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Abstract - Autism Spectrum Disorder (ASD) is a neuro-developmental disease that affects behavioural retardation in verbal
communications and social interactions. Clinicians employ various ASD detection techniques to identify the condition.
However, these traditional methods are time-consuming and suffer from a lack of accuracy. Over the last two decades,
Machine Learning (ML) and Deep Learning (DL) algorithms have played a crucial role in the field of biomedical signal and
image processing. In this paper, we propose a Machine Learning Framework. This contains two stages. In the first stage, an
enhanced 3D-ResNet50 algorithm is proposed. The proposed algorithm is used to extract features from Magnetic Resonance
(MR) Images. In the second stage, the extracted features are used to classify the ASD controls using Machine Learning
Algorithms. To improve the accuracy of ASD classification, an enhanced 3D-ResNet50 algorithm is integrated with the ML
algorithms. The proposed algorithm is used along with the machine learning algorithms like Support Vector Machine (SVM),
K-Nearest Neighbours (KNN), Random Forest (RF), and Logistic Regression (LR). The proposed machine learning framework
is tested on 1112 Functional Magnetic Resonance Images (fMRI). These images are collected from the Autism Brain Imaging
Data Exchange (ABIDE-I) website. The ABIDE-I website provides a collection of 17 datasets from various international
biomedical laboratories. The proposed algorithm is tested on the total ABIDE-I website and 17 individual datasets. Our

proposed approach achieved 90% overall accuracy and 97% accuracy for the individual NYU dataset alone.
Keywords - Autism, 3D-ResNet50, Support Vector Machine, MR images, Random Forest.
Imaging (fMRI) data, prevents researchers from finding

compelling discriminator features to separate ASD and
control subjects [3]. Regular methods for extracting features

1. Introduction
Autism  Spectrum Disorder (ASD) represents a
challenging neurobiological disorder that affects how people

connect socially, make relationships, and show behavioral
adaptability. A correct diagnosis at an early stage is essential
for successful treatments that yield positive developmental
outcomes. Standard ASD diagnosis methods depend mainly
on expert evaluations and behavioral monitoring, yet these
methods require a lot of time and yield inconsistent results
[1]. The new capabilities of neuroimaging combined with
Artificial Intelligence (Al) technology now allow for an
automated process in ASD diagnosis through objective and
data-centric evaluation. The Magnetic Resonance Images
(MRI), at their functional level, demonstrate exceptional
power by examining connections in autistic brains to reveal
more about ASD neurological origins [2]. Multiple
challenges persist when using neuroimaging techniques for
autism spectrum disorder diagnosis. The difficulty in
developing machine learning applications stems from diverse
imaging protocols and datasets between research facilities
that reduce the extent to which machine learning models can
be generalized. The high level of complexity, combined with
multiple dimensions in Functional Magnetic Resonance

OSOE)

from fMRI data by engineering handcrafted features with
simple ML algorithms fail to detect the complex
neuroimaging data patterns, leading to poor classification
output. Better and more reliable approaches are essential to
developing robust ASD classification systems that produce
higher accuracy results [4]. Conventional approaches to ASD
classification successfully use Convolutional Neural
Networks (CNNs) and 3D CNNs to extract spatial and
temporal features from fMRI data [5]. However, applying
these models produces weak generalization results,
particularly in multi-site datasets with different imaging
standards. The diverse fMRI scan variations between
institutions make it difficult to create models that apply
consistently to various datasets. Experts must develop
advanced approaches to process complex neuroimaging
information while managing its built-in data variations. The
proposed research presents a new hybrid framework that uses
3D-ResNet50 for deep feature extraction and ML algorithms
like SVM, RF, KNN, and LR for classification operations [6].
The 3D-ResNet50 architecture extracts complex features
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from fMRI data, enabling the ML classifier algorithms to
achieve high-accuracy ASD classification through feature
utilization. The proposed method uses 3DResNet-50
combined with traditional ML approaches because this
framework overcomes traditional diagnosis methods while
boosting ASD evaluation accuracy. The proposed framework
achieves its evaluation through analysis of the publicly
available ABIDE-I dataset that presents fusion data from 17
international sites for comprehensive model examination [7].
The experimental outcomes confirm that the proposed
framework provides effective ASD classification by
achieving superior performance [8].

The existing ASD identification methods are expertise-
dependent and time-consuming. Over the past two decades,
numerous ML algorithms have been proposed to detect ASD.
Most algorithms are suitable for static images such as CT
scans and sMR images. Compared with static images,
clinicians ASD abnormalities can more easily detect ASD
abnormalities in 3D images and fMRI. Due to the above
limitations, ASD identification becomes difficult and leads to
a wrong diagnosis. A few researchers have proposed 3D-
based DL algorithms. However, these algorithms are
computationally intensive and require substantial memory
resources. Also, these algorithms achieve lower accuracy
than 2D-based algorithms. To overcome the aforementioned
limitations, a machine learning ML) framework is proposed
in this paper.

Numerous researchers have proposed numerous ML and
DL techniques to address the various challenges in ASD
detection. The novelty of the work is shown below.
In this study, a novel 3D ResNet50 architecture is
proposed to identify spatio-temporal features from fMRI
images. Conventional 2D CNNSs are suitable for static
images, such as sMR images. But these 2D-based
architectures fail to extract features from fMRI slices.
In this work, the proposed 3D-ResNet50 is integrated
with ML algorithms such as SVM, RF, LR, and KNN. In
general, 3D-based architectures provide lower accuracy
than 2D-based architectures. To improve accuracy, the
proposed DL algorithm is integrated with ML
algorithms. This is the first ML framework integrated
with a 3D-DL architecture with ML algorithms.
The proposed ML framework leverages the strengths of
3D-ResNet 50 and ML algorithms. 3D-ResNet 50
extracts complex functional patterns of the brain, and
ML algorithms use these features to classify ASD
controls.

This paper follows a specific organization, including a
thorough review of previous ASD classification research and
examinations of neuroimaging and machine learning
strategies, as presented in Section Il. The proposed
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framework details its operations in Section 1l by integrating
3D-ResNet50 as a deep feature extractor that works with ML
algorithms for classification operations. Section IV covers
the results and discussions, and Section V, accompanied by a
conclusion and future scope.

2. Related work

Recent studies on Autism Spectrum Disorder (ASD)
diagnostics and treatments have demonstrated significant
advancements in the utilization of machine learning and
technology. Hasan et al. [9] presented a machine learning-
based framework using Support Vector Machines for early
ASD detection, highlighting the necessity of a more diverse
dataset to achieve better generalization. Wang et al. [10]
evaluated the status of Electroencephalogram (EEG) and
MRI technology used in ASD diagnosis, concluding that
there was no standardization among the research studies.
Liang et al. [11] combined CNN networks with prototype
learning methods to classify brain functional networks using
fMRI, but its practical application is restricted due to the high
computational cost. Kohli et al. [12] reviewed the effects of
intelligent technologies on the early detection of ASD,
indicative of mobile technologies, but also described the
troubles with integrating these innovative solutions in clinical
use.

Yang et al. [13] proposed structural MRI biomarkers for
ASD with multi-class activation mapping models to improve
feature extraction and visualization, identifying critical brain
regions affected by ASD. However, the study suggests the
need for validation across broader demographic groups to
ensure the biomarkers' universality and reliability. Ashraf et
al. [14] applied deep learning through transfer learning
approaches to analyze brain imaging data for early-age ASD
detection, integrating 10T technologies for widespread
application. This study underscores the potential of transfer
learning to overcome the scarcity of large, annotated datasets
in ASD research. However, it requires more comprehensive
studies to confirm the findings across various populations.
Karim et al. [15] presented an analytical study on the
prediction of ASD meltdowns using ML techniques, which
are acute emotional dysregulation incidents common among
individuals with ASD. This research uses predictive models
to suggest proactive strategies for controlling ASD symptoms
while also emphasizing the difficulty of incorporating these
models into daily practice due to diverse meltdown triggers
and individual variations. Sadiq et al. [16] introduced a non-
oscillatory connectivity approach to classify ASD subtypes
using resting-state fMRI, utilizing advanced machine
learning techniques like SVM. Their approach has shown a
potential to differentiate between different complex ASD
subgroups like Asperger’s disorder and pervasive
developmental disorder, but stresses the necessity for larger
sample sizes for validation.
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Table 1. Summary of the reviewed deep learning studies

Study Modality Participants Methods Biomarkers Best Accuray
A distributed network
Heinsfeld et al. fMRI NASD =530, Deep Neural between anterior and 70%
(2018) [4] ASD =505 Network posterior brain areas is
negatively correlated.
. Abnormal connectivity
Jahani et al. SMRI & NASD = 351, . . 0
(2024) [17] fMRI ASD = 351 3D-DenseNet was found in the cortical 72%
areas and thalamus.
An abnormal Regional
Homogeneity was found
in
Thomas et al. NASD = 542, ) bilateral middle temporal 0
(2020) [18] MR ASD = 620 3D-CNN gyri and 66%
The right
parahippocampal gyrus
of ASD controls.
Edge-variational Altered Functional
Dong et al. _ graph Connectivity in the left
(2025) S';AI\/FIQFIQ;& ,\'?‘ AS\SDD_-A'%Q convolutional and right Temporal 72.2%
[19] - networks (EV- | Cortex of ASD controls.
GCN)
. _ Abnormal cortical
Alietal sMRI NASD__ 336, Neural Network | folding pattern found in 71.6%
(2022) [20] ASD =328
ASD controls.
Functional connectivity
is altered in the Left
Zheng et al. NASD = 111, Dual Branch- . 0
(2025) [21] MR ASD = 103 Autoencoder amygdala and right 70.7%
posterior cingulate
gyrus.
Abnormal connectivity
. was found in the
Almughim et NASD= 530, . o
al. (2021) [22] fMRI ASD = 505 ASD -SAENet pgrahlppocampal, Igft 70.8%
fusiform gyrus, and right
hippocampus.
Attenuated functional
Jung et al. fMRI NASD =462, Stacked connectivity is identified 78.1%
(2023) [23] ASD =418 Autoencoder in the right thalamus and '
lateral occipital cortex.
Attenuated functional
connectivity is identified
Wang et al. NASD = 255, Stacked Sparse 0
2019 [24] fMRI ASD = 276 Auto Encoder between the frontal pole 75.27%
and the temporal
fusiform cortex
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Fig. 1 Block diagram of proposed Machine Learning framework
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Mohi-ud-Din et al. [24] detected ASD classification
using EEG signals and 1D CNNs and proved the
effectiveness of 1D CNNs in capturing temporal information
and features in EEG time-domain signals for ASD diagnosis.
Their analysis indicates that Deep Learning can significantly
boost diagnostic performances, but the study indicates that
model overfitting requires proper optimization methods and
precision adjustment for success. Han et al. [25] have also
used a multimodal approach by combining EEG, Eye-
Tracking (ET), and neuroimaging data to diagnose ASD in
children. The research applied stacked denoising
autoencoders as a feature extraction and fusion method,
which proved that combining multiple data types leads to
better diagnostic outcomes.

Integrating complex multimodal data with advanced
Machine Learning Frameworks creates challenges for
successful clinical use. Liang et al. [26] developed an SVM
classification system for identifying self-stimulatory
behaviours in ASD patients by adopting explainable temporal
coherency deep features. The system merges unsupervised
deep learning techniques to discover temporal patterns in
behavioural information, creating a new method for
computationally analysing data behaviour. The results show
promise, but individuals' unique behavioural patterns create
difficulties when applying these frameworks to all cases.

Al-Hiyali et al. [27] combined the wavelet transform
with transfer learning to classify BOLD fMRI signals to
identify ASD. Their method improves feature extraction by
converting the time series data to a scalable domain, using
architectures like DenseNet201 and GoogleNet to increase
the classification accuracy. This study demonstrates the
benefit of hybrid methods in improving the interpretability of
fMRI data, but consistent results over different populations
remain a crucial step still to be accomplished. Rahman et al.
[28] presented an in-depth review of the automated methods
that use human activity analysis to diagnose ASD.

The review presents a variety of ML approaches for
behavioural data analysis to diagnose ASD and also observes
that combining multiple behavioural predictors can be more
accurate. However, the review also highlights the need for
standardized datasets and better validation approaches to take
these technologies to the next level. Zhang et al. [29]
investigated the assessment of symptom severity of ASD
from EEG metrics.

Using EEG to examine the topology of the functional
brain network, their study found network metrics that are
associated with levels of ASD severity. This approach is also
helpful in developing customized treatment plans and
clarifying the neurobiological cause of ASD. The primary
points raised are the lack of uniform standards in healthcare
and the inconsistent quality of EEG signals.
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The literature survey highlights the potential of ML and
DL algorithms for ASD classification. However, the
following gaps remain:
Diagnosis methods like ADI-R and ADOS have long
questionnaires and require certified trainers for proper
assessment. Thus, a more accurate and faster method for
diagnosing ASD is needed.
Existing ML-based algorithms heavily depend on
handcrafted features. Sometimes, handcrafted features
can mislead the diagnosis of ASD for complex images
like fMRI images. These algorithms are not always a
viable solution.
Most researchers use fMRI to identify functional
abnormalities in patients with ASD. In 2D-DL
algorithms, such as 2D-CNNSs, some spatial information
is lost. In the 2D-CNN algorithm, fMRI data are divided
into 2D images, breaking the original volumetric
relationships between regions. 3D architectures more
effectively determine functional connectivity patterns
than 2D architectures.

3. Proposed Method

The proposed framework uses Deep Learning and
Machine Learning to improve ASD diagnosis by assessing
Functional Magnetic Resonance Imaging (fMRI) data. The
framework divides its approach into preprocessing, feature
extraction, and classification. The preprocessing phase works
on the ABIDE-I dataset, which contains resting-state fMRI
scans from several international sites, by performing
standardization to reduce differences between different
imaging protocols [30]. Data preprocessing removes skull
compartments and measures motion artefacts while
normalizing spatial coordinates before smoothing features to
create standardized, high-quality extracted data. Diminution
procedures remove lazy data while maintaining crucial
neurological patterns for classification.

The proposed 3D-ResNet50 architecture is a feature
extractor that obtains spatial and temporal data features from
preprocessed fMRI datasets. An innovative residual learning
technique built into 3D-ResNet50 permits the successful
extraction of hierarchical features while resolving gradient
vanishing problems, so it operates on high-dimensional
neuroimaging information [31]. The resultant feature maps
show complex brain connectivity patterns because these
patterns enable successful discrimination between ASD
patients and control individuals.

The proposed algorithm uses ML classifiers to process
the features extracted by 3D-ResNet50 to establish group
affiliations between ASD and controls. ML algorithms prove
suitable for the study because they can efficiently manage
high-dimensional data distribution and establish optimal
decision boundaries for high generalization performance, as
shown in Figure 1. Cross-validation methods enable the
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classifier to undergo training and validation sessions that
validate the reliability of its model.

Conv 3D

v

Batch Normalization

RelLU

!

Residual group 1

|

Residual group 2

\ 4
Residual group 3

I

Residual group 4

|

Residual group 4

I

Residual group 5

\ 4
Residual group 6

\ 4
Residual group 7

\ 4
Residual group 8

v

Average Pooling

!

Fully connected layer

Fig. 2 Block diagram of 3D-ResNet50

The low-frequency fluctuations of resting-state brain
activity are isolated by applying a band-pass filter that retains
signals between 0.01 and 0.1 Hz. The Craddock 200 (CC200)
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atlas is employed to develop functional connectivity matrices
through 200 Regions of Interest (ROIs). The proposed
framework uses 3D-ResNet50 to diagnose ASD from
controls based on fMRI data, as illustrated in Figure 2. The
3D-ResNet50 is an enhancement of ResNet50 for volumetric
data, such as fMRI. The method enables deeper network
learning through residual learning, thereby maintaining high
performance standards. An enhanced 3D-Resnet50
architecture details are shown in Table 2.

3.1. Input and Initial Convolution

The architecture begins with an input 3D fMRI image
volume, which is passed through a first 3D convolutional
layer with a kernel size of 3x3x3. This layer retrieves spatial
and temporal properties from the input volume, applying a
convolution operation that is defined as in (1):

Y(l,],k) = ZmZanX(l + m!j +nk +p) '
Wimmnp)+b (1)

Where Y(i, j, k) is the output of the 3D CNN, X(i+m,
j+n, k+p) is the input tensor, W(m,n,p) is the weight tensor,
and b is the bias.

The fundamental structure of 3D-ResNet50 comprises
four residual groups, each consisting of multiple
convolutional blocks and identity blocks.

This 3D-ResNet50 architecture obtains spatial and
temporal elements from fMRI data using multiple layers,
including convolutional blocks, identity blocks, skip
connections, pooling layers, and fully connected layers for
ASD classification—convolutional ~ block  functions
whenever feature maps get expanded or reduced in both sizes
during times of down-sampling.

The 3D Convolutional Layer operates on three
dimensions to analyze volumetric data. Then, the model
utilizes Batch Normalization to normalize the convolutional
outputs, allowing training to run more efficiently. The
definition of the batch normalization operation is:

X-u

A= Jorre

Y+ B @)

Here u and o2 are the mean and variance of the batch, e
is a small constant for numerical stability, y and g are
learnable parameters. The initial value of y is 1, and g is 0. y
and B are used to improve the model performance and
stability.

The identity block extracts more features that match
input and output sizes while sustaining residual connections.

This identity block functions similarly to the
convolutional block through 3D convolutions and contains
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batch normalization and ReLU activation while connecting
both the input and the last layer's output. The residual
mapping method addresses the vanishing gradient issue,
allowing deeper networks to efficiently learn for fMRI ASD
diagnosis.

The network can bypass layers through skip connections
and directly add input to transformed outputs because of this
formula:

Output = F(X) + X 3

Here, X is the input and F(X) is the residual function.

The convolutional layers transform the input data into the
output pattern represented by F (X).
F=W-X+b (4)

Where W is the weight matrix, b is the bias, and X is the
input feature vector.

_ _ exp(zo)
P(y - C) - ZjexP(Zj) (5)

Where z is the output score for class c, z; is the scores
for all classes (j=1,2,...c) and P(y = c) is the probability of
the input belonging to class c.

3.2. Classification Using Machine Learning Algorithms

The 3D-ResNet50 architecture performs feature
extraction, which enables various ML algorithms to classify
extracted features. These algorithms include SVM, KNN,
RF, and LR. Each algorithm employs its own method to
distinguish between the extracted features of individuals with
ASD and those of healthy controls.

3.2.1. Support Vector Machine

SVM is a method of supervised learning that finds the
best hyperplane for a complete separation of two classes
(ASD and Controls) in high-dimensional space. The optimal
problem of SVM is expressed as in (6) and (7),

e wli? + e X & (6)
Subject to:
yiw-x;+b)=21-§,§=0 )

Where w is the weight vector, b is the bias term, c is the
regulation parameter, &; Are slack variables in case of the
inflation of non-separable data, y; Are the class marks (the
class marks are: +1, for ASD; —1, for controls) and x; is a
feature vector.

The kernel employed in this study is the Radial Basis
Function (RBF) kernel, as in (8):

K(x;,x;) = exp(—y Il x; — x; I1?) (8)
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Where y stands as the kernel parameter, x; and x; These
are input feature vectors. The SVM model demonstrates
excellence in high-dimensional analysis and shows resistance
to overfitting, which makes it suitable for ASD classification.

Table 2. Enhanced 3D-ResNet50 architectural parameters

Group Layer Architecture
Conv3D | Conv3D 3x3x3, 64, stride (1, 2, 2)
Conv 3D_1-1 | 1x1x1, 64
Residual | Conv 3D 1-2 | 3x3x3, 64
Group 1 | Conv3D 1-3 | 1x1x1, 256
Conv 3D_1-4 | 1x1x1, 256
) Conv 3D_2-1 | 1x1x1, 64
Residual —
Group 2 Conv 3D_2-2 | 3x3x3, 64
Conv 3D_2-3 | 1x1x1, 256
Conv 3D_3-1 | 1x1x1, 128
Residual | Conv 3D 3-2 | 3x3x3, 128, stride (2, 2, 2)
Group 3 | Conv 3D 3-3 | 1x1x1, 512
Conv 3D_3-4 | 1x1x1, 512, stride (2, 2, 2)
. Conv 3D_4-1 | 1x1x1, 128
Residual -
Group 4 Conv 3D_4-2 | 3x3x3, 128
Conv 3D _4-3 | 1x1x1, 512
Conv 3D_5-1 | 1x1x1, 256
Residual | Conv 3D 5-2 | 3x3x3, 256, stride (2, 2, 2)
Group 5 | Conv 3D 5-3 | 1x1x1, 1024
Conv 3D _5-4 | 1x1x1, 1024, stride (2, 2, 2)
. Conv 3D_6-1 | 1x1x1, 256
Residual -
Group 6 | Conv3D_6-2 | 3x3x3, 256
Conv 3D_6-3 | 1x1x1, 1024
Conv 3D_7-1 | 1x1x1, 512
Residual | Conv 3D 7-2 | 3x3x3, 512, stride (2, 2, 2)
Group 7 | Conv 3D_7-3 | 1x1x1, 2048
Conv 3D_7-4 | 1x1x1, 2048, stride (2, 2, 2)
. Conv 3D 8-1 | 1x1x1,512
Residual -
Group 8 | Conv3D_8-2 | 3x3x3, 512
Conv 3D_8-3 | 1x1x1, 2048

3.2.2. K-Nearest Neighbors (KNN)

KNN uses a non-parametric approach for classification,
wherein points obtain their class label through the majority
vote of their k-nearest neighbors. The determination of data
point distance involves the application of the Euclidean

distance calculation shown in (9):

d(xi'xj) = \/anzl(xi,m - xj,m)z

Where x; , and x; ,, Are feature vectors, n is the number

of features.

KNN is also simple and effective, but computationally
complex for big data. It depends highly on the value of k and

the distance metric.
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3.2.3. Random Forest

A Random Forest is a tree-structured model in which
each node is a decision based upon input features, each
branch represents a decision result, and each leaf node
represents the label class. The tree is built by iteratively
dividing the data set into features that yield the highest
information gain or Gini impurity. Random Forests are
interpretable and can handle non-linear relationships, but
they are prone to overfitting.

3.2.4. Logistic Regression

Logistic Regression functions as a linear system that
performs binary classification. The model applies a logistic
function to calculate class probability as defined in (10):

1
1+exp(—(w.x+b))

Py =1|x) = (10)

Where w is the weight vector, b is the bias term, x is the
feature vector. The model is trained by minimizing the log
loss, which is defined as in (11):

L(w,b) = = XL, [yilog(P(; = 11 x,)) (11)

Where w is the weight vector, x; is a feature vector, y; is
the class label, and b is the bias term. Logistic Regression is
efficient and straightforward, but it models a linear

relationship between results in features and the class's log
odds.

4. Results and Discussion

The enhanced 3D-ResNet50 framework evaluated
information from the 871 preprocessed resting-state fMRI
scans distributed across 17 ABIDE-I international sites.
Despite conventional CNN-based and 3D-CNN methods, the
model demonstrated 90% accuracy for ASD classification.
The model showed enhanced performance for the NYU site,
with a 97% accuracy rating, because it could effectively adapt
to reduced site-specific variations.

The combination of 3D-ResNet50 with SVM produced
both effective spatial-temporal feature learning and created a
sturdy decision border that eliminates the typical deep
learning flaws connected to using neuroimaging data
independently.

Different performance measures, including precision,
recall, and F1-score, proved the reliability of this framework
across datasets by showing enhanced generalization ability in
multi-site data assessments. Deeper network training and
better representation learning became possible because
residual learning and skip connections resolved the vanishing
gradient problem. Problems persist in the framework
concerning its ability to handle imaging protocol differences
and variations in scanner resolution and sample distribution
patterns because these factors impact consistency in network
performance.

Table 3. Performance of the proposed 3D-ResNet50 combined with different ML algorithms

Method Accuracy (%) Sensitivity (%) Specificity (%) F1-Score
3D-ResNet + SVM 90.00 80.91 76.12 69.96
3D-ResNet50 + RF 78.00 78.89 69.10 60.43

3D-ResNet50 + KNN 70.00 71.65 74.34 66.87
3D-ResNet50 + LR 85.00 69.71 67.65 70.43

The proposed enhanced 3D-ResNet50 model utilized
SVM, RF, KNN, and LR as machine learning classifiers for
assessment, as shown in Table 3. Records show that the 3D-
ResNet50 + SVM system yielded an accuracy rate of 90%,
proving its ability to classify ASD subjects from control
groups precisely.

This 3D ResNet combination surpassed other models
with a detection accuracy of 80.43%, which reflects its ability
to accurately identify ASD cases together with 76.12%
specificity and 69.96% F1-score, which indicates balanced
performance. The accuracy of the Random Forest (RF)
classifier reached 78%, yet its specificity dropped to 69.10%,
causing more false results to occur. The KNN-based model
achieved 70% accuracy while having lower sensitivity values
of 71.65% and an Fl-score of 66.87%, which suggests
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difficulties in understanding neuroimaging patterns in this
model. The accuracy achieved by Logistic Regression (LR)
reached only 85%, which was accompanied by poor
sensitivity measurement (69.71%) and specificity (67.65%)
to demonstrate ineffective performance in high-dimensional
fMRI data analysis. SVM is the top choice in ASD
classification when integrated with 3D-ResNet-50because it
appropriately processes deep features and averts overfitting
problems to establish reliability in ASD detection.

Different institutions within the ABIDE-I dataset
demonstrated varying results in using 3D-ResNet-50 + SVM
because of their distinct data collection protocols and
magnetic resonance imaging parameters, as shown in Table
4.
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Table 4. Site-Wise results for enhanced 3D-ResNet50 + SVM

Site Accuracy (%) Sensitivity (%6) Specificity (%) F1-Score
CALTECH 86.40 86.40 81.20 78.89
CMU 88.90 80.32 71.10 86.10
KKI 78.90 81.54 86.44 87.32
LEUVEN 85.65 87.23 79.89 74.74
MAX MUN 88.43 78.65 82.22 68.19
NYU 97.00 93.10 96.55 89.01
OHSU 94.11 89.97 92.98 88.88
OLIN 94.54 91.11 76.34 70.94
PITT 91.11 87.88 71.11 68.91
SBL 90.09 92.32 90.09 73.01
SDSU 79.99 80.12 79.94 74.44
STANFORD 77.77 81.74 69.12 64.96
TRINITY 94.43 90.07 89.99 88.11
UCLA 87.86 81.45 76.75 70.04
UM 87.34 90.01 89.87 67.69
USM 83.33 80.43 91.04 76.18
YALE 95.98 93.45 86.41 81.71
Table 5. Site-wise results for enhanced 3D-ResNet50 + random forest
Site Accuracy (%) Sensitivity (%) Specificity (%) F1-Score
CALTECH 77.21 75.13 81.11 78.43
CMU 74.14 87.78 82.34 70.35
KKI 84.42 94.72 93.57 91.67
LEUVEN 93.99 90.65 82.56 88.35
MAX MUN 80.67 89.23 92.63 79.76
NYU 95.00 90.32 92.99 80.43
OHSU 90.01 83.67 93.08 79.99
OLIN 89.99 92.22 87.54 82.94
PITT 90.07 94.76 80.01 77.77
SBL 92.24 84.49 90.38 90.07
SDSU 74.56 81.74 75.75 79.72
STANFORD 89.93 85.25 79.34 75.01
TRINITY 89.99 94.45 78.78 73.49
UCLA 90.94 91.78 86.84 79.34
UM 92.22 80.91 80.02 79.34
USM 94.08 79.56 92.46 75.76
YALE 90.10 95.14 76.32 85.86

Testing on the NYU site delivered 97% overall accuracy,
with a sensitivity of 93.10% and specificity of 96.55%,
demonstrating an excellent classification performance
balance. Data collected from OHSU, OLIN, TRINITY, and
YALE produced high classification performance rates at
94.11 per cent, 94.54 per cent, 94.43 per cent, and 95.98 per
cent, respectively. CMU achieved 88.90% accuracy,
followed by MAX MUN at 88.43%, then UCLA at 87.86%,
and UM at 87.34%. At the same time, CALTECH reached
86.40% accuracy, and LEUVEN obtained 85.65%.
STANFORD (77.77%) and SDSU (79.99%) showed reduced
accuracy results because imaging protocols exhibited higher

levels of variation. Different sites recorded F1-scores that
spanned between 64.96% (STANFORD) to 89.01% (NYU),
showing that dataset quality and homogeneity directly
influenced classification effectiveness.

Different ABIDE-I sites demonstrated distinct
classification abilities through the 3D-ResNet50 + Random
Forest (RF) framework, resulting in NYU (95%) leading
among NYU, LEUVEN (93.99%) performing second, YALE
(90.10%), and PITT (90.07%) following closely. In
comparison, KKI (84.42%) and MAX MUN (80.67%)
displayed good results, with KKI achieving maximum
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sensitivity (94.72%), as shown in Table 5. The remaining
sites, like SDSU (74.56%) and CMU (74.14%), exhibited
reduced performance, likely due to site-specific factors. The
KKI site obtained the highest sensitivity rating (94.72%),
achieving 84.42% accuracy.

The sites SDSU and CMU showed performance at
74.56% and 74.14%, respectively, because their data showed
high variability, while their imaging protocols differed from
those of other sites. The F1-score measurements from CMU
were lowest at 70.35%, while KKI produced the highest F1-
score at 91.67%. The scores also included LEUVEN at
88.35% and OLIN at 82.94%. Random Forest classifiers
demonstrated comparable accuracy but exhibited site-
dependent performance discrepancies because their
specificity ranged between 75.75% and 93.57%, producing
more incorrect optimistic predictions than SVM classifiers.

The 3D-ResNet50 + KNN approach produced excellent
results at multiple sites by achieving the highest accuracy
rates of 92% for UM, 91% for TRINITY, 86.96% for

CALTECH, and 86.32% for YALE because KNN effectively
detected site-specific neuroimaging patterns, as shown in
Table 6. Another set of clinical data from LEUVEN obtained
93.33% accuracy, and KKI obtained 92.47% accuracy, which
showed a balanced performance between sensitivity and
specificity measures. The features showed reduced
consistency at NYU and OLIN due to imaging variability,
causing their accuracy rates to drop to 76.19% and 76.97%,
respectively.

The F1-scores displayed significant variability, with
STANFORD reaching 71.05% while SBL scored the highest
at 91.01% among sites. KNN achieved overall good
performance yet demonstrated inconsistent results between
sites, indicating its susceptibility when applied to
distributions of neuroimaging data in high dimensions, which
affects its general applicability compared to SVM-based
classification methods. The 3D-ResNet50 + Logistic
Regression (LR) framework generally obtained poor
performance results due to its challenges working with high-
dimensional fMRI data. In general, LR methods are suitable
for 2D images.

Table 6. Site-wise results for enhanced 3D-ResNet50 + KNN

Site Accuracy (%) Sensitivity (%) Specificity (%) F1-Score
CALTECH 86.87 86.51 92.81 89.37
CMU 84.17 95.45 92.33 76.66
KKI 92.47 84.42 83.55 89.68
LEUVEN 93.33 94.44 91.85 88.85
MAX MUN 90.69 92.22 82.69 89.06
NYU 92.00 79.25 81.98 89.93
OHSU 86.06 93.69 83.01 89.97
OLIN 76.97 72.82 97.55 72.95
PITT 83.59 84.97 90.91 79.78
SBL 90.02 80.41 96.38 91.01
SDSU 79.58 91.79 95.85 89.79
STANFORD 89.91 84.28 75.37 71.05
TRINITY 89.96 91.44 88.98 84.29
UCLA 91.93 81.79 95.83 89.31
UM 91.00 91.49 94.24 77.23
USM 91.91 71.59 82.43 86.51
YALE 86.32 85.14 96.32 75.38

Among the sites, NYU achieved the best overall accuracy
at 90%, and CALTECH achieved 89.85% accuracy. Yet,
CMU maintained adequate specificity at 78.23%, while
CALTECH showed excellent sensitivity at 96.13% to
effectively detect ASD cases, as shown in Table 7. The sites
of NYU and OLIN demonstrated moderate success. Still,
their accuracy levels were at 89.71% and 84.51%,
respectively, while the sites STANFORD USM and YALE
showed the lowest detection rates with results at 67.79%,
63.39% and 65.95%, respectively. The F1 scores between

sites showed substantial differences because OHSU achieved
58.48% while NYU obtained 82.12% accuracy. The
sensitivity rates showed irregular patterns because OHSU
(69.92%) and SDSU (60.19%) misidentified ASD subjects,
which resulted in possible inaccuracies.

The learning progress of the model appears through the
Training vs Validation Accuracy Curve, which presents the
blue solid line for training accuracy and the red dashed line
for validation accuracy for 25 epochs, as shown in Figure 3.
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Table 7. Site-wise results for enhanced 3D-ResNet50 + logistic regression

Site Accuracy (%) Sensitivity (%) Specificity (%) F1-Score
CALTECH 89.85 96.13 91.13 70.19
CMU 84.21 72.71 78.23 70.10
KKI 70.09 75.51 77.93 80.03
LEUVEN 80.51 77.29 69.81 65.73
MAX MUN 70.43 68.64 62.29 65.91
NYU 90.00 87.40 77.76 82.12
OHSU 77.61 69.92 62.98 58.48
OLIN 84.51 81.18 66.39 60.91
PITT 71.15 67.89 81.41 68.94
SBL 72.09 70.33 68.02 70.09
SDSU 69.95 60.19 69.94 64.47
STANFORD 67.79 61.78 60.19 61.94
TRINITY 64.49 70.09 80.11 80.17
UCLA 77.89 71.47 74.74 71.02
UM 67.36 60.91 69.89 64.62
USM 63.39 67.95 61.94 66.19
YALE 65.95 63.85 66.44 61.09

The metrics begin with a progressive ascent as the model
acquires essential patterns from the data. At epoch 20-25, the
accuracy becomes stable, while training accuracy achieves
approximately 88%, and validation accuracy levels are at
86%. Minor overfitting is normal for deep learning models,
so a small gap exists between training and validation
accuracy, while the overall performance shows adequate
learning.
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Fig. 3 Training and validation accuracy curve for enhanced 3D ResNet

+ SVM method using entire ABIDE-I preprocessed data

) 5

The dynamic variations in model performance provide a
realistic assessment of generalization abilities for the 3D-
ResNet50 + SVM proposed framework through this
visualization tool. Figure 4 shows the model's training. The
blue solid line represents training loss, while the red dashed
line represents validation loss, which decreased steadily until
both lines stabilized. The losses show initial high readings
until they decrease steadily because the model effectively
learns and reduces errors. After twenty-five epochs, the loss
reaches equilibrium, which signifies that the model has
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achieved its ideal learning threshold. The model's training
outcome achieves 0.1 loss, and validation reaches 0.15 loss,
indicating a suitable fit and low overfitting potential.
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The ROC Curve of Figure 5 demonstrates how different
models (LR, SVM, RF, KNN) perform their classification
tasks by analyzing the complete ABIDE-I dataset (871
subjects). SVM delivered the best AUC of 0.85 because of its
excellent discrimination capabilities between subjects with
ASD and controls.

The classification results showed that logistic regression
reached AUC 0.79, random forest reached AUC 0.75, and
KNN obtained a lower AUC of 0.70. Models with zero
discrimination ability have an AUC value of 0.50, equal to
the random guess baseline. SVM emerges as the most
effective classification model for fMRI data-based ASD
classification because its reported AUC values are the
highest.

The Training vs. Validation Accuracy Curve for the
NYU site extends for 40 epochs, as shown in Figure 6. The
learning process demonstrates solid performance because
training accuracy (blue solid line) and validation accuracy
(red dashed line) improve consistently to reach 97% and
95%, respectively. The escalating performance indicates
minimal dimension overfitting occurred because the
validation accuracy traces very closely after the training
curve.
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Fig. 8 ROC curve for 3D-ResNet50 + SVM method using the NYU site

The Training vs Validation Loss Curve of the NYU site

in Figure 7 shows a continuous loss reduction for 40 epochs,
which indicates successful learning. The training loss (Blue
Solid Line) shows consistent descent, whereas validation loss
(Red Dashed Line) stabilizes near 0.08 while training loss
approaches 0.0. Due to its smooth loss reduction pattern, the
model achieves strong convergence, low overfitting, and

optimal performance at the NYU site.

Table 8. Performance comparison of the proposed machine learning framework with previous studies on the ABIDE-1 database

Study Accuracy (%) Participants Method
Sherkatghanad et al. [32] 70.22 1112 CNN
Thomas et al. [18] 66 1162 3D-CNN
Wang et al. [33] 71.60 1057 Graph convolutional network (GCN)
Deng et al. [34] 74.53 1112 Ensemble 3D-CNN
Sabegh et al. [35] 73.53 1112 CNN
Liu et al. [36] 75.20 1112 Multi-atlas deep ensemble (MADE) network
Proposed method (for
entire ABIDE-! data) 90 1112 3D-ResNet50 + SVM
Proposed method (for
NYU site) 97 184 3D-ResNet50 + SVM
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Figure 8 displays the ROC Curve assessment of different
classification models, which include Logistic Regression
(LR), Support Vector Machine (SVM), Random Forest (RF),
and K-Nearest Neighbors (KNN) applied to the NYU site.
Support  Vector Machine revealed the best testing
performance by generating an area under the curve of 0.95,
demonstrating its strong capability to separate ASD from
healthy controls. Random Forest achieved an AUC value of
0.85, and KNN reached an AUC of 0.85, and both provided
good classification results. The models included Logistic
Regression with an AUC of 0.80 and Random Forest with an
AUC of 0.75, which exhibited moderate classification ability.
A model lacking discrimination ability would perform at a
random guess rate, which equates to an AUC of 0.5.

The accuracy assessment of the proposed 3D-ResNet50
+ ML framework for ASD classification becomes more
effective than earlier studies on ABIDE, as reported in Table
8. Existing CNN, 3D-CNN, and Graph Convolutional
Networks (GCN) models achieved ASD classification
accuracies between 66%, as reported by Thomas et al. (2020),
and 75.20%, as observed by Liu et al. (2024). The ensemble
of 3D-CNN achieved an accuracy of 74.53%, according to
Deng et al. (2022).

However, Sabegh et al. (2023) and Wang et al. (2021)
reported accuracies of 73.53% and 71.60%, respectively,
using CNN and GCN. The proposed method produced
superior results compared to existing works by reaching
87.14% accuracy on the entire ABIDE-I dataset and an
outstanding 97.40% accuracy on the NYU site through
integrating 3D-ResNet50 for feature extraction and machine
learning classifiers. The proposed machine learning ML)
framework outperformed existing techniques. The summary
of the existing algorithms is shown in Table 7. Thomas et al.
proposed a 3D-CNN algorithm and achieved a 66% accuracy.
In contrast, Sherkatghana et al proposed a 2D-CNN and
achieved 70.22%. Compared to 3D-based CNN algorithms,
the 2D-based CNN algorithm achieved good accuracy. Due
to fewer parameters and reduced overfitting, the 2D-CNN
achieved good results. The proposed ML framework
achieved high accuracy by integrating 3D-ResNet50 with
ML classifiers. The proposed 3D-ResNet50 efficiently
extracts spatio-temporal features from fMRI images. These
features are provided to the ML classifiers for classifying

References
[1]

ASD controls. Remarkable results were achieved due to this
DL and ML integration method.

5. Conclusion

The Neurodevelopmental condition, autism spectrum
disorder, causes significant interference with how people
communicate and interact socially and impacts their
cognitive processing abilities. Behavioural assessments,
which traditionally diagnose autism, use highly subjective
and time-consuming methods that produce inconsistent
results, thus requiring automated data-based solutions. The
research designs an innovative ASD diagnostic structure
using 3D-ResNet50 for extracting features while machine
learning classifiers perform the classification operation on
fMRI data collected from the ABIDE-I dataset. The proposed
approach successfully reduces problems in high-dimensional
fMRI data and site-specific variations in different imaging
facilities. The feature extraction capabilities of the 3D-
ResNet50-based approach surpassed those of conventional
CNN and 3D-CNN since it avoided their generalization and
overfitting weaknesses, thus enhancing ASD classification
outputs. The evaluation of ABIDE-I data yielded 90% overall
classification accuracy and 97% accuracy at the NYU site
while surpassing all previous state-of-the-art methods.

The SVM classifier exploited deep features successfully
during analysis and demonstrated the best AUC value (0.95)
in ASD categorization. Research efforts for the upcoming
years will concentrate on developing domain adaptation and
transfer learning methods to boost the generalization of the
proposed 3D-ResNet50 + ML system. Using multiple
neuroimaging data methods (SMRI together with Diffusion
tensor imaging and EEG) enables researchers to obtain
additional information about brain connectivity structures,
leading to better classification results. Implementing
Explainable Al (XAIl) methods will make models more
interpretable, which will help clinicians use neurobiological
indicators for specific clinical decisions. Physicians can
execute automated ASD screening through cloud-based and
edge-computing systems for real-time clinical deployment,
which enables early diagnosis. The extraction of features and
scalability improvement requires more validation on large
independent datasets, graph-based approaches, transformer
modelling, and self-supervised learning.

I. Kamp-Becker et al., “Diagnostic Accuracy of the ADOS and ADOS-2 in Clinical Practice,” European Child & Adolescent Psychiatry,

vol. 27, pp. 1193-1207, 2018. [CrossRef] [Google Scholar] [Publisher Link]

(2]

Jared A. Nielsen et al., “Multisite Functional Connectivity MRI Classification of Autism: ABIDE Results,” Frontiers in Human

Neuroscience, vol. 7, pp. 1-12, 2013. [CrossRef] [Google Scholar] [Publisher Link]

(3]
2021. [CrossRef] [Google Scholar] [Publisher Link]

(4]

Lizhen Shao et al., “Classification of ASD Based on fMRI Data with Deep Learning,” Cognitive Neurodynamics, vol. 15, pp. 961-974,

Anibal Solon Heinsfeld et al., “Identification of Autism Spectrum Disorder using Deep Learning and the ABIDE Dataset,” Neuroimage:

Clinical, vol. 17, pp. 16-23, 2018. [CrossRef] [Google Scholar] [Publisher Link]

204


https://doi.org/10.1007/s00787-018-1143-y
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Diagnostic+accuracy+of+the+ADOS+and+ADOS-2+in+clinical+practice&btnG=
https://link.springer.com/article/10.1007/s00787-018-1143-y
https://doi.org/10.3389/fnhum.2013.00599
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multisite+functional+connectivity+MRI+classification+of+autism%3A+ABIDE+results&btnG=
https://www.frontiersin.org/journals/human-neuroscience/articles/10.3389/fnhum.2013.00599/full
https://doi.org/10.1007/s11571-021-09683-0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Classification+of+ASD+based+on+fMRI+data+with+deep+learning&btnG=
https://link.springer.com/article/10.1007/s11571-021-09683-0
https://doi.org/10.1016/j.nicl.2017.08.017
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Identification+of+autism+spectrum+disorder+using+deep+learning+and+the+ABIDE+dataset&btnG=
https://www.sciencedirect.com/science/article/pii/S2213158217302073

P. Yugander & M. Jagannath / IJECE, 13(1), 193-206, 2026

[5] Meijie Liu, Baojuan Li, and Dewen Hu, “Autism Spectrum Disorder Studies Using fMRI Data and Machine Learning: A Review,”
Frontiers in Neuroscience, vol. 15, pp. 1-17, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[6] Nurul Amirah Mashudi, Norulhusna Ahmad, and Norliza Mohd Noor, “Classification of Adult Autistic Spectrum Disorder using Machine
Learning Approach,” IAES International Journal of Artificial Intelligence, vol. 10, no. 3, pp. 743-751, 2021. [CrossRef] [Google Scholar]
[Publisher Link]

[7]1 R. Abhinav Chaitanya et al., “Autism Spectrum Disorder Detection using Attention-Based CNN and ML Classifiers,” Procedia Computer
Science, vol. 258, pp. 4216-4227, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[8] Alexandre Abraham et al, “Deriving Reproducible Biomarkers from Multi-site Resting-state Data: An Autism-based Example,”
Neurolmage, vol. 147, pp. 736-745, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[9] S.M. Mahedy Hasan et al., “A Machine Learning Framework for Early-Stage Detection of Autism Spectrum Disorders,” IEEE Access,
vol. 11, pp. 15038-15057, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[10] Zhiyong Wang et al., “Diagnosis and Intervention for Children with Autism Spectrum Disorder: A Survey,” IEEE Transactions on
Cognitive and Developmental Systems, vo. 14, no. 3, pp. 819-832, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[11] Yin Liang, Baolin Liu, and Hesheng Zhang, “A Convolutional Neural Network Combined with Prototype Learning Framework for Brain
Functional Network Classification of Autism Spectrum Disorder,” IEEE Transactions on Neural Systems and Rehabilitation Engineering,
vol. 29, pp. 2193-2202, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[12] Manu Kohli, Arpan Kumar Kar, and Shuchi Sinha, “The Role of Intelligent Technologies in Early Detection of Autism Spectrum Disorder
(ASD): A Scoping Review,” IEEE Access, vol. 10, pp. 104887-104913, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[13] Rui Yang et al., “Exploring sSMRI Biomarkers for Diagnosis of Autism Spectrum Disorders Based on Multi Class Activation Mapping
Models,” IEEE Access, vol. 9, pp. 124122-124131, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[14] Adnan Ashraf et al., “Analysis of Brain Imaging Data for the Detection of Early Age Autism Spectrum Disorder Using Transfer Learning
Approaches for Internet of Things,” IEEE Transactions on Consumer Electronics, vol. 70, no. 1, pp. 4478-4489, 2024. [CrossRef] [Google
Scholar] [Publisher Link]

[15] Sara Karim et al., “A Review on Predicting Autism Spectrum Disorder(ASD) meltdown using Machine Learning Algorithms,” 2021 5%
International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), Dhaka, Bangladesh, pp. 1-
6, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[16] Alishba Sadiq et al., “Non-Oscillatory Connectivity Approach for Classification of Autism Spectrum Disorder Subtypes Using Resting-
State fMRI,” IEEE Access, vol. 10, pp. 14049-14061, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[17] Ali Jahani et al., “Twinned Neuroimaging Analysis Contributes to Improving the Classification of Young People with Autism Spectrum
Disorder,” Scientific Reports, vol. 14, pp. 1-10, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[18] Rajat Mani Thomas et al., “Classifying Autism Spectrum Disorder Using the Temporal Statistics of Resting-State Functional MRI Data
With 3D Convolutional Neural Networks,” Frontiers in Psychiatry, vol. 11, pp. 1-12, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[19] Yilan Dong, Dafnis Batalle, and Maria Deprez, “A Framework for Comparison and Interpretation of Machine Learning Classifiers to
Predict Autism on the ABIDE Dataset,” Human Brain Mapping, vol. 46, no. 5, pp. 1-20, 2025. [CrossRef] [Google Scholar] [Publisher
Link]

[20] Mohamed T. Ali et al., “The Role of Structure MRI in Diagnosing Autism,” Diagnostics, vol. 12, no. 1, pp. 1-28, 2022. [CrossRef]
[Google Scholar] [Publisher Link]

[21] Qiang Zheng et al., “ConnectomeAE: Multimodal Brain Connectome-based Dual-branch Autoencoder and its Application in the Diagnosis
of Brain Diseases,” Computer Methods and Programs in Biomedicine, vol. 267, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[22] Fahad Almughim, and Fahad Saeed, “ASD-SAENet: A Sparse Autoencoder, and Deep-Neural Network Model for Detecting Autism
Spectrum Disorder (ASD) Using fMRI Data,” Frontiers in Computational Neuroscience, vol. 15, pp. 1-10, 2021. [CrossRef] [Google
Scholar] [Publisher Link]

[23] Wonsik Jung et al., “EAG-RS: A Novel Explainability-Guided ROI-Selection Framework for ASD Diagnosis via Inter-Regional Relation
Learning,” IEEE Transactions on Medical Imaging, vol. 43, no. 4, pp. 1400-1411, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[24] Canhua Wang, Zhiyong Xiao, and Jianhua Wu, “Functional Connectivity-based Classification of Aautism and Control using SVM-
RFECV on rs-fMRI Data,” Physica Medica, vol. 65, pp. 99-105, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[25] Junxia Han et al., “A Multimodal Approach for Identifying Autism Spectrum Disorders in Children,” IEEE Transactions on Neural
Systems and Rehabilitation Engineering, vol. 30, pp. 2003-2021, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[26] Shuaibing Liang et al., “Autism Spectrum Self-Stimulatory Behaviors Classification Using Explainable Temporal Coherency Deep
Features and SVM Classifier,” IEEE Access, vol. 9, pp. 34264-34275, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[27] Mohammed I. Al-Hiyali et al., “Classification of BOLD FMRI Signals Using Wavelet Transform and Transfer Learning for Detection of
Autism Spectrum Disorder,” 2020 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), Langkawi Island,
Malaysia, pp. 94-98, 2021. [CrossRef] [Google Scholar] [Publisher Link]

205


https://doi.org/10.3389/fnins.2021.697870
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Autism+spectrum+disorder+studies+using+fMRI+data+and+machine+learning%3A+a+review&btnG=
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2021.697870/full
http://doi.org/10.11591/ijai.v10.i3.pp743-751
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Classification+of+adult+autistic+spectrum+disorder+using+machine+learning+approach&btnG=
https://ijai.iaescore.com/index.php/IJAI/article/view/20920
https://doi.org/10.1016/j.procs.2025.04.671
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Autism+Spectrum+Disorder+Detection+using+Attention-Based+CNN+and+ML+Classifiers&btnG=
https://www.sciencedirect.com/science/article/pii/S1877050925017752
https://doi.org/10.1016/j.neuroimage.2016.10.045
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deriving+reproducible+biomarkers+from+multi-site+resting-state+data%3A+An+Autism-based+example&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1053811916305924
https://doi.org/10.1109/ACCESS.2022.3232490
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%09S.+M.+Hasan+A+machine+learning+framework+for+early-stage+detection+of+autism+spectrum+disorders&btnG=
https://ieeexplore.ieee.org/abstract/document/9999443/
https://doi.org/10.1109/TCDS.2021.3093040
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Diagnosis+and+intervention+for+children+with+autism+spectrum+disorder%3A+a+survey&btnG=
https://ieeexplore.ieee.org/abstract/document/9467375
https://doi.org/10.1109/TNSRE.2021.3120024
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+convolutional+neural+network+combined+with+prototype+learning+framework+for+brain+functional+network+classification+of+autism+spectrum+disorder&btnG=
https://ieeexplore.ieee.org/abstract/document/9570384
https://doi.org/10.1109/ACCESS.2022.3208587
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Role+of+Intelligent+Technologies+in+Early+Detection+of+Autism+Spectrum+Disorder+%28ASD%29%3A+A+Scoping+Review&btnG=
https://ieeexplore.ieee.org/abstract/document/9899389
https://doi.org/10.1109/ACCESS.2021.3069211
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Exploring+sMRI+biomarkers+for+diagnosis+of+autism+spectrum+disorders+based+on+multi+class+activation+mapping+models&btnG=
https://ieeexplore.ieee.org/abstract/document/9388662
https://doi.org/10.1109/TCE.2023.3328479
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Analysis+of+brain+imaging+data+for+the+detection+of+early+age+autism+spectrum+disorder+using+transfer+learning+approaches+for+internet+of+things&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Analysis+of+brain+imaging+data+for+the+detection+of+early+age+autism+spectrum+disorder+using+transfer+learning+approaches+for+internet+of+things&btnG=
https://ieeexplore.ieee.org/abstract/document/10299707
https://doi.org/10.1109/ICEEICT53905.2021.9667827
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Review+on+Predicting+Autism+Spectrum+Disorder+%28ASD%29+Meltdown+Using+Machine+Learning+Algorithms&btnG=
https://ieeexplore.ieee.org/abstract/document/9667827
https://doi.org/10.1109/ACCESS.2022.3146719
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Non-Oscillatory+Connectivity+Approach+for+Classification+of+Autism+Spectrum+Disorder+Subtypes+Using+Resting-State+fMRI&btnG=
https://ieeexplore.ieee.org/abstract/document/9693985
https://doi.org/10.1038/s41598-024-71174-z
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Twinned+neuroimaging+analysis+contributes+to+improving+the+classification+of+young+people+with+autism+spectrum+disorder&btnG=
https://www.nature.com/articles/s41598-024-71174-z
https://doi.org/10.3389/fpsyt.2020.00440
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Classifying+autism+spectrum+disorder+using+the+temporal+statistics+of+resting-state+functional+MRI+data+with+3D+convolutional+neural+networks&btnG=
https://www.frontiersin.org/journals/psychiatry/articles/10.3389/fpsyt.2020.00440/full
https://doi.org/10.1002/hbm.70190
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+framework+for+comparison+and+interpretation+of+machine+learning+classifiers+to+predict+autism+on+the+ABIDE+dataset&btnG=
https://onlinelibrary.wiley.com/doi/full/10.1002/hbm.70190
https://onlinelibrary.wiley.com/doi/full/10.1002/hbm.70190
https://doi.org/10.3390/diagnostics12010165
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+role+of+structure+MRI+in+diagnosing+autism&btnG=
https://www.mdpi.com/2075-4418/12/1/165
https://doi.org/10.1016/j.cmpb.2025.108801
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Connectome+AE%3A+Multimodal+Brain+Connectome-based+Dual-Branch+Autoencoder+and+Its+Application+in+the+Diagnosis+of+Brain+Diseases&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0169260725002184
https://doi.org/10.3389/fncom.2021.654315
https://scholar.google.com/scholar?q=ASD-SAENet:+a+sparse+autoencoder,+and+deep-neural+network+model+for+detecting+autism+spectrum+disorder+(ASD)+using+fMRI+data&hl=en&as_sdt=0,5
https://scholar.google.com/scholar?q=ASD-SAENet:+a+sparse+autoencoder,+and+deep-neural+network+model+for+detecting+autism+spectrum+disorder+(ASD)+using+fMRI+data&hl=en&as_sdt=0,5
https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2021.654315/full
https://doi.org/10.1109/TMI.2023.3337362
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=EAG-RS%3A+a+novel+explainability-guided+ROI-selection+framework+for+ASD+Diagnosis+via+inter-regional+relation+learning&btnG=
https://ieeexplore.ieee.org/abstract/document/10332206
https://doi.org/10.1016/j.ejmp.2019.08.010
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Functional+connectivity-based+classification+of+autism+and+control+using+SVM-RFECV+on+rs-fMRI+data&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1120179719301905
https://doi.org/10.1109/TNSRE.2022.3192431
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+multimodal+approach+for+identifying+autism+spectrum+disorders+in+children&btnG=
https://ieeexplore.ieee.org/abstract/document/9832930
https://doi.org/10.1109/ACCESS.2021.3061455
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Autism+Spectrum+Self-Stimulatory+Behaviors+Classification+Using+Explainable+Temporal+Coherency+Deep+Features+and+SVM+Classifier&btnG=
https://ieeexplore.ieee.org/abstract/document/9360809
https://doi.org/10.1109/IECBES48179.2021.9398803
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Classification+of+BOLD+FMRI+Signals+Using+Wavelet+Transform+and+Transfer+Learning+for+Detection+of+Autism+Spectrum+Disorder&btnG=
https://ieeexplore.ieee.org/abstract/document/9398803

P. Yugander & M. Jagannath / IJECE, 13(1), 193-206, 2026

[28] Sejuti Rahman et al., “Automated Detection Approaches to Autism Spectrum Disorder Based on Human Activity Analysis: A Review,”
Cognitive Computation, vol. 14, pp. 1773-1800, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[29] Yangsong Zhang et al., “Predicting the Symptom Severity in Autism Spectrum Disorder Based on EEG Metrics,” IEEE Transactions on
Neural Systems and Rehabilitation Engineering, vol. 30, pp. 1898-1907, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[30] A Di Martino et al., “The Autism Brain Imaging Data Exchange: Towards a Large-Scale Evaluation of the Intrinsic Brain Architecture in
Autism,” Molecular Psychiatry, vol. 19, no. 6, pp. 659-667, 2014. [CrossRef] [Google Scholar] [Publisher Link]

[31] Michelle Tang et al., “Deep Multimodal Learning for the Diagnosis of Autism Spectrum Disorder,” Journal of Imaging, vol. 6, no. 6, pp.
1-11, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[32] Zeinab Sherkatghanad et al., “Automated Detection of Autism Spectrum Disorder Using a Convolutional Neural Network,” Frontiers in
Neuroscience, vol. 13, pp. 1-13, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[33] Lebo Wang, Kaiming Li, and Xiaoping P. Hu, “Graph Convolutional Network for fMRI Analysis based on Connectivity Neighborhood,”
Network Neuroscience, vol. 5, no. 1, pp. 83-95, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[34] Jingsheng Deng et al., “Diagnosing Autism Spectrum Disorder Using Ensemble 3D-CNN: A Preliminary Study,” 2022 IEEE International
Conference on Image Processing (ICIP), Bordeaux, France, pp. 3480-3484, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[35] Amin Majidzadeh Sabegh et al., “Automatic Detection of Autism Spectrum Disorder based on fMRI Images using a Novel Convolutional
Neural Network,” Research on Biomedical Engineering, vol. 39, pp. 407-413, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[36] Xuehan Liu et al., “MADE-for-ASD: A Multi-Atlas Deep Ensemble Network for Diagnosing Autism Spectrum Disorder,” Computers in
Biology and Medicine, vol. 182, pp. 1-10, 2024. [CrossRef] [Google Scholar] [Publisher Link]

206


https://doi.org/10.1007/s12559-021-09895-w
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Automated+detection+approaches+to+autism+spectrum+disorder+based+on+human+activity+analysis%3A+A+review&btnG=
https://link.springer.com/article/10.1007/s12559-021-09895-w
https://doi.org/10.1109/TNSRE.2022.3188564
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Predicting+the+Symptom+Severity+in+Autism+Spectrum+Disorder+Based+on+EEG+Metrics&btnG=
https://ieeexplore.ieee.org/abstract/document/9814994
https://doi.org/10.1038/mp.2013.78
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+autism+brain+imaging+data+exchange%3A+towards+a+large-scale+evaluation+of+the+intrinsic+brain+architecture+in+autism&btnG=
https://www.nature.com/articles/mp201378
https://doi.org/10.3390/jimaging6060047
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+multimodal+learning+for+the+diagnosis+of+autism+spectrum+disorder&btnG=
https://www.mdpi.com/2313-433X/6/6/47
https://doi.org/10.3389/fnins.2019.01325
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Automated+detection+of+autism+spectrum+disorder+using+a+convolutional+neural+network&btnG=
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2019.01325/full
https://doi.org/10.1162/netn_a_00171
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Graph+convolutional+network+for+fMRI+analysis+based+on+connectivity+neighborhood&btnG=
https://direct.mit.edu/netn/article/5/1/83/97525/Graph-convolutional-network-for-fMRI-analysis
https://doi.org/10.1109/ICIP46576.2022.9897628
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Diagnosing+autism+spectrum+disorder+using+ensemble+3D-CNN%3A+A+preliminary+study&btnG=
https://ieeexplore.ieee.org/abstract/document/9897628
https://doi.org/10.1007/s42600-023-00275-x
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Automatic+detection+of+autism+spectrum+disorder+based+on+fMRI+images+using+a+novel+convolutional+neural+net+&btnG=
https://link.springer.com/article/10.1007/s42600-023-00275-x
https://doi.org/10.1016/j.compbiomed.2024.109083
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=MADE-for-ASD%3A+A+multi-atlas+deep+ensemble+network+for+diagnosing+autism+spectrum+disorder&btnG=
https://www.sciencedirect.com/science/article/pii/S0010482524011685

