant 

coefficients. Among all transform-based HSICAs, set 

partitioned (also known as bit plane coding) HSICAs are a 

special type of compression algorithms that use the set 

structure of the transform image to define the 
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significant/insignificant coefficients [35, 48]. The 

insignificant coefficients are either arranged in the zero block 

cube or zero tree or zero block cube tree fashion. It has been 

known that at the top bit plane, there are a lot of insignificant 

coefficients, and these compression algorithms use a single 

‘0’ to define a lot of insignificant coefficients [35]. Tang et 

al. proposed 3D-Set Partitioned Embedded Block (3D-

SPECK), which 3D zero block cube structure to define the 

insignificant coefficients [49]. In the same way, 3D-Set 

Partitioning In Hierarchical Trees (3D-SPIHT) uses the 

zerotree structure to define the insignificant coefficients [50]. 

There are many modified versions of the 3D-SPIHT, and 3D-

SPECK has been proposed in the past. 3D-Wavelet Block 

Tree Coding (3D-WBTC) uses the features of 3D-SPECK 

and 3D-SPIHT and shows the high coding gain at the low bit 

rates [51]. These HSICA uses a linked list for tracking the 

significance/insignificance of the sets or coefficients. These 

compression algorithms have higher coding gain, but they 

have high coding complexity and huge coding memory 

demand. These issues are addressed by the listless HSICAs.  

Instead of the linked lists, these compression algorithms 

use the marker and state table to define the significance. The 

demand for memory for listless HSICA is fixed and only 

depends on the size of the HS image [34]. The complexity is 

also reduced significantly because of a very small number of 

read/write operations happening in the listless compression 

process. 3D-Listless SPECK (3D-LSK) [52], 3D-No List 

SPIHT (3D-NLS) [53] and 3D-Low Memory Block Tree 

Coding (3D-LMBTC) [54] are the popular listless HSICAs. 

The Low Complexity Bock Tee Coding (3D-LCBTC) uses 

the two small lists and markers to define the state of the sets 

or coefficients [48]. Zero Memory Set Partitioned Embedded 

Block (3D-ZM-SPECK) employs linear indexing for 

identification of the sets and does not require any coding 

memory [55]. But it has higher coding complexity than 3D-

LSK. The issue of coding complexity had been solved by 

using parallel processing.  

The whole transformed HS image is divided into small 

block cubes, and ZM-SPECK is applied to each block in a 

parallel processing way. Through this, the complexity of the 

compression algorithm is reduced. 3D-Modified Zero 

Memory Set Partitioned Embedded Block (3D-M-ZM-

SPECK) also solves the issue of complexity, but it requires 

some coding memory [35]. 3D-Block Cube-based Parallel 

Modified Zero Memory Set Partitioned Embedded Block 

(3D-BCP-ZM-SPECK) reduces the complexity of 3D-ZM-

SPECK. Chandra and Bajpai proposed 3D-Block Partitioning 

Embedded Coding (3D-BPEC), which is based on an array 

instead of lists and markers [56]. Recently, Bajpai and 

Kidwai proposed a Fractional wavelet filter-based HSICA, 

which reduces the transform memory, but it had a very poor 

error resilience capability [57]. Spatial-orientation Tree 

Wavelet (STW) uses a hybrid mathematical transform to 

achieve the compression of the HS image [58]. 

Table 1 gives the comparative analysis (performance 

metric, advantage, and limitation) between different 

mathematical transform-based HSICAs. Algorithm 

Performance Metric (IPM) used in the HSICA mentioned in 

Table 1 are Peak Signal to Noise Ratio (IPM I), Structural 

Similarity Index (APM II), feature-similarity index (APM 

III), Bjontegaard Delta PSNR (APM IV), Coding Memory 

(APM V), and Coding Complexity (APM VI) [38]. 
 

2.1. Shearlet Transform  

Despite their widespread use, classical wavelet 

approximations are for one-dimensional piecewise 

continuous functions, but they have poor performance in the 

representation of the edges present in the different objects 

present in the HS image. But, now multidimensional 

mathematical transforms such as curvelet, ripplet, shearlet, 

etc, have efficient representation of multivariate functions 

with spatially distributed discontinuities [59]. The shearlet 

transform was introduced by Negi and Labate as a 

multidimensional image representation tool. It has been able 

to show bivariate functions sparsely. It has been known that 

classical wavelet has optimal approximations with only one 

direction having a piecewise continuous function [60, 62]. 
 

3. Motivation and Contribution 
In the past, many compression algorithms were proposed 

for lossy and lossless compression, but they suffer from low 

coding efficiency, high coding complexity, or high coding 

memory. The list-based HSICAs have high coding 

efficiency, but they suffer from exponentially rising 

complexity and coding memory requirements with the 

increasing bit rate. To reduce the coding memory and coding 

complexity, list-based HSICAs are proposed. 3D-LSK, 3D-

NLS, and 3D-LCBTC reduce the complexity but still have 

high fixed-size coding memory. 3D-LMBTC required a 

small piece of coding memory with a cost of 0.5 dB to 1 dB 

loss of coding efficiency. Further, 3D-ZM-SPECK needs no 

coding memory due to the use of linear indexing, but has a 

higher coding complexity than 3D-LSK. 3D-BCP-ZM-

SPECK and 3D-M-ZM-SPECK further reduce coding 

complexity at the cost of coding efficiency. The coding gain 

can increase with the use of another mathematical transform. 

Curvelet transform and shearlet transform are the two other 

mathematical transformations that can show good results for 

image compression. The curvelet transform needs fewer 

coefficients to represent the non-singularities (edge, curve, 

etc). 3D-Listless Embedded Zerotree Set Partitioning Coding 

(3D-LEZSPC) uses curvelet transform and gives superior 

performance than other wavelet transform-based HSICA.  

But the shearlet transform can also work for the geometrical 

features of the HS images. With the block cube tree coding 

and shearlet transform, the coding efficiency increased with 

reference to the other state-of-the-art HSICA. 
 

3.1. Major Contribution of this Manuscript 

The major contributions to the manuscript are listed 

below.
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Table 1. Mathematical transform-based hyperspectral compression algorithms 

HSICA APM Advantage Limitation 

3D-SPIHT 

[50] 
I 

Uses the block tree structure to obtain 

compression 

Complexity increases exponentially with 

an increase in bit rate 

3D-Trap Coding 

[69] 
I 

Low implementation complexity on the 

hardware 

Poor coding efficiency at the high bit 

rates 

3D-SPECK 

[49] 
I 

Uses the block cube structure to obtain 

compression 

Not fit for the low-bit-rate HS image 

compression 

3D SPEZBC 

[70] 
I 

It had a better rate distortion 

performance than other HSICAs 

Low coding memory requirement 

compared to other list-based HSICA 

Anisotropic SPIHT 

[71] 
I 

Coding Efficiency increased due to the 

classical isotropic decomposition 

Complexity is very high compared to the 

listless HSICA 

3-D Wavelet Fractal 

[72] 
I 

Wavelet-Fractal coding increases 

coding efficiency  

Two different transform mechanisms 

increase the load on the sensor  

3D-LSK 

[52] 
I 

Coding complexity reduces 

significantly for any bit rate 

Coding memory is very high for the 

small-sized HS image 

3D-NLS 

[53] 
I, II 

Demand for coding memory is reduced 

significantly compared to 3D-SPIHT 
Coding memory is higher than 3D-LSK 

3D-WBTC 

[51] 
I, V, VI 

Optimized performance at the low bit 

rates 

Coding complexity is very high for high 

bit rates 

3D-LMBTC 

[54] 
I, V, VI 

Low memory lossy compression 

algorithm 

Coding complexity is higher than 3D-

LSK and 3D-NLS 

3D-STW 

[58] 
I 

High coding efficiency is achieved with 

the use of multiple transforms 

The requirement of the coding memory is 

huge during the transformation process 

3D-ZM-SPECK 

[55] 

I, II, IV. 

V, VI 

Zero coding memory is required for 

compression 

Ineffective increase in computation 

complexity compared to 3D-LSK 

3D-LCBTC 

[48] 

I, II, III, 

IV, V, VI 

Reduce coding complexity than 3D-

LMBTC 

Very high coding memory requirement 

compared to 3D-LMBTC 

3D-LEZSPC 

[59] 

I, II, III, 

IV, V, VI 

High coding efficiency is due to the use 

of the curvelet transform 

Demand for transform memory is very 

high in the curvelet transform 

3D-BPEC 

[56] 
I, VI 

Complexity reduces significantly from 

3D-WBTC 

Complexity increases with an increase in 

bit rate 

FrWF-Based ZM-

SPECK 

[57] 

I, II, 

V, VI 

Spectral correlation exploited by the 

prediction 

Very poor error resilience capability 

during the transmission process  

3D-BCP-ZM-PECK 

[61] 

I, II, III, 

IV, V, VI 

Reduce the complexity of the 3D-ZM-

SPECK 

Effect on the coding efficiency of the 

3D-ZM-SPECK 

3D-M-ZM-PECK 

[35] 

I, II, III, 

IV, V, VI 

Reduce the complexity of the 3D-ZM-

SPECK 

Small coding memory is also required 

with reference to 3D-ZM-SPECK 

3D-LBCSPC 

[34] 

I, II, III, 

IV, V, VI 

Reduce the complexity of the zeoblock 

compression algorithm 

High complexity with the use of spatial 

trees 

3D-SLS 

[66] 

I, II, III, 

IV, V, VI 

Reduce the number of lists based on 

3D-SPIHT 

Still, coding memory is high with an 

increase in the bit rate 

 
 The proposed HSICA uses the Shearlet Transform to 

achieve the high coding gain.   

 It uses the Zero Block Cube Tree structures to achieve a 

high compression ratio at a low data rate. 

 

4. 3D Shearlet Transform Block Cube Tree 

Coding (3D-STBCTC)  
The 3D Shearlet Transform Block Cube Tree Coding 

compression algorithm combines the good features of both 

zero-tree-based HSICA and zero block cube-based HSICA. It 

partitions the transformed HS image into coefficient block 

cubes and then constructs trees of block cubes with roots in 

the topmost sub-band in a tree fashion. In a block cube tree, 

significant block cubes are found using the tree partitioning 

concept of 3D-SPIHT [50], whereas significant coefficients 

within each block cube are found using the octa-tree 

partitioning of 3D-SPECK [49]. A significant block cube tree 

is recursively partitioned until significant coefficients are 

found, till a single coefficient level or bit budget is available. 

Like 3D-SPIHT and 3D-SPECK, 3D-STBCTC is also a bit 

plane compression scheme. 
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4.1. Compression Algorithm 

Let us consider an HS image data of ‘M x M x M’ 

coefficients after taking the 3D shearlet transform, which 

transforms the image into a pyramidal sub-band structure. 

The transformed HS image is characterized by an indexed set 

of transform coefficients as Cα, β, γ with row index ‘α’ and 

column index ‘β’ of frame ‘γ’. The coefficients are grouped 

in block cubes of size ‘δ x δ x δ’ coefficients, and then block 

cube trees are formed with roots in the topmost (LLL) sub-

band situated at the left-hand side of the transform HS image. 

This block cube tree structure has three distinct advantages 

over the tree structure used in 3D-SPIHT. 

1. It merges a large number of 3D-SPIHT clustered zero 

trees, which may appear in the early passes, to produce 

zero trees with more coefficients. 

 Zero-block can be used to describe a collection of ‘δ 

x δ x δ’ insignificant coefficients for that bit plane. 

This will enable more effective and less complex 

frame-to-frame exploitation of intra-subband 

correlations. 

2. Because of its block cube-based design, encoding time 

and memory requirements are both dramatically 

decreased at low bit rates compared to pixel (coefficient) 

based approaches. 

Within the 3D sub-band hierarchy, each block cube 

(with the exception of those in the highest resolution band) 

has eight progeny cubes occupying the corresponding spatial 

location in the next higher frequency sub-band. Two specific 

cases exist: firstly, the lowest frequency band (LLL) is 

structured as groups of ‘2×2×2’ cubes. Within each group, 

the top-left cube is a leaf node with no descendants, while the 

other seven cubes each have eight progeny in higher-

frequency sub-bands. Secondly, all cubes in the highest 

resolution band are leaf nodes with no progeny. 

 

The associated notations and nomenclatures mentioned 

in Table 2 are used in the 3D-STBCTC. 

 

Many of the Spatial Orientation Trees (SOTs) generated 

by 3D-SPIHT are integrated into one single spatial 

orientation block cube tree in 3D-STBCTC through the 

process of producing a block cube tree. The set of all 

descendant block cubes is referred to as a type 'A' block cube 

tree. On the other hand, the set of grand descendant block 

cubes is referred to as a type 'B' block cube tree. This is 

calculated by subtracting the set of descendant block cubes 

from the set of offspring block cubes. In particular, for a 

block cube size of ‘2x2x2’, eight SOTs of 3D-SPIHT are 

combined into a single 3D-STBCTC SoT. The significant 

information about the wavelet coefficients is stored in the 

three ordered lists: 

 

 List of Insignificant Block Cubes (LIBC) 

 List of Insignificant Block Cube Sets (LIBCS)  

 List of Significant Pixels (LSP) 

At the first step of the proposed algorithm, all block 

cubes in the LLL band are added to LIBC, and others with 

their descendants are added to LIBCS as type ‘A’ entries. 

LSP starts as an empty list. In the same way as 3D-SPIHT 

and 3D-WBTC, the proposed compression algorithm 3D-

STBCTC is also bit plane coding, having two sub-stages 

named as sorting pass and refinement pass 

 

The 3D-STBCTC algorithm employs a top-down, bit-

plane encoding strategy, commencing with the most 

significant bit plane. The initial step in the sorting pass 

involves traversing the List of Insignificant Block Cubes 

(LIBC). Each block cube within the LIBC is evaluated for its 

significance against the prevailing threshold. This test 

generates a single binary output. '1' is emitted if the block 

becomes significant, prompting its promotion to the LIS (List 

of Insignificant Sets) for further partitioning. Conversely, a 

'0' indicates the block remains insignificant at the current 

threshold; it is retained in the LIBC, and no additional bits 

are allocated to it for that bit plane.  

 

So, information about the ‘m x m x m’ insignificant 

coefficients for the current threshold is sent by a single ‘0’ 

bit, whereas 3D-SPIHT generates ‘α×α×α’, ‘0’ bits. 

 

The coding procedure for a threshold pass is as follows: 

1. Block Cube Testing: Each block cube in the dominant 

list is tested for significance. 

a. Insignificant: Encoded with a single '0' bit. 

b. Significant: Encoded with a '1' bit and partitioned 

into eight sub-cubes via octree partitioning. 

2. Recursive Partitioning: Step 1 is repeated recursively on 

significant sub-cubes until the individual coefficient 

level is reached. 

3. Coefficient-Level Processing: For a cube of individual 

coefficients: 

(a) Each coefficient is tested. A '0' denotes an 

insignificant coefficient, which is added to the List 

of Insignificant Block Cubes (LIBC). A '1' denotes a 

significant coefficient, and its sign bit is encoded; 

the coefficient is then moved to the List of 

Significant Pixels (LSP). 

(b) The processed block cube is deleted from the LIBC. 

4. Set Processing: The algorithm then processes sets of 

block cubes in the List of Insignificant Block Cube Sets 

(LIBCS), partitioning significant sets into smaller 

subsets. 

 

A significant type ‘A’ set with a root block cube 𝐵𝜂,𝜎,𝜌
𝛼∗𝛼∗𝛼 

is partitioned into a type ‘B’ set  𝐿𝜂,𝜎,𝜌
𝛼∗𝛼∗𝛼 with eight 

offspring’s block cubes  𝑂𝜂,𝜎,𝜌
𝛼∗𝛼∗𝛼 . Following the partitioning 

of a significant block cube, the resulting offspring are 

immediately assessed for their significance. The type 'B' set 

is appended to the List of Insignificant Block Cube Sets 

(LIBCS) for subsequent processing. When a type 'B' set is 
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found to be significant, it is subdivided into eight type 'A' 

sets, which are also added to the end of the LIBCS. This 

iterative process continues for a given threshold, with all 

newly generated insignificant sets being queued at the end of 

the LIBCS until every set has been examined. Upon 

completing this sorting pass, a refinement pass is executed. 

This pass encodes the next bit of precision for coefficients 

already in the List of Significant Pixels (LSP) from previous 

thresholds, excluding those newly added in the current 

sorting pass. The entire cycle sorting followed by refinement 

is then repeated with the threshold halved until the target 

bitrate is attained. The proposed algorithm demonstrates 

superior rate distortion performance compared to 3D-SPIHT, 

particularly at low bitrates. The architecture of the proposed 

system (HSICA) is depicted in Figure 1, with the 

corresponding pseudo-code detailed in Table 3. 

 

4.2. Coding Complexity of Proposed Compression 

Algorithm 

The coding complexity of any HSICA depends upon the 

number of mathematical, arithmetical, and logical 

competitions and how complex these operations are. It has 

been known that list-based HSICA has high coding 

complexity, which is due to accessing the coefficients from 

the different lists. At low bit rates, these list-based HSICAs 

have comparable complexity, but with the increased bit rates, 

the coding complexity increases exponentially. There are 

three ways to reduce the coding complexity, which are the 

use of markers, the use of state tables, or the use of the 1D 

array system. But when these ways are used, there is a 

significant reduction in the coding efficiency. Thus, for the 

high coding efficiency, the list-based compression algorithm 

performs best. With the use of advanced mathematical 

transforms, the coding efficiency also increased. The coding 

complexity of 3D-STBCTC is slightly higher than that of 

3D-SPECK, 3D-SPIHT, and 3D-WBTC. 

5. Result and Discussion 
The performance of the proposed compression algorithm 

was evaluated on four HS images and benchmarked against 

state-of-the-art transform-based HSICAs. The detailed 

descriptions of the simulation test images are summarized in 

Table 4.  

The comparative analysis of the proposed compression 

algorithm was conducted on the basis of coding efficiency, 

coding memory, and coding complexity. The Peak Signal to 

Noise Ratio (PSNR), Structural Similarity Index (SSIM), and 

Feature-Similarity (FSIM) index are used to define the 

coding efficiency of any HS image [73, 74]. PSNR is 

mentioned as Image Quality  Metric I (IQM I), SSIM is 

mentioned as Image Quality Metric II (IQM II), and FSIM is 

mentioned as Image Quality Metric III (IQM III) in the 

manuscript. 

 

The original HS image is transformed with the 3D 

shearlet transform. The transform 3D HS image is mapped to 

a 1D array with the help of Morton Mapping (Linear 

Indexing) [63]. The transform coefficients of the 1D array 

have been encoded with the compression algorithm. After the 

compression of the HS image, it is converted to the 3D 

matrix [66-68]. The inverse transform is applied to the 3D 

matrix, and the coefficients are quantized to the nearest 

integers. In order to obtain an accurate assessment of the 

proposed 3D-STBCTC in relation to the other HSICAs, the 

compression algorithms have been programmed on the 

numerical computing software Matlab, which is running on a 

computer terminal running Windows 11 and containing 20 

GB of storage space. 

 

The 3D-STBCTC is compared with 3D-SPECK 

(Compression Algorithm I) [49], 3D-SPIHT (Compression 

Algorithm II) [50], 3D-WBTC (Compression Algorithm III) 

[51], 3D-LSK (Compression Algorithm IV) [52], 3D-NLS 

(Compression Algorithm V) [53], 3D-LMBTC (Compression 

Algorithm VI) [54], 3D-LCBTC (Compression Algorithm 

VII) [48], 3D-ZM-SPECK (Compression Algorithm VIII)  

[55] and 3D-LEZSPC (Compression Algorithm IX) [59]. 

 

5.1. Coding Efficiency  

To quantify the Rate-Distortion (RD) performance of the 

compression algorithm, the Peak Signal-to-Noise Ratio 

(PSNR) is employed. The original and reconstructed 

Hyperspectral (HS) images are defined as A (x,y,z) and B 

(x,y,z). Given the Total Number Of Coefficients (pixel), 

Npix, the Mean Squared Error (MSE) is computed as shown 

in Equation  3. The PSNR is subsequently calculated based 

on this MSE value. 

Table 2. Notations used in the proposed 3D-STBCTC 

  𝐵(𝜂,𝜎,𝜌)
𝛼∗𝛼∗𝛼  A block cube with dimensions of ‘m’ and transform coefficients is arranged in a 1D 

array form.  

 {𝑐𝛼,𝛽,𝛾  ∶   𝜂 ≤ 𝛼 ≤  (𝜂 + 𝛿) , 𝜎 ≤ 𝛽 ≤  (𝜎 + 𝛿) , 𝜌 ≤ 𝛾 ≤  (𝜌 + 𝛿)} 

Where (η,σ,ρ) are the coordinates of the top left coefficient of the block cube. The 

coordinate of the block cube's top-left corner is used to identify each individual block 

cube. 

  𝑄(𝜂,𝜎,𝜌) Set of all octa-block cubes of a parent block cube  𝐵𝜂,𝜎,𝜌
𝛿∗𝛿∗𝛿  

It is defined as 



Purushottam Lal Nagar & Shrish Bajpai / IJECE, 13(1), 174-192, 2026 

180 

 

 

Table 3. Pseudo code for encoder of 3D shearlet transform block cube tree coding 

1. Initialization  

 

 

Output  𝑛 =  ⌊log2[𝑚𝑎𝑥(𝑖,𝑗,𝑘) {|𝐶(η,σ,ρ)|}]⌋ 

LSP =  ϕ 

Add all 𝐵𝜂,𝜎,𝜌
𝛼∗𝛼∗𝛼  ∈  𝐻(𝜂,𝜎,𝜌)  To LIBC, and those with descendants also to LIBCS, as type 'A' entries. 

2. Sorting Pass 

/* LIBC testing */ 

 

       For each entry 𝐵𝜂,𝜎,𝜌
𝛼∗𝛼∗𝛼 in LIBC  

       do: 

 Output 𝑆𝑛[𝐵𝜂,𝜎,𝜌
𝛼∗𝛼∗𝛼]  

 if  𝑆𝑛[𝐵𝜂,𝜎,𝜌
𝛼∗𝛼∗𝛼] = 1 then, 

     if (α ≠ 1 call fn_bcp() 

     else 

     add (η, σ, ρ) to LSP, and output the sign of 𝑐(η,σ,ρ)  

     Remove entry   𝐵𝜂,𝜎,𝜌
𝛼∗𝛼∗𝛼   from the LIBC 

 

/* Testing of LIBCS  list*/ 

 

       For each entry 𝐵𝜂,𝜎,𝜌
𝛼∗𝛼∗𝛼 in LIBC  

       do: 

 If the entry is of type 'A '; then 

       

    Output 𝑆𝑛 [𝐷(η,σ,ρ)]         

if 𝑆𝑛 [𝐷(η,σ,ρ)]  = 1        then, 

 𝑄(𝜂,𝜎,𝜌) = 
{   𝐵𝜂,𝜎,𝜌

𝛿

2
 ∗ 

𝛿
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  } 

  H Block cubes in the LLL band (lowest resolution) 

  𝑂(𝜂,𝜎,𝜌) Set of all offspring block cubes of the root block cube. 

It is defined as 

 𝑂(𝜂,𝜎,𝜌) = {     𝐵2𝜂,2𝜎,2𝜌
𝛿∗𝛿∗𝛿                       𝐵2𝜂,2𝜎,2𝜌+𝛿

𝛿∗𝛿∗𝛿     

          𝐵2𝜂,2𝜎+𝛿,2𝜌
𝛿∗𝛿∗𝛿                   𝐵2𝜂,2𝜎+𝛿,2𝜌+𝛿

𝛿∗𝛿∗𝛿     

      𝐵2𝜂+𝛿,2𝜎,2𝜌
𝛿∗𝛿∗𝛿                       𝐵2𝜂+𝛿,2𝜎,2𝜌+𝛿

𝛿∗𝛿∗𝛿     

      𝐵2𝜂,+𝛿,2𝜎+𝛿,2𝑟
𝛿∗𝛿∗𝛿                 𝐵2𝜂+𝛿,2𝜎+𝛿,2𝜌+𝛿

𝛿∗𝛿∗𝛿     } 

  𝐷(𝜂,𝜎,𝜌) Set of all descendant blocks of root block cube 𝐵𝜂,𝜎,𝜌
𝛿∗𝛿∗𝛿  

  𝐿(𝜂,𝜎,𝜌) Set of all descendants except immediate offspring of the root block cube  𝐵𝜂,𝜎,𝜌
𝛿∗𝛿∗𝛿 

  Sn (.) significant function in the nth most significant bit plane applied to set T, defined as 

 
𝑆𝑛(𝑇) =  {

1  ;   𝑖𝑓 max({|𝑐𝜂,𝜎,𝜌|}  ≥  2𝑛) ⋁ 𝐶𝑖𝜂,𝜎,𝜌  ∈ 𝑇 

0  ;   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Where set T may either be an individual block cube of α*α*α wavelet coefficients or 

a block cube tree. 

For a given n, if Sα{T) = 1,  

then set T is said to be significant; otherwise, it is insignificant. 
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For each 𝐵𝜂,𝜎,𝜌
𝛼∗𝛼∗𝛼  ∈  𝑂(η,σ,ρ)   

do 

Output 𝑆𝑛[𝐵𝜂,𝜎,𝜌
𝛼∗𝛼∗𝛼] 

if  𝑆𝑛[𝐵𝜂,𝜎,𝜌
𝛼∗𝛼∗𝛼]  = 1 ; then call fn_bcp() 

else add 𝐵𝜂,𝜎,𝜌
𝛼∗𝛼∗𝛼 to the end of LIBC 

if 𝐿(η,σ,ρ)  ≠ 𝜙 , then 

Change the type of 𝐵𝜂,𝜎,𝜌
𝛼∗𝛼∗𝛼  from type ‘A’ to type ‘B.’ 

 if the entry is of type 'B';  

then 

    Output  𝑆𝑛 [𝐿(η,σ,ρ)]         

    if Output  𝑆𝑛 [𝐿(η,σ,ρ)] = 1   

   then 

   add each  [𝐵𝜂,𝜎,𝜌
𝛼∗𝛼∗𝛼]   ∈  𝑂(η,σ,ρ) to the end of the LIBCS 

 

3. Refinement Pass 

 

 

For every entry (𝛼, 𝛽, 𝛾) in the List of Significant Pixels (LSP), except those coefficients included in 

the last sorting pass (i.e., with the current bit plane) 

Output the 'n' most significant bit of  |𝑐(𝛼,𝛽,𝛾)| 

4. Quantization Step 

 
 

The counter n is decremented by one, and the algorithm returns to Step 2. This iterative process 

continues until the termination condition n = 0 is met or till the bit budget is exhausted. 

fn_bcp() 

 

{ /* Function for block cube partitioning */ 

For a block cube  𝐵𝜂,𝜎,𝜌
𝛼∗𝛼∗𝛼 

Do. 

o For each  𝐵𝜂,𝜎,𝜌
𝑣∗𝑣∗𝑣  ∈  𝑂(η,σ,ρ) 

Do : 

 if  (𝑣 ≠ 1) 

Output  𝑆𝑛[𝐵𝜂,𝜎,𝜌
𝑣∗𝑣∗𝑣] 

if   𝑆𝑛[𝐵𝜂,𝜎,𝜌
𝑣∗𝑣∗𝑣] = 1 then 

call fn_bcp() 

else 

add 𝐵𝜂,𝜎,𝜌
𝑣∗𝑣∗𝑣     to the LIBC 

 else 

Output 𝑆𝑛[𝑐(η,σ,ρ)] 

if 

Output 𝑆𝑛[𝑐(η,σ,ρ)] = 1  then 

add (η, σ, ρ) to LSP and output the sign of the coefficient  

else 

add  𝐵𝜂,𝜎,𝜌
𝑣∗𝑣∗𝑣  to LIBC as a single pixel block cube 

} 

 

 

Table 4. Details of HS images used for the simulation test 

HS Image HS Sensor HS Image Dimensions Pixel Depth 

Washington DC Mall (HS Image I) HYDICE 1280 × 307 × 191 14 

Yellowstone Scene 0 (HS Image II) AVIRIS 512 × 680 × 224 16 

Yellowstone Scene 3 (HS Image III) AVIRIS 512 × 680 × 224 16 

Yellowstone Scene 18(HS Image IV) AVIRIS 512 × 680 × 224 16 
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𝑃𝑆𝑁𝑅 = 10 log10 (
𝑀𝐴𝑋𝐴  ∗  𝑀𝐴𝑋𝐴 

𝑀𝑆𝐸
)            (2) 

 

𝑀𝑆𝐸 =  
1

𝑁𝑝𝑖𝑥
 ∑ ∑ ∑ [𝐴(𝑥, 𝑦, 𝑧) −   𝐵(𝑥, 𝑦, 𝑧)]2

𝑧𝑦𝑧             (3) 

 

The 3D-STBCTC uses the same partition rule as 3D-

WBTC, 3D-LMBTC, and 3D-LCBTC (zeroblock cube tree 

set partitioned). Table 5 gives the comparative analysis of the 

PSNR. SSIM and FSIM. It is clear from Table 5 that 3D-

STBCTC outperforms for almost every bit rate compared to 

other HSICA.  The variation of the PSNR between 3D-

STBCTC and 3D-SPECK is 0.69 dB to 1.09 dB for the HS 

image I, 0.45 dB to 0.98 dB for the HS image II, 0.22 dB to 

0.57 dB for the HS image III, and -0.25 dB to 0.89 dB for the 

HS image IV. The variation of the PSNR between proposed 

3D-STBCTC and 3D-SPIHT is 0.69 dB to 1.12 dB for the 

HS image I, 0.46 dB to 1.34 dB for the HS image II, 0.55 dB 

to 0.88 dB for the HS image III, and -0.13 dB to 1.04 dB for 

the HS image IV. In the same way, the variation of the PSNR 

between proposed 3D-STBCTC and 3D-WBTC is 0.71 dB to 

1.14 dB for the HS image I, 0.48 dB to 1 dB for the HS 

image II, 0.24 dB to 0.67 dB for the HS image III, and -0.23 

dB to 0.9 dB for the HS image IV. The variation of the 

PSNR between proposed 3D-STBCTC and 3D-LMBTC is 

0.83 dB to 1.74 dB for the HS image I, 0.56 dB to 1.34 dB 

for the HS image II, 0.16 dB to 1.22 dB for the HS image III, 

and -0.13 dB to 1.17 dB for the HS image IV. The variation 

between the PNSR of the proposed 3D-STBCTC and 3D-

LCBTC is 0.63 dB to 1.08 dB for the HS image I, 0.49 dB to 

1.22 dB for the HS image II, -0.03 dB to 0.73 dB for the HS 

image III, and -0.41 dB to 0.8 dB. The proposed 3D-

STBCTC has a high PSNR due to the high number of 

significant coefficients compared to other compression 

algorithms for that bit rate. It has been known that a 

significant coefficient has more weight than a refinement 

coefficient.  

 

The SSIM is a metric for measuring picture quality that 

determines how similar two HS images (original and 

reconstructed) are to one [74, 75]. It has been clear that the 

proposed compression algorithm has a slight gain (1% to 

3%) over other compression algorithms. It is calculated as in 

Equation  4. 

 

SSIM (A, B) =  
(2μ𝐴μ𝐵 + C1)(2σ𝐴𝐵 + C2)

(μ𝐴
2 + μ𝐵

2 + C1 )(σ𝐴
2 + σ𝐵

2 + C2)
                (4) 

 

The mean average of the original and reconstructed HS 

image is defined. 𝜇𝐴 &  𝜇𝐵 While the variance of the HS 

images is defined as 𝜎𝐴
2 & 𝜎𝐵

2. 𝜎𝐴𝐵 It is defined as the 

covariance between the HS images [48, 76]. The original HS 

image and the reconstructed HS image are compared using 

the Feature-Similarity index metric, which maps the features 

and measures the degree to which they are similar [38, 77]. 

The comparative analysis of the FSIM metric has been 

compared with different compression algorithms, as covered 

in Table 5. The Bjontegaard metric calculation, also referred 

to as BD-PSNR, is computed for each of the four HS images 

that are being evaluated and covered in Table 6. It has been 

clear from Table 6 that the proposed compression algorithm 

outperforms the other compression algorithms for all four HS 

images, as it has been clear with Table 6 (higher numeric 

value of the PSNR for many bit rates). 

5.2. Coding Memory 

It has been known that 3D-SPECK, 3D-SPIHT, 3D-

WBTC, and 3D-STBCTC use linked lists to track the 

significance of the coefficients or partitioned sets. 3D-

STBCTC uses three different lists for the same. While the 

rest of the compression algorithms are listless, they do not 

use any linked lists. These listless compression algorithms 

use state tables or markers for tracking the significance of the 

coefficients or partitioned sets. The coding memory required 

by the listless compression algorithm is fixed for all bit rates 

and only depends on the size of the HS image. Thus, at the 

very low bit rates, the demand for coding memory is very 

high. It is obvious that the memory requirement of 3D-

SPECK and 3D-SPIHT is significantly higher in the early 

passes than it is in the later passes. This is due to the fact that 

at the lowest threshold level of later passes, more sets will 

become relevant, and set partitioning will result in more 

entries in linked lists. From Table 7, it is clear that the 

proposed compression algorithm 3D-STBCTC has almost the 

same coding memory requirement as 3D-SPECK, 3D-

SPIHT, and 3D-WBTC but has a lower coding memory 

demand than the listless compression algorithm 3D-NLS at 

almost every bit rate. 

5.3. Coding Complexity 

Coding complexity of any compression algorithm is 

measured as the time required by the compression algorithm 

for the encoding and decoding process [68, 78].  It has been 

known that the decoding process requires less execution time 

than the encoding process [79].  This is because the encoding 

process requires one more step for the identification of the 

set (size) and testing of the test for every bit plane. From 

Table 8, it is clear that listless compression algorithms have a 

very minimum coding time requirement, while the list-based 

compression algorithms have a high coding time requirement 

[55, 80]. This is due to the multiple read/write/memory 

access operations, which require a lot of time. The Encoding 

Time (ET) and Decoding Time (DT) are measured in 

seconds in Table 7, while Total Time (TT) is the sum of time 

required by the algorithm to complete the encoding and 

decoding process for the given bit rate [38, 81-86]. 

 The visual representation of the two HS images 

(Yellowstone Scene 0 and Washington DC MALL) for four 

different frequency frames (before compression and after 

compression process) has been shown in Figures 2 and 3. 
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6. Conclusions and Future Work 
In the present manuscript, it is proposed that a 

compression algorithm be used for leveraging inter- and 

intra-subband correlations in transformed HS images. The 

compression algorithm makes use of intra-subband 

correlations in the form of zeroblock cubes and inter-subband 

correlations in the form of block cube trees to achieve 

optimal compression. According to the findings, the 

suggested coding method consistently performs better than 

both the tree-based 3D-SPIHT algorithm and the block cube-

based 3D-SPECK algorithm for all of the most common test 

images. When bit rates are lowered, performance 

improvements become more pronounced. Also, due to the 

fact that it is a block cube-based encoder, in comparison to 

3D-SPIHT, it needs a significantly smaller amount of 

memory space to store the lists. In addition, the speed of the 

proposed encoder is significantly higher than that of the 3D-

SPIHT encoder. Further, implementation of the sherelet and 

curvelet transform with the listless compression algorithm 

decreases the coding complexity, and it also decreases 

coding memory.  
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Appendix 
Table 5. Coding efficiency of the different HSICAs for seven different bit rates for four HS images 
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 HS Image I 

0.00

1 

IQM I 26.28 26.28 26.25 26.14 25.90 26.26 26.41 26.32 26.41 27.09 

IQM II 0.08 0.08 0.08 0.07 0.06 0.08 0.07 0.08 0.08 0.09 

IQM III 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.38 0.4 

0.00

5 

IQM I 28.95 28.95 28.93 28.71 28.71 28.70 28.66 28.73 28.97 29.74 

IQM II 0.20 0.20 0.19 0.19 0.18 0.19 0.19 0.19 0.19 0.21 

IQM III 0.43 0.43 0.43 0.43 0.44 0.44 0.44 0.44 0.44 0.44 

0.01 

IQM I 30.08 30.08 30.04 29.99 29.83 29.98 30.01 29.99 30.21 30.81 

IQM II 0.23 0.23 0.23 0.24 0.22 0.23 0.24 0.24 0.23 0.26 

IQM III 0.55 0.55 0.55 0.56 0.55 0.55 0.55 0.55 0.56 0.58 

0.05 

IQM I 34.23 34.23 34.21 34.04 33.81 33.99 34.29 34.06 34.42 34.92 

IQM II 0.37 0.37 0.37 0.38 0.37 0.38 0.37 0.38 0.38 0.42 

IQM III 0.69 0.68 0.69 0.69 0.68 0.68 0.68 0.68 0.69 0.7 

0.1 

IQM I 37.22 37.22 37.20 36.96 37 36.83 37.34 36.87 37.34 38.02 

IQM II 0.42 0.42 0.42 0.44 0.42 0.43 0.43 0.44 0.43 0.44 

IQM III 0.74 0.74 0.74 0.75 0.75 0.75 0.75 0.75 0.75 0.76 

0.25 

IQM I 42.17 42.17 42.16 41.62 41.69 41.34 42.28 41.37 42.38 43.08 

IQM II 0.5 0.5 0.5 0.52 0.52 0.52 0.52 0.52 0.52 0.53 

IQM III 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.81 0.83 

0.5 

IQM I 48.02 47.99 47.97 47.01 47.79 47.51 48.11 47.55 48.21 49.11 

IQM II 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.6 

IQM III 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.91 0.92 

 HS Image II 

0.00

1 

IQM I 27.11 26.75 27.09 26.83 26.61 26.75 26.87 26.82 26.87 28.09 

IQM II 0.27 0.27 0.27 0.27 0.26 0.27 0.27 0.26 0.27 0.28 

IQM III 0.59 0.58 0.59 0.59 0.58 0.58 0.59 0.58 0.59 0.6 

0.00

5 

IQM I 29.45 29.31 29.43 29.27 29.25 29.24 29.41 29.25 29.54 29.97 

IQM II 0.37 0.37 0.37 0.37 0.36 0.37 0.37 0.36 0.37 0.39 

IQM III 0.69 0.68 0.69 0.69 0.68 0.69 0.69 0.69 0.7 0.71 

0.01 

IQM I 30.28 30.19 30.27 30.27 30.15 30.31 30.53 30.33 30.48 31.08 

IQM II 0.42 0.42 0.42 0.42 0.41 0.42 0.42 0.42 0.42 0.43 

IQM III 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.71 0.73 

0.05 

IQM I 33.76 33.61 33.73 33.56 33.59 33.51 33.69 33.54 33.93 34.21 

IQM II 0.61 0.60 0.61 0.61 0.60 0.61 0.61 0.61 0.61 0.63 

IQM III 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.72 0.73 

0.1 

IQM I 35.57 35.44 35.56 35.49 35.41 33.45 35.55 35.46 35.69 36.32 

IQM II 0.67 0.66 0.67 0.67 0.66 0.67 0.67 0.67 0.67 0.69 

IQM III 0.73 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 

0.25 IQM I 39.30 39.19 39.29 39.26 39.17 39.22 39.37 39.23 39.41 39.94 

https://doi.org/10.1109/TCSI.2025.3545127
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+On-Board+Satellite+Multispectral+and+Hyperspectral+Compressor+%28MHyC%29%3A+An+Efficient+Architecture+of+a+Simple+Lossless+Algorithm&btnG=
https://ieeexplore.ieee.org/abstract/document/10908420
https://doi.org/10.1109/NewCAS64648.2025.11107013
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Joshi%2C+V.%2C+%26+Rani%2C+J.+S+A+Band+Interleaved+by+Pixel+%28BIP%29+Architecture+of+a+Simple+Los
https://ieeexplore.ieee.org/abstract/document/11107013
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IQM II 0.76 0.76 0.76 0.77 0.76 0.76 0.76 0.77 0.76 0.77 

IQM III 0.77 0.77 0.77 0.77 0.77 0.78 0.77 0.77 0.78 0.78 

0.5 

IQM I 43.62 43.65 43.51 43.57 43.26 43.55 43.62 43.58 43.74 44.11 

IQM II 0.82 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.84 

IQM III 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.82 

  HS Image III 

0.00

1 

IQM I 27.82 27.49 27.8 27.78 27.28 27.88 28.07 27.92 27.77 28.04 

IQM II 0.16 0.17 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.18 

IQM III 0.54 0.54 0.54 0.54 0.53 0.53 0.53 0.53 0.54 0.55 

0.00

5 

IQM I 30.24 30.09 30.22 30.03 30.03 30.01 30.44 30.02 30.28 30.81 

IQM II 0.29 0.29 0.29 0.29 0.28 0.29 0.28 0.29 0.29 0.31 

IQM III 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.67 

0.01 

IQM I 31.27 31.14 31.25 31.17 31.1 31.13 31.42 31.14 31.38 31.83 

IQM II 0.34 0.34 0.34 0.33 0.33 0.33 0.33 0.33 0.33 0.35 

IQM III 0.69 0.69 0.70 0.69 0.69 0.69 0.69 0.69 0.69 0.7 

0.05 

IQM I 34.57 34.39 34.55 34.58 34.27 34.44 34.67 34.51 34.63 35.05 

IQM II 0.48 0.48 0.48 0.49 0.48 0.48 0.48 0.48 0.48 0.5 

IQM III 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.72 

0.1 

IQM I 36.63 36.49 36.64 36.42 36.49 36.35 36.74 36.37 36.71 37.08 

IQM II 0.54 0.54 0.54 0.55 0.54 0.54 0.53 0.54 0.54 0.56 

IQM III 0.74 0.74 0.74 0.74 0.75 0.74 0.74 0.74 0.75 0.76 

0.25 

IQM I 40.83 40.63 40.84 40.46 40.59 40.29 40.81 40.31 40.85 41.51 

IQM II 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.67 

IQM III 0.77 0.77 0.78 0.77 0.77 0.77 0.77 0.77 0.77 0.79 

0.5 

IQM I 45.88 45.66 45.87 45.39 45.57 45.13 45.58 45.15 45.92 46.31 

IQM II 0.72 0.72 0.72 0.73 0.72 0.72 0.73 0.72 0.72 0.73 

IQM III 0.81 0.82 0.81 0.81 0.82 0.80 0.80 0.80 0.82 0.83 

  HS Image IV 

0.00

1 

IQM I 28.11 27.94 28.06 28.08 27.88 28.07 28.14 28.16 28.15 28.81 

IQM II 0.21 0.21 0.21 0.21 0.20 0.21 0.21 0.20 0.21 0.23 

IQM III 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.4 

0.00

5 

IQM I 30.44 30.32 30.43 30.27 30.03 30.26 30.22 30.28 30.52 31.02 

IQM II 0.32 0.31 0.32 0.32 0.31 0.31 0.32 0.31 0.31 0.33 

IQM III 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.59 

0.01 

IQM I 31.41 31.29 31.39 31.32 31.1 31.29 31.57 31.43 31.52 31.16 

IQM II 0.37 0.37 0.36 0.36 0.37 0.36 0.36 0.36 0.37 0.39 

IQM III 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.69 

0.05 

IQM I 34.46 34.3 34.45 34.41 34.27 34.25 34.62 34.28 34.53 35.11 

IQM II 0.53 0.53 0.53 0.54 0.53 0.53 0.53 0.53 0.53 0.55 

IQM III 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.75 

0.1 

IQM I 36.43 36.29 36.43 36.25 36.49 36.19 36.51 36.2 36.55 37.14 

IQM II 0.60 0.59 0.60 0.60 0.60 0.60 0.60 0.60 0.59 0.61 

IQM III 0.74 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.76 

0.25 

IQM I 40.08 39.93 40.07 39.92 40.59 39.8 40.19 39.84 40.17 40.97 

IQM II 0.71 0.71 0.71 0.71 0.71 0.71 0.72 0.71 0.71 0.73 

IQM III 0.78 0.78 0.79 0.78 0.79 0.79 0.79 0.79 0.79 0.8 

0.5 

IQM I 44.51 44.47 44.5 44.31 44.46 44.22 44.63 44.22 44.62 45.19 

IQM II 0.79 0.78 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.81 

IQM III 0.81 0.82 0.81 0.81 0.81 0.81 0.81 0.81 0.82 0.83 
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Table 6. BD-PSNR gain of 3D-STBCTC with the other HSICAs 
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HS Image I 0.7943 0.7963 0.8205 1.0663 1.1025 1.0812 0.8102 1.0433 0.6659 

HS Image II 0.6575 0.7961 0.6805 0.7788 0.8659 1.0937 0.6458 0.7814 0.5560 

HS Image III 0.5005 0.6781 0.5126 0.6649 0.7511 0.7352 0.3902 0.7085 0.4477 

HS Image IV 0.4850 0.6179 0.4998 0.6050 0.6351 0.6687 0.4346 0.6152 0.3958 

 

Table 7. Analysis compares the memory efficiency of the 3D-STBCTC algorithm with other HSICAs, with a specific focus on coding memory 

consumption (Measured in KB) 
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 HS Image I 

0.001 26.67 37.33 28.08 4096 8192 96 2318 0 2304 30.05 

0.005 102.3 99.21 89.33 4096 8192 96 2318 0 2304 86.19 

0.01 232.2 222.7 202.4 4096 8192 96 2318 0 2304 198.1 

0.05 1084 1041 991.7 4096 8192 96 2318 0 2304 921.5 

0.1 1846 1931 1756 4096 8192 96 2318 0 2304 1698 

0.25 4571 4463 4289 4096 8192 96 2318 0 2304 4019 

0.5 8644 8555 8514 4096 8192 96 2318 0 2304 8411 

 HS Image II 

0.001 22.58 21.51 22.69 4096 8192 96 2318 0 2304 19.87 

0.005 91.12 98.91 91.29 4096 8192 96 2318 0 2304 90.25 

0.01 265.9 267.8 266.4 4096 8192 96 2318 0 2304 264.9 

0.05 982.4 1036 985.4 4096 8192 96 2318 0 2304 987.2 

0.1 2219 2326 2229 4096 8192 96 2318 0 2304 2177 

0.25 5450 5611 5464 4096 8192 96 2318 0 2304 5514 

0.5 10005 9981 9832 4096 8192 96 2318 0 2304 9609 

 HS Image III 

0.001 25.28 24.94 25.06 4096 8192 96 2318 0 2304 24.71 

0.005 101.2 105.8 101.5 4096 8192 96 2318 0 2304 99.25 

0.01 205.1 218.9 208.6 4096 8192 96 2318 0 2304 212.1 

0.05 1108 1149 1136 4096 8192 96 2318 0 2304 1109 

0.1 1855 1808 1854 4096 8192 96 2318 0 2304 1819 

0.25 4401 4449 4412 4096 8192 96 2318 0 2304 4408 

0.5 7918 7805 7935 4096 8192 96 2318 0 2304 8002 

 HS Image IV 

0.001 24.67 22.41 24.55 4096 8192 96 2318 0 2304 23.28 

0.005 100.8 105.5 101.1 4096 8192 96 2318 0 2304 102.2 

0.01 210.9 229.9 214.4 4096 8192 96 2318 0 2304 211.8 

0.05 1088 1212 1106 4096 8192 96 2318 0 2304 1084 

0.1 1970 2083 1980 4096 8192 96 2318 0 2304 1971 

0.25 4867 5047 4878 4096 8192 96 2318 0 2304 4759 

0.5 9078 8488 9093 4096 8192 96 2318 0 2304 8948 
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Table 8. A comparative analysis of the coding complexity for various set-partitioning algorithms used in hyperspectral image compression, evaluated 

at different bit rates 
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 HS Image I 

0.

0

0

1 

ET 3.99 4.06 5.94 2.67 14.18 5.91 3.17 3.24 20.09 5.67 

DT 1.78 2.92 1.59 2.08 12.79 2.48 2.21 3.02 3.57 1.51 

TT 5.77 6.98 7.53 4.75 26.97 8.39 5.38 6.26 23.66 7.18 

0.

0

0

5 

ET 9.85 9.73 8.2 2.78 61.33 8.35 3.35 4.83 82.29 7.91 

DT 5.18 5.25 2.41 2.43 48.29 3.86 2.68 4.65 14.87 2.32 

TT 15.13 14.98 10.61 5.21 109.62 12.21 6.03 9.48 97.16 10.23 

0.

0

1 

ET 20.45 29.93 10.99 3.25 73.64 9.26 4.41 5.97 93.55 10.28 

DT 10.78 14.31 4.51 2.68 57.16 4.04 3.08 5.61 21.59 3.94 

TT 31.23 44.24 15.5 5.93 130.8 13.3 7.49 11.58 115.14 14.22 

0.

0

5 

ET 222.2 303.4 94.36 5 90.57 19.45 5.49 12.18 102.89 90.25 

DT 172.7 236.2 84.75 4.02 69.23 12.01 4.34 11.79 51.47 67.22 

TT 394.9 539.6 179.11 9.02 159.8 31.46 9.83 23.97 154.38 157.47 

0.

1 

ET 1163 1297 762.6 7.31 102.5 34.74 7.94 19.55 117.8 711.2 

DT 1081 1078 762.11 6.24 77.57 21.79 6.71 18.36 59.6 657.7 

TT 2244 2375 1524.71 13.55 180.07 56.53 14.65 37.91 177.4 1368.9 

0.

2

5 

ET 6234 6871 4703 13.35 120.8 68.15 14.02 40.25 131.8 4641 

DT 6012 6305 4358 11.68 90.45 50.91 12.02 37.86 67.2 4129 

TT 12246 13176 9061 25.03 211.25 119.06 26.04 78.11 199 8770 

0.

5 

ET 17995 18742 19551 24.12 151.3 122.5 26.03 74.87 160.8 18925 

DT 17597 18534 15400 22.65 100.5 96.84 25.07 69.02 89.7 14950 

TT 35592 37276 34951 46.77 251.8 219.34 51.10 143.89 250.5 33875 

 HS Image II 

0.

0

0

1 

ET 3.42 4.33 5.94 2.35 15.97 5.73 2.47 2.94 17.89 4.57 

DT 1.87 1.52 1.46 1.4 12.18 2.18 1.61 2.79 9.78 1.36 

TT 5.29 5.85 7.4 3.75 28.15 7.91 4.08 5.73 27.67 5.93 

0.

0

0

5 

ET 9.84 5.85 8.5 2.71 75.93 7.36 3.87 6.44 84.67 8.11 

DT 5.4 2.45 2.77 2.49 66.24 3.21 3.01 6.05 54.94 2.54 

TT 15.24 8.3 11.27 5.2 142.17 10.57 6.88 12.49 139.61 10.65 

0.

0

1 

ET 22.53 9.41 10.83 2.88 90.43 16.99 4.29 10.28 99.47 10.21 

DT 10.01 4.92 3.86 2.71 81.48 6.23 3.27 10.04 66.38 3.38 

TT 32.54 14.33 14.69 5.59 171.9 23.22 7.56 20.32 165.85 13.59 

0.

0

5 

ET 250.3 134.4 131.5 4.14 106.55 27.4 5.02 16.02 121.8 128.2 

DT 207.2 127.8 130.1 3.38 94.49 14.94 3.94 11.35 79.7 120.1 

TT 457.5 262.2 261.6 7.52 201.04 42.34 8.96 27.37 201.5 248.3 

0.

1 

ET 966.7 570.8 632.6 6.04 125.87 36.27 7.21 18.42 143.8 600.2 

DT 887.6 717.5 614.3 5.98 106.8 23.01 6.64 17.81 80.3 581.7 

TT 1854.3 1288.3 1246.9 12.02 232.67 59.28 13.85 36.23 224.1 1181.9 

0.

2

5 

ET 4973 3032 4100 10.24 134.4 96.34 12.21 56.67 155.9 4084 

DT 4796 3029 4040 6.74 113.86 58.62 7.18 47.06 87.5 4011 

TT 9769 6161 8240 16.98 248.26 154.96 19.39 103.73 243.4 9095 

0. ET 12007 10112 12975 17.25 154.41 177.73 18.95 67.74 180.9 12874 
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5 DT 11898 9954 12299 14.7 125.56 120.33 15.34 60.13 99.5 12511 

TT 23905 20066 25274 31.95 279.97 298.06 34.29 127.87 280.4 25386 

 HS Image III 

0.

0

0

1 

ET 4.08 4.03 5.85 2.07 15.97 5.68 2.76 3.19 17.79 5.77 

DT 1.74 1.39 1.32 1.89 8.43 4.1 2.11 3.02 6.54 1.29 

TT 5.82 5.42 7.17 3.96 24.4 9.78 4.87 6.21 24.33 7.06 

0.

0

0

5 

ET 9.12 5.96 7.87 2.89 75.93 7.78 3.28 4.74 88.54 7.57 

DT 5.13 2.24 2.44 2.47 66.02 6.02 2.74 3.99 49.87 2.31 

TT 14.25 8.2 10.31 5.36 141.95 13.8 6.02 8.73 138.41 9.88 

0.

0

1 

ET 20.18 9.7 11.64 3.34 90.43 8.55 4.01 7.52 101.5 11.37 

DT 12.51 5.18 5.14 2.69 84.96 7.06 3.02 6.33 79.5 4.74 

TT 32.69 14.88 16.78 6.03 175.39 15.61 7.03 13.85 181 16.08 

0.

0

5 

ET 204.3 125.2 89.77 4.57 106.55 19.48 5.31 22.88 119.5 81.29 

DT 160.3 114.7 80.01 4.46 92.68 14.84 5.19 18.56 87.4 74.35 

TT 364.6 239.9 169.78 9.03 199.23 34.32 10.5 41.44 206.9 155.64 

0.

1 

ET 1183 775.8 835.9 5.91 125.87 32.46 6.47 30.14 138.8 798.3 

DT 1074 760.5 827.8 5.59 104.98 21.49 6.37 27.82 100.5 766.1 

TT 2257 1536.3 1663.7 11.5 230.85 53.95 12.84 57.96 239.3 1564.4 

0.

2

5 

ET 8499 5151 6309 10.41 134.14 70.4 11.91 43.49 149.5 6281 

DT 8387 5832 6233 9.27 115.94 48.95 10.34 39.95 108.2 6008 

TT 16886 10983 12858 19.68 250.08 119.35 22.25 83.44 257.7 12289 

0.

5 

ET 29849 18383 23861 16.19 154.41 125.42 17.09 72.62 165.8 22589 

DT 26948 15672 23161 14.97 141.97 114.52 16.68 67.23 130.1 21598 

TT 56797 34055 47022 31.16 296.38 239.94 33.77 139.85 295.9 44187 

 HS Image IV 

0.

0

0

1 

ET 4.56 5.6 7.23 2.39 6.03 5.74 2.89 2.82 7.85 6.94 

DT 2.41 1.64 1.73 2.02 5.27 2.1 2.24 2.74 4.34 1.59 

TT 6.97 7.24 8.96 4.41 11.3 7.84 5.13 5.56 12.19 8.53 

0.

0

0

5 

ET 15.24 6.23 8.15 2.81 11.53 7.53 3.34 4.44 12.94 7.91 

DT 9.57 2.33 2.55 2.34 8.26 2.88 2.47 4.28 7.19 2.41 

TT 24.81 8.56 10.7 5.15 19.79 10.41 5.81 8.72 20.13 10.32 

0.

0

1 

ET 21.67 10.2 12.64 3.18 18.44 8.93 3.98 5.64 21.18 11.59 

DT 12.68 5.23 6.11 2.89 14.44 3.91 3.23 5.41 12.78 5.87 

TT 34.35 15.43 18.75 6.07 32.88 12.84 7.21 11.05 33.96 17.46 

0.

0

5 

ET 269.6 130.4 98.12 4.3 22.64 18.61 4.88 13.02 24.91 94.23 

DT 226.5 120.5 89.08 3.74 19.5 11.48 4.29 11.36 17.47 84.51 

TT 496.1 250.9 187.2 8.04 42.14 30.09 9.17 24.38 42.38 178.74 

0.

1 

ET 1336 893.4 882.3 6.11 25.53 32.45 6.41 18.18 30.58 841.2 

DT 1241 829.1 866.3 5.96 21.07 21.02 6.57 17.22 20.17 801.1 

TT 2577 1722.5 1748.6 12.07 46.6 53.47 12.98 35.4 50.75 1642.3 

0.

2

5 

ET 8435 5133 5501 10.35 34.5 69.66 11.38 36.3 38.54 5204 

DT 9067 4536 5494 6.62 29.65 48.91 7.08 33.79 24.25 5129 

TT 17502 9669 10995 16.97 64.15 118.57 18.46 70.09 62.79 10333 

0.

5 

ET 27917 17945 18818 17.43 65.13 125.19 19.01 66.91 70.04 18429 

DT 25042 17677 18136 12.03 55.03 92.97 12.87 62.31 48.95 17922 

TT 52959 35622 36954 29.46 120.16 218.16 31.88 129.22 118.99 36351 
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Fig. 1 A block diagram illustrating the operational flow of the proposed HSICA 3D-STBCTC  

       
                                          (a)                                                  (b)                                                     (c)                                                  (d) 

       
                                        (e)                                                 (f)                                                     (g)                                                   (h) 

Fig. 2 Original HS image II of different frames (with frame number)  (a) 25, (b) 50, (c) 75, (d) 100, reconstructed HS image II with CR 16 of 

different frames (with frame number), (e) 25, (f) 50, (g) 75, and (h) 100. 

       
                                                     (a)                                           (b)                                          (c)                                             (d) 

                        
                                                      (e)                                          (f)                                             (g)                                             (h) 

Fig. 3 Original HS image I of different frames (with frame number), (a) 30, (b) 60, (c) 90, (d) 150, reconstructed HS image I with CR 14 of different 

frames (with frame number), (e) 30, (f) 60, (g) 90, and (h) 150. 
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