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Abstract - Autism Spectrum Disorder (ASD) is a neuro-developmental disease that affects behavioural retardation in verbal 

communications and social interactions. Clinicians employ various ASD detection techniques to identify the condition. 

However, these traditional methods are time-consuming and suffer from a lack of accuracy. Over the last two decades, 

Machine Learning (ML) and Deep Learning (DL) algorithms have played a crucial role in the field of biomedical signal and 

image processing. In this paper, we propose a Machine Learning Framework. This contains two stages. In the first stage, an 

enhanced 3D-ResNet50 algorithm is proposed. The proposed algorithm is used to extract features from Magnetic Resonance 

(MR) Images. In the second stage, the extracted features are used to classify the ASD controls using Machine Learning 

Algorithms. To improve the accuracy of ASD classification, an enhanced 3D-ResNet50 algorithm is integrated with the ML 

algorithms. The proposed algorithm is used along with the machine learning algorithms like Support Vector Machine (SVM), 

K-Nearest Neighbours (KNN), Random Forest (RF), and Logistic Regression (LR).  The proposed machine learning framework 

is tested on 1112 Functional Magnetic Resonance Images (fMRI). These images are collected from the Autism Brain Imaging 

Data Exchange (ABIDE-I) website. The ABIDE-I website provides a collection of 17 datasets from various international 

biomedical laboratories. The proposed algorithm is tested on the total ABIDE-I website and 17 individual datasets. Our 

proposed approach achieved 90% overall accuracy and 97% accuracy for the individual NYU dataset alone. 

Keywords - Autism, 3D-ResNet50, Support Vector Machine, MR images, Random Forest.  

1. Introduction 
Autism Spectrum Disorder (ASD) represents a 

challenging neurobiological disorder that affects how people 

connect socially, make relationships, and show behavioral 

adaptability. A correct diagnosis at an early stage is essential 

for successful treatments that yield positive developmental 

outcomes. Standard ASD diagnosis methods depend mainly 

on expert evaluations and behavioral monitoring, yet these 

methods require a lot of time and yield inconsistent results 

[1]. The new capabilities of neuroimaging combined with 

Artificial Intelligence (AI) technology now allow for an 

automated process in ASD diagnosis through objective and 

data-centric evaluation. The Magnetic Resonance Images 

(MRI), at their functional level, demonstrate exceptional 

power by examining connections in autistic brains to reveal 

more about ASD neurological origins [2]. Multiple 

challenges persist when using neuroimaging techniques for 

autism spectrum disorder diagnosis. The difficulty in 

developing machine learning applications stems from diverse 

imaging protocols and datasets between research facilities 

that reduce the extent to which machine learning models can 

be generalized. The high level of complexity, combined with 

multiple dimensions in Functional Magnetic Resonance 

Imaging (fMRI) data, prevents researchers from finding 

compelling discriminator features to separate ASD and 

control subjects [3]. Regular methods for extracting features 

from fMRI data by engineering handcrafted features with 

simple ML algorithms fail to detect the complex 

neuroimaging data patterns, leading to poor classification 

output. Better and more reliable approaches are essential to 

developing robust ASD classification systems that produce 

higher accuracy results [4]. Conventional approaches to ASD 

classification successfully use Convolutional Neural 

Networks (CNNs) and 3D CNNs to extract spatial and 

temporal features from fMRI data [5]. However, applying 

these models produces weak generalization results, 

particularly in multi-site datasets with different imaging 

standards. The diverse fMRI scan variations between 

institutions make it difficult to create models that apply 

consistently to various datasets. Experts must develop 

advanced approaches to process complex neuroimaging 

information while managing its built-in data variations. The 

proposed research presents a new hybrid framework that uses 

3D-ResNet50 for deep feature extraction and ML algorithms 

like SVM, RF, KNN, and LR for classification operations [6]. 

The 3D-ResNet50 architecture extracts complex features 
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from fMRI data, enabling the ML classifier algorithms to 

achieve high-accuracy ASD classification through feature 

utilization. The proposed method uses 3DResNet-50 

combined with traditional ML approaches because this 

framework overcomes traditional diagnosis methods while 

boosting ASD evaluation accuracy. The proposed framework 

achieves its evaluation through analysis of the publicly 

available ABIDE-I dataset that presents fusion data from 17 

international sites for comprehensive model examination [7]. 

The experimental outcomes confirm that the proposed 

framework provides effective ASD classification by 

achieving superior performance [8]. 

The existing ASD identification methods are expertise-

dependent and time-consuming. Over the past two decades, 

numerous ML algorithms have been proposed to detect ASD. 

Most algorithms are suitable for static images such as CT 

scans and sMR images. Compared with static images, 

clinicians ASD abnormalities can more easily detect ASD 

abnormalities in 3D images and fMRI. Due to the above 

limitations, ASD identification becomes difficult and leads to 

a wrong diagnosis. A few researchers have proposed 3D-

based DL algorithms. However, these algorithms are 

computationally intensive and require substantial memory 

resources. Also, these algorithms achieve lower accuracy 

than 2D-based algorithms. To overcome the aforementioned 

limitations, a machine learning ML) framework is proposed 

in this paper. 

Numerous researchers have proposed numerous ML and 

DL techniques to address the various challenges in ASD 

detection. The novelty of the work is shown below. 

 In this study, a novel 3D ResNet50 architecture is 

proposed to identify spatio-temporal features from fMRI 

images. Conventional 2D CNNs are suitable for static 

images, such as sMR images. But these 2D-based 

architectures fail to extract features from fMRI slices. 

 In this work, the proposed 3D-ResNet50 is integrated 

with ML algorithms such as SVM, RF, LR, and KNN. In 

general, 3D-based architectures provide lower accuracy 

than 2D-based architectures. To improve accuracy, the 

proposed DL algorithm is integrated with ML 

algorithms. This is the first ML framework integrated 

with a 3D-DL architecture with ML algorithms.  

 The proposed ML framework leverages the strengths of 

3D-ResNet 50 and ML algorithms. 3D-ResNet 50 

extracts complex functional patterns of the brain, and 

ML algorithms use these features to classify ASD 

controls. 

 

This paper follows a specific organization, including a 

thorough review of previous ASD classification research and 

examinations of neuroimaging and machine learning 

strategies, as presented in Section II. The proposed 

framework details its operations in Section III by integrating 

3D-ResNet50 as a deep feature extractor that works with ML 

algorithms for classification operations. Section IV covers 

the results and discussions, and Section V, accompanied by a 

conclusion and future scope. 

2. Related work 
Recent studies on Autism Spectrum Disorder (ASD) 

diagnostics and treatments have demonstrated significant 

advancements in the utilization of machine learning and 

technology. Hasan et al. [9] presented a machine learning-

based framework using Support Vector Machines for early 

ASD detection, highlighting the necessity of a more diverse 

dataset to achieve better generalization. Wang et al. [10] 

evaluated the status of Electroencephalogram (EEG) and 

MRI technology used in ASD diagnosis, concluding that 

there was no standardization among the research studies. 

Liang et al. [11] combined CNN networks with prototype 

learning methods to classify brain functional networks using 

fMRI, but its practical application is restricted due to the high 

computational cost. Kohli et al. [12] reviewed the effects of 

intelligent technologies on the early detection of ASD, 

indicative of mobile technologies, but also described the 

troubles with integrating these innovative solutions in clinical 

use. 

Yang et al. [13] proposed structural MRI biomarkers for 

ASD with multi-class activation mapping models to improve 

feature extraction and visualization, identifying critical brain 

regions affected by ASD. However, the study suggests the 

need for validation across broader demographic groups to 

ensure the biomarkers' universality and reliability. Ashraf et 

al. [14] applied deep learning through transfer learning 

approaches to analyze brain imaging data for early-age ASD 

detection, integrating IoT technologies for widespread 

application. This study underscores the potential of transfer 

learning to overcome the scarcity of large, annotated datasets 

in ASD research. However, it requires more comprehensive 

studies to confirm the findings across various populations. 

Karim et al. [15] presented an analytical study on the 

prediction of ASD meltdowns using ML techniques, which 

are acute emotional dysregulation incidents common among 

individuals with ASD. This research uses predictive models 

to suggest proactive strategies for controlling ASD symptoms 

while also emphasizing the difficulty of incorporating these 

models into daily practice due to diverse meltdown triggers 

and individual variations. Sadiq et al. [16] introduced a non-

oscillatory connectivity approach to classify ASD subtypes 

using resting-state fMRI, utilizing advanced machine 

learning techniques like SVM. Their approach has shown a 

potential to differentiate between different complex ASD 

subgroups like Asperger’s disorder and pervasive 

developmental disorder, but stresses the necessity for larger 

sample sizes for validation.  
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Table 1. Summary of the reviewed deep learning studies 

Study Modality Participants Methods Biomarkers Best Accuray 

Heinsfeld et al. 

(2018) [4] 
fMRI 

NASD = 530, 

ASD = 505 

Deep Neural 

Network 

A distributed network 

between anterior and 

posterior brain areas is 

negatively correlated. 

70% 

Jahani et al. 

(2024) [17] 

sMRI & 

fMRI 

NASD = 351, 

ASD = 351 
3D-DenseNet 

Abnormal connectivity 

was found in the cortical 

areas and thalamus. 

72% 

Thomas et al. 

(2020) [18] 
fMRI 

NASD = 542, 

ASD = 620 
3D-CNN 

An abnormal Regional 

Homogeneity was found 

in 

bilateral middle temporal 

gyri and 

The right 

parahippocampal gyrus 

of ASD controls. 

66% 

Dong et al. 

(2025) 

[19] 

sMRI & 

fMRI 

ASD = 467, 

NASD = 403 

Edge-variational 

graph 

convolutional 

networks (EV-

GCN) 

Altered Functional 

Connectivity in the left 

and right Temporal 

Cortex of ASD controls. 

 

72.2% 

Ali et al. 

(2022) [20] 
sMRI 

NASD = 336, 

ASD = 328 
Neural Network 

Abnormal cortical 

folding pattern found in 

ASD controls. 

71.6% 

Zheng et al. 

(2025) [21] 
fMRI 

NASD = 111, 

ASD = 103 

Dual Branch- 

Autoencoder 

Functional connectivity 

is altered in the Left 

amygdala and right 

posterior cingulate 

gyrus. 

70.7% 

Almuqhim et 

al. (2021) [22] 
fMRI 

NASD= 530, 

ASD = 505 
ASD -SAENet 

Abnormal connectivity 

was found in the 

parahippocampal, left 

fusiform gyrus, and right 

hippocampus. 

70.8% 

Jung et al. 

(2023) [23] 
fMRI 

NASD = 462, 

ASD = 418 

Stacked 

Autoencoder 

Attenuated functional 

connectivity is identified 

in the right thalamus and 

lateral occipital cortex. 

78.1% 

Wang et al. 

2019 [24] 
fMRI 

NASD = 255, 

ASD = 276 

Stacked Sparse 

Auto Encoder 

Attenuated functional 

connectivity is identified 

between the frontal pole 

and the temporal 

fusiform cortex 

75.27% 

           

 
Fig. 1 Block diagram of proposed Machine Learning framework 
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 Mohi-ud–Din et al. [24] detected ASD classification 

using EEG signals and 1D CNNs and proved the 

effectiveness of 1D CNNs in capturing temporal information 

and features in EEG time-domain signals for ASD diagnosis.  

Their analysis indicates that Deep Learning can significantly 

boost diagnostic performances, but the study indicates that 

model overfitting requires proper optimization methods and 

precision adjustment for success. Han et al. [25] have also 

used a multimodal approach by combining EEG, Eye-

Tracking (ET), and neuroimaging data to diagnose ASD in 

children. The research applied stacked denoising 

autoencoders as a feature extraction and fusion method, 

which proved that combining multiple data types leads to 

better diagnostic outcomes.  

 
Integrating complex multimodal data with advanced 

Machine Learning Frameworks creates challenges for 

successful clinical use. Liang et al. [26] developed an SVM 

classification system for identifying self-stimulatory 

behaviours in ASD patients by adopting explainable temporal 

coherency deep features. The system merges unsupervised 

deep learning techniques to discover temporal patterns in 

behavioural information, creating a new method for 

computationally analysing data behaviour. The results show 

promise, but individuals' unique behavioural patterns create 

difficulties when applying these frameworks to all cases. 

 
Al-Hiyali et al. [27] combined the wavelet transform 

with transfer learning to classify BOLD fMRI signals to 

identify ASD. Their method improves feature extraction by 

converting the time series data to a scalable domain, using 

architectures like DenseNet201 and GoogleNet to increase 

the classification accuracy. This study demonstrates the 

benefit of hybrid methods in improving the interpretability of 

fMRI data, but consistent results over different populations 

remain a crucial step still to be accomplished. Rahman et al. 

[28] presented an in-depth review of the automated methods 

that use human activity analysis to diagnose ASD.  

 
The review presents a variety of ML approaches for 

behavioural data analysis to diagnose ASD and also observes 

that combining multiple behavioural predictors can be more 

accurate. However, the review also highlights the need for 

standardized datasets and better validation approaches to take 

these technologies to the next level. Zhang et al. [29] 

investigated the assessment of symptom severity of ASD 

from EEG metrics.  

 
Using EEG to examine the topology of the functional 

brain network, their study found network metrics that are 

associated with levels of ASD severity. This approach is also 

helpful in developing customized treatment plans and 

clarifying the neurobiological cause of ASD. The primary 

points raised are the lack of uniform standards in healthcare 

and the inconsistent quality of EEG signals. 

The literature survey highlights the potential of ML and 

DL algorithms for ASD classification. However, the 

following gaps remain: 

 Diagnosis methods like ADI-R and ADOS have long 

questionnaires and require certified trainers for proper 

assessment. Thus, a more accurate and faster method for 

diagnosing ASD is needed. 

 Existing ML-based algorithms heavily depend on 

handcrafted features. Sometimes, handcrafted features 

can mislead the diagnosis of ASD for complex images 

like fMRI images. These algorithms are not always a 

viable solution. 

 Most researchers use fMRI to identify functional 

abnormalities in patients with ASD. In 2D-DL 

algorithms, such as 2D-CNNs, some spatial information 

is lost. In the 2D-CNN algorithm, fMRI data are divided 

into 2D images, breaking the original volumetric 

relationships between regions. 3D architectures more 

effectively determine functional connectivity patterns 

than 2D architectures. 

 

3. Proposed Method 
The proposed framework uses Deep Learning and 

Machine Learning to improve ASD diagnosis by assessing 

Functional Magnetic Resonance Imaging (fMRI) data. The 

framework divides its approach into preprocessing, feature 

extraction, and classification. The preprocessing phase works 

on the ABIDE-I dataset, which contains resting-state fMRI 

scans from several international sites, by performing 

standardization to reduce differences between different 

imaging protocols [30]. Data preprocessing removes skull 

compartments and measures motion artefacts while 

normalizing spatial coordinates before smoothing features to 

create standardized, high-quality extracted data. Diminution 

procedures remove lazy data while maintaining crucial 

neurological patterns for classification. 

The proposed 3D-ResNet50 architecture is a feature 

extractor that obtains spatial and temporal data features from 

preprocessed fMRI datasets. An innovative residual learning 

technique built into 3D-ResNet50 permits the successful 

extraction of hierarchical features while resolving gradient 

vanishing problems, so it operates on high-dimensional 

neuroimaging information [31]. The resultant feature maps 

show complex brain connectivity patterns because these 

patterns enable successful discrimination between ASD 

patients and control individuals. 

The proposed algorithm uses ML classifiers to process 

the features extracted by 3D-ResNet50 to establish group 

affiliations between ASD and controls. ML algorithms prove 

suitable for the study because they can efficiently manage 

high-dimensional data distribution and establish optimal 

decision boundaries for high generalization performance, as 

shown in Figure 1. Cross-validation methods enable the 
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classifier to undergo training and validation sessions that 

validate the reliability of its model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Block diagram of 3D-ResNet50 

 

The low-frequency fluctuations of resting-state brain 

activity are isolated by applying a band-pass filter that retains 

signals between 0.01 and 0.1 Hz. The Craddock 200 (CC200) 

atlas is employed to develop functional connectivity matrices 

through 200 Regions of Interest (ROIs). The proposed 

framework uses 3D-ResNet50 to diagnose ASD from 

controls based on fMRI data, as illustrated in Figure 2. The 

3D-ResNet50 is an enhancement of ResNet50 for volumetric 

data, such as fMRI. The method enables deeper network 

learning through residual learning, thereby maintaining high 

performance standards. An enhanced 3D-Resnet50 

architecture details are shown in Table 2. 

 

3.1. Input and Initial Convolution 

The architecture begins with an input 3D fMRI image 

volume, which is passed through a first 3D convolutional 

layer with a kernel size of 3x3x3. This layer retrieves spatial 

and temporal properties from the input volume, applying a 

convolution operation that is defined as in (1): 

 

𝑌(𝑖, 𝑗, 𝑘) = ∑ ∑ ∑ 𝑋(𝑖 + 𝑚, 𝑗 + 𝑛, 𝑘 + 𝑝) ⋅𝑝𝑛𝑚

𝑊(𝑚, 𝑛, 𝑝) + 𝑏     (1) 

Where Y(i, j, k) is the output of the 3D CNN, X(i+m, 

j+n, k+p) is the input tensor, W(m,n,p) is the weight tensor, 

and b is the bias. 

 
The fundamental structure of 3D-ResNet50 comprises 

four residual groups, each consisting of multiple 

convolutional blocks and identity blocks. 

 

This 3D-ResNet50 architecture obtains spatial and 

temporal elements from fMRI data using multiple layers, 

including convolutional blocks, identity blocks, skip 

connections, pooling layers, and fully connected layers for 

ASD classification—convolutional block functions 

whenever feature maps get expanded or reduced in both sizes 

during times of down-sampling.  

 

The 3D Convolutional Layer operates on three 

dimensions to analyze volumetric data. Then, the model 

utilizes Batch Normalization to normalize the convolutional 

outputs, allowing training to run more efficiently. The 

definition of the batch normalization operation is:  

 

                𝑋̂ =
𝑋−𝜇

√𝜎2+𝜖 
 ⋅ 𝛾 + 𝛽                                        (2) 

 
Here 𝜇 and 𝜎2 are the mean and variance of the batch, 𝜖 

is a small constant for numerical stability, 𝛾 and 𝛽 are 

learnable parameters. The initial value of 𝛾 is 1, and 𝛽 is 0. 𝛾 

and 𝛽 are used to improve the model performance and 

stability.  

 

The identity block extracts more features that match 

input and output sizes while sustaining residual connections.  

This identity block functions similarly to the 

convolutional block through 3D convolutions and contains 

Conv 3D 

Batch Normalization 

ReLU 

Residual group 1 

Residual group 2 

Residual group 3 

Residual group 4 

Residual group 4 

Residual group 5 

Residual group 6 

Residual group 7 

Residual group 8 

Average Pooling 

Fully connected layer 
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batch normalization and ReLU activation while connecting 

both the input and the last layer's output. The residual 

mapping method addresses the vanishing gradient issue, 

allowing deeper networks to efficiently learn for fMRI ASD 

diagnosis.  

The network can bypass layers through skip connections 

and directly add input to transformed outputs because of this 

formula: 

              𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐹(𝑋) + 𝑋                                   (3)  

        Here, X is the input and F(X) is the residual function. 

The convolutional layers transform the input data into the 

output pattern represented by 𝐹(𝑋). 

 

                               𝐹 = 𝑊 ⋅ 𝑋 + 𝑏                                    (4) 

 

 Where W is the weight matrix, b is the bias, and X is the 

input feature vector. 

𝑃(𝑦 = 𝑐) =
𝑒𝑥𝑝(𝑧𝑐)

∑ 𝑒𝑥𝑝(𝑧𝑗)𝑗
                         (5) 

 

Where 𝑧𝑐 is the output score for class 𝑐, 𝑧𝑗  is the scores 

for all classes (j=1,2,…c) and 𝑃(𝑦 = 𝑐) is the probability of 

the input belonging to class 𝑐. 

 
3.2. Classification Using Machine Learning Algorithms 

The 3D-ResNet50 architecture performs feature 

extraction, which enables various ML algorithms to classify 

extracted features. These algorithms include SVM, KNN, 

RF, and LR. Each algorithm employs its own method to 

distinguish between the extracted features of individuals with 

ASD and those of healthy controls. 

3.2.1. Support Vector Machine 

 SVM is a method of supervised learning that finds the 

best hyperplane for a complete separation of two classes 

(ASD and Controls) in high-dimensional space. The optimal 

problem of SVM is expressed as in (6) and (7), 

                  𝑚𝑖𝑛
𝑤,𝑏

 
1

2
 ‖𝑤‖2 + 𝑐 ∑ 𝜉𝑖

𝑛
𝑖=1                       (6) 

Subject to: 

           𝑦𝑖(𝑤 ⋅ 𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖 , 𝜉𝑖 ≥ 0         (7) 

 
 Where 𝑤 is the weight vector, 𝑏 is the bias term, 𝑐 is the 

regulation parameter, 𝜉𝑖 Are slack variables in case of the 

inflation of non-separable data, 𝑦𝑖  Are the class marks (the 

class marks are: +1, for ASD; −1, for controls) and 𝑥𝑖 is a 

feature vector. 

 

The kernel employed in this study is the Radial Basis 

Function (RBF) kernel, as in (8): 

 

                       𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒𝑥𝑝(−𝛾 ∥ 𝑥𝑖 − 𝑥𝑗 ∥2)                (8) 

Where 𝛾 stands as the kernel parameter, 𝑥𝑖 𝑎𝑛𝑑 𝑥𝑗 These 

are input feature vectors. The SVM model demonstrates 

excellence in high-dimensional analysis and shows resistance 

to overfitting, which makes it suitable for ASD classification. 

Table 2. Enhanced 3D-ResNet50 architectural parameters 

Group Layer Architecture 

Conv3D Conv3D 3x3x3, 64, stride (1, 2, 2) 

Residual 

Group 1 

Conv 3D_1-1 1x1x1, 64 

Conv 3D_1-2 3x3x3, 64 

Conv 3D_1-3 1x1x1, 256 

Conv 3D_1-4 1x1x1, 256 

Residual 

Group 2 

Conv 3D_2-1 1x1x1, 64 

Conv 3D_2-2 3x3x3, 64 

Conv 3D_2-3 1x1x1, 256 

Residual 

Group 3 

Conv 3D_3-1 1x1x1, 128 

Conv 3D_3-2 3x3x3, 128, stride (2, 2, 2) 

Conv 3D_3-3 1x1x1, 512 

Conv 3D_3-4 1x1x1, 512, stride (2, 2, 2) 

Residual 

Group 4 

Conv 3D_4-1 1x1x1, 128 

Conv 3D_4-2 3x3x3, 128 

Conv 3D_4-3 1x1x1, 512 

Residual 

Group 5 

Conv 3D_5-1 1x1x1, 256 

Conv 3D_5-2 3x3x3, 256, stride (2, 2, 2) 

Conv 3D_5-3 1x1x1, 1024 

Conv 3D_5-4 1x1x1, 1024, stride (2, 2, 2) 

Residual 

Group 6 

Conv 3D_6-1 1x1x1, 256 

Conv 3D_6-2 3x3x3, 256 

Conv 3D_6-3 1x1x1, 1024 

Residual 

Group 7 

Conv 3D_7-1 1x1x1, 512 

Conv 3D_7-2 3x3x3, 512, stride (2, 2, 2) 

Conv 3D_7-3 1x1x1, 2048 

Conv 3D_7-4 1x1x1, 2048, stride (2, 2, 2) 

Residual 

Group 8 

Conv 3D_8-1 1x1x1, 512 

Conv 3D_8-2 3x3x3, 512 

Conv 3D_8-3 1x1x1, 2048 
 

3.2.2. K-Nearest Neighbors (KNN) 

KNN uses a non-parametric approach for classification, 

wherein points obtain their class label through the majority 

vote of their k-nearest neighbors. The determination of data 

point distance involves the application of the Euclidean 

distance calculation shown in (9): 
 

                   𝑑(𝑥𝑖, 𝑥𝑗) =  √∑ (𝑥𝑖,𝑚 − 𝑥𝑗,𝑚)
2𝑛

𝑚=1       (9) 
 

 Where 𝑥𝑖,𝑚 and 𝑥𝑗,𝑚 Are feature vectors, 𝑛 is the number 

of features. 
 

 KNN is also simple and effective, but computationally 

complex for big data. It depends highly on the value of k and 

the distance metric. 
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3.2.3. Random Forest  

A Random Forest is a tree-structured model in which 

each node is a decision based upon input features, each 

branch represents a decision result, and each leaf node 

represents the label class. The tree is built by iteratively 

dividing the data set into features that yield the highest 

information gain or Gini impurity. Random Forests are 

interpretable and can handle non-linear relationships, but 

they are prone to overfitting. 

 

3.2.4. Logistic Regression 

Logistic Regression functions as a linear system that 

performs binary classification. The model applies a logistic 

function to calculate class probability as defined in (10): 

                  𝑃(𝑦 = 1|𝑥) =
1

1+exp (−(𝑤.𝑥+𝑏))
                   (10) 

Where 𝑤 is the weight vector, 𝑏 is the bias term, 𝑥 is the 

feature vector. The model is trained by minimizing the log 

loss, which is defined as in (11): 

         𝐿(𝑤, 𝑏) = − ∑ [𝑦𝑖𝑙𝑜𝑔(𝑃(𝑦𝑖 = 1 ∣ 𝑥𝑖))𝑛
𝑖=1                (11) 

 Where w is the weight vector, 𝑥𝑖 is a feature vector, 𝑦𝑖 is 

the class label, and b is the bias term. Logistic Regression is 

efficient and straightforward, but it models a linear 

relationship between results in features and the class's log 

odds. 

4. Results and Discussion  
The enhanced 3D-ResNet50 framework evaluated 

information from the 871 preprocessed resting-state fMRI 

scans distributed across 17 ABIDE-I international sites. 

Despite conventional CNN-based and 3D-CNN methods, the 

model demonstrated 90% accuracy for ASD classification. 

The model showed enhanced performance for the NYU site, 

with a 97% accuracy rating, because it could effectively adapt 

to reduced site-specific variations.  

 

The combination of 3D-ResNet50 with SVM produced 

both effective spatial-temporal feature learning and created a 

sturdy decision border that eliminates the typical deep 

learning flaws connected to using neuroimaging data 

independently.  

 

Different performance measures, including precision, 

recall, and F1-score, proved the reliability of this framework 

across datasets by showing enhanced generalization ability in 

multi-site data assessments. Deeper network training and 

better representation learning became possible because 

residual learning and skip connections resolved the vanishing 

gradient problem. Problems persist in the framework 

concerning its ability to handle imaging protocol differences 

and variations in scanner resolution and sample distribution 

patterns because these factors impact consistency in network 

performance. 

 

Table 3. Performance of the proposed 3D-ResNet50 combined with different ML algorithms 

Method Accuracy (%) Sensitivity (%) Specificity (%) F1-Score 

3D-ResNet + SVM 90.00 80.91 76.12 69.96 

3D-ResNet50 + RF 78.00 78.89 69.10 60.43 

3D-ResNet50 + KNN 70.00 71.65 74.34 66.87 

3D-ResNet50 + LR 85.00 69.71 67.65 70.43 

The proposed enhanced 3D-ResNet50 model utilized 

SVM, RF, KNN, and LR as machine learning classifiers for 

assessment, as shown in Table 3. Records show that the 3D-

ResNet50 + SVM system yielded an accuracy rate of 90%, 

proving its ability to classify ASD subjects from control 

groups precisely.  

 

This 3D ResNet combination surpassed other models 

with a detection accuracy of 80.43%, which reflects its ability 

to accurately identify ASD cases together with 76.12% 

specificity and 69.96% F1-score, which indicates balanced 

performance. The accuracy of the Random Forest (RF) 

classifier reached 78%, yet its specificity dropped to 69.10%, 

causing more false results to occur. The KNN-based model 

achieved 70% accuracy while having lower sensitivity values 

of 71.65% and an F1-score of 66.87%, which suggests 

difficulties in understanding neuroimaging patterns in this 

model. The accuracy achieved by Logistic Regression (LR) 

reached only 85%, which was accompanied by poor 

sensitivity measurement (69.71%) and specificity (67.65%) 

to demonstrate ineffective performance in high-dimensional 

fMRI data analysis. SVM is the top choice in ASD 

classification when integrated with 3D-ResNet-50because it 

appropriately processes deep features and averts overfitting 

problems to establish reliability in ASD detection. 

 

Different institutions within the ABIDE-I dataset 

demonstrated varying results in using 3D-ResNet-50 + SVM 

because of their distinct data collection protocols and 

magnetic resonance imaging parameters, as shown in Table 

4.  
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Table 4. Site-Wise results for enhanced 3D-ResNet50 + SVM 

Site Accuracy (%) Sensitivity (%) Specificity (%) F1-Score 

CALTECH 86.40 86.40 81.20 78.89 

CMU 88.90 80.32 71.10 86.10 

KKI 78.90 81.54 86.44 87.32 

LEUVEN 85.65 87.23 79.89 74.74 

MAX MUN 88.43 78.65 82.22 68.19 

NYU 97.00 93.10 96.55 89.01 

OHSU 94.11 89.97 92.98 88.88 

OLIN 94.54 91.11 76.34 70.94 

PITT 91.11 87.88 71.11 68.91 

SBL 90.09 92.32 90.09 73.01 

SDSU 79.99 80.12 79.94 74.44 

STANFORD 77.77 81.74 69.12 64.96 

TRINITY 94.43 90.07 89.99 88.11 

UCLA 87.86 81.45 76.75 70.04 

UM 87.34 90.01 89.87 67.69 

USM 83.33 80.43 91.04 76.18 

YALE 95.98 93.45 86.41 81.71 

 
Table 5. Site-wise results for enhanced 3D-ResNet50 + random forest 

Site Accuracy (%) Sensitivity (%) Specificity (%) F1-Score 

CALTECH 77.21 75.13 81.11 78.43 

CMU 74.14 87.78 82.34 70.35 

KKI 84.42 94.72 93.57 91.67 

LEUVEN 93.99 90.65 82.56 88.35 

MAX MUN 80.67 89.23 92.63 79.76 

NYU 95.00 90.32 92.99 80.43 

OHSU 90.01 83.67 93.08 79.99 

OLIN 89.99 92.22 87.54 82.94 

PITT 90.07 94.76 80.01 77.77 

SBL 92.24 84.49 90.38 90.07 

SDSU 74.56 81.74 75.75 79.72 

STANFORD 89.93 85.25 79.34 75.01 

TRINITY 89.99 94.45 78.78 73.49 

UCLA 90.94 91.78 86.84 79.34 

UM 92.22 80.91 80.02 79.34 

USM 94.08 79.56 92.46 75.76 

YALE 90.10 95.14 76.32 85.86 

Testing on the NYU site delivered 97% overall accuracy, 

with a sensitivity of 93.10% and specificity of 96.55%, 

demonstrating an excellent classification performance 

balance. Data collected from OHSU, OLIN, TRINITY, and 

YALE produced high classification performance rates at 

94.11 per cent, 94.54 per cent, 94.43 per cent, and 95.98 per 

cent, respectively. CMU achieved 88.90% accuracy, 

followed by MAX MUN at 88.43%, then UCLA at 87.86%, 

and UM at 87.34%. At the same time, CALTECH reached 

86.40% accuracy, and LEUVEN obtained 85.65%. 

STANFORD (77.77%) and SDSU (79.99%) showed reduced 

accuracy results because imaging protocols exhibited higher 

levels of variation. Different sites recorded F1-scores that 

spanned between 64.96% (STANFORD) to 89.01% (NYU), 

showing that dataset quality and homogeneity directly 

influenced classification effectiveness. 

 

Different ABIDE-I sites demonstrated distinct 

classification abilities through the 3D-ResNet50 + Random 

Forest (RF) framework, resulting in NYU (95%) leading 

among NYU, LEUVEN (93.99%) performing second, YALE 

(90.10%), and PITT (90.07%) following closely. In 

comparison, KKI (84.42%) and MAX MUN (80.67%) 

displayed good results, with KKI achieving maximum 
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sensitivity (94.72%), as shown in Table 5. The remaining 

sites, like SDSU (74.56%) and CMU (74.14%), exhibited 

reduced performance, likely due to site-specific factors. The 

KKI site obtained the highest sensitivity rating (94.72%), 

achieving 84.42% accuracy.  

 

The sites SDSU and CMU showed performance at 

74.56% and 74.14%, respectively, because their data showed 

high variability, while their imaging protocols differed from 

those of other sites. The F1-score measurements from CMU 

were lowest at 70.35%, while KKI produced the highest F1-

score at 91.67%. The scores also included LEUVEN at 

88.35% and OLIN at 82.94%. Random Forest classifiers 

demonstrated comparable accuracy but exhibited site-

dependent performance discrepancies because their 

specificity ranged between 75.75% and 93.57%, producing 

more incorrect optimistic predictions than SVM classifiers. 

 
The 3D-ResNet50 + KNN approach produced excellent 

results at multiple sites by achieving the highest accuracy 

rates of 92% for UM, 91% for TRINITY, 86.96% for 

CALTECH, and 86.32% for YALE because KNN effectively 

detected site-specific neuroimaging patterns, as shown in 

Table 6. Another set of clinical data from LEUVEN obtained 

93.33% accuracy, and KKI obtained 92.47% accuracy, which 

showed a balanced performance between sensitivity and 

specificity measures. The features showed reduced 

consistency at NYU and OLIN due to imaging variability, 

causing their accuracy rates to drop to 76.19% and 76.97%, 

respectively. 

 

The F1-scores displayed significant variability, with 

STANFORD reaching 71.05% while SBL scored the highest 

at 91.01% among sites. KNN achieved overall good 

performance yet demonstrated inconsistent results between 

sites, indicating its susceptibility when applied to 

distributions of neuroimaging data in high dimensions, which 

affects its general applicability compared to SVM-based 

classification methods. The 3D-ResNet50 + Logistic 

Regression (LR) framework generally obtained poor 

performance results due to its challenges working with high-

dimensional fMRI data. In general, LR methods are suitable 

for 2D images. 

   
Table 6. Site-wise results for enhanced 3D-ResNet50 + KNN 

Site Accuracy (%) Sensitivity (%) Specificity (%) F1-Score 

CALTECH 86.87 86.51 92.81 89.37 

CMU 84.17 95.45 92.33 76.66 

KKI 92.47 84.42 83.55 89.68 

LEUVEN 93.33 94.44 91.85 88.85 

MAX MUN 90.69 92.22 82.69 89.06 

NYU 92.00 79.25 81.98 89.93 

OHSU 86.06 93.69 83.01 89.97 

OLIN 76.97 72.82 97.55 72.95 

PITT 83.59 84.97 90.91 79.78 

SBL 90.02 80.41 96.38 91.01 

SDSU 79.58 91.79 95.85 89.79 

STANFORD 89.91 84.28 75.37 71.05 

TRINITY 89.96 91.44 88.98 84.29 

UCLA 91.93 81.79 95.83 89.31 

UM 91.00 91.49 94.24 77.23 

USM 91.91 71.59 82.43 86.51 

YALE 86.32 85.14 96.32 75.38 

 

Among the sites, NYU achieved the best overall accuracy 

at 90%, and CALTECH achieved 89.85% accuracy. Yet, 

CMU maintained adequate specificity at 78.23%, while 

CALTECH showed excellent sensitivity at 96.13% to 

effectively detect ASD cases, as shown in Table 7. The sites 

of NYU and OLIN demonstrated moderate success. Still, 

their accuracy levels were at 89.71% and 84.51%, 

respectively, while the sites STANFORD USM and YALE 

showed the lowest detection rates with results at 67.79%, 

63.39% and 65.95%, respectively. The F1 scores between 

sites showed substantial differences because OHSU achieved 

58.48% while NYU obtained 82.12% accuracy. The 

sensitivity rates showed irregular patterns because OHSU 

(69.92%) and SDSU (60.19%) misidentified ASD subjects, 

which resulted in possible inaccuracies. 

 

The learning progress of the model appears through the 

Training vs Validation Accuracy Curve, which presents the 

blue solid line for training accuracy and the red dashed line 

for validation accuracy for 25 epochs, as shown in Figure 3. 
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Table 7. Site-wise results for enhanced 3D-ResNet50 + logistic regression 

Site Accuracy (%) Sensitivity (%) Specificity (%) F1-Score 

CALTECH 89.85 96.13 91.13 70.19 

CMU 84.21 72.71 78.23 70.10 

KKI 70.09 75.51 77.93 80.03 

LEUVEN 80.51 77.29 69.81 65.73 

MAX MUN 70.43 68.64 62.29 65.91 

NYU 90.00 87.40 77.76 82.12 

OHSU 77.61 69.92 62.98 58.48 

OLIN 84.51 81.18 66.39 60.91 

PITT 71.15 67.89 81.41 68.94 

SBL 72.09 70.33 68.02 70.09 

SDSU 69.95 60.19 69.94 64.47 

STANFORD 67.79 61.78 60.19 61.94 

TRINITY 64.49 70.09 80.11 80.17 

UCLA 77.89 71.47 74.74 71.02 

UM 67.36 60.91 69.89 64.62 

USM 63.39 67.95 61.94 66.19 

YALE 65.95 63.85 66.44 61.09 

The metrics begin with a progressive ascent as the model 

acquires essential patterns from the data. At epoch 20-25, the 

accuracy becomes stable, while training accuracy achieves 

approximately 88%, and validation accuracy levels are at 

86%. Minor overfitting is normal for deep learning models, 

so a small gap exists between training and validation 

accuracy, while the overall performance shows adequate 

learning. 

 
Fig. 3 Training and validation accuracy curve for enhanced 3D ResNet 

+ SVM method using entire ABIDE-I preprocessed data 

 

The dynamic variations in model performance provide a 

realistic assessment of generalization abilities for the 3D-

ResNet50 + SVM proposed framework through this 

visualization tool. Figure 4 shows the model's training. The 

blue solid line represents training loss, while the red dashed 

line represents validation loss, which decreased steadily until 

both lines stabilized. The losses show initial high readings 

until they decrease steadily because the model effectively 

learns and reduces errors. After twenty-five epochs, the loss 

reaches equilibrium, which signifies that the model has 

achieved its ideal learning threshold. The model's training 

outcome achieves 0.1 loss, and validation reaches 0.15 loss, 

indicating a suitable fit and low overfitting potential. 

Fig. 4 Training and validation loss curve for enhanced 3D-ResNet50 + 

SVM method using entire ABIDE-I preprocessed data 
 

 
Fig. 5 ROC curve for 3D-ResNet50 + SVM method using entire 

ABIDE-I preprocessed data 
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The ROC Curve of Figure 5 demonstrates how different 

models (LR, SVM, RF, KNN) perform their classification 

tasks by analyzing the complete ABIDE-I dataset (871 

subjects). SVM delivered the best AUC of 0.85 because of its 

excellent discrimination capabilities between subjects with 

ASD and controls. 

 

The classification results showed that logistic regression 

reached AUC 0.79, random forest reached AUC 0.75, and 

KNN obtained a lower AUC of 0.70. Models with zero 

discrimination ability have an AUC value of 0.50, equal to 

the random guess baseline. SVM emerges as the most 

effective classification model for fMRI data-based ASD 

classification because its reported AUC values are the 

highest.  

 

The Training vs. Validation Accuracy Curve for the 

NYU site extends for 40 epochs, as shown in Figure 6. The 

learning process demonstrates solid performance because 

training accuracy (blue solid line) and validation accuracy 

(red dashed line) improve consistently to reach 97% and 

95%, respectively. The escalating performance indicates 

minimal dimension overfitting occurred because the 

validation accuracy traces very closely after the training 

curve. 

 

 
Fig. 6 Training and validation accuracy curve for enhanced 3D-

ResNet50 + SVM method using the NYU site 

 

 
Fig. 7 Training and validation loss curve for enhanced 3D ResNet + 

SVM method using the NYU site 

 
Fig. 8 ROC curve for 3D-ResNet50 + SVM method using the NYU site 

 

The Training vs Validation Loss Curve of the NYU site 

in Figure 7 shows a continuous loss reduction for 40 epochs, 

which indicates successful learning. The training loss (Blue 

Solid Line) shows consistent descent, whereas validation loss 

(Red Dashed Line) stabilizes near 0.08 while training loss 

approaches 0.0. Due to its smooth loss reduction pattern, the 

model achieves strong convergence, low overfitting, and 

optimal performance at the NYU site. 

 
Table 8. Performance comparison of the proposed machine learning framework with previous studies on the ABIDE-1 database 

Study Accuracy (%) Participants Method 

Sherkatghanad et al. [32] 70.22 1112 CNN 

Thomas et al. [18] 66 1162 3D-CNN 

Wang et al. [33] 71.60 1057 Graph convolutional network (GCN) 

Deng et al. [34] 74.53 1112 Ensemble 3D-CNN 

Sabegh et al. [35] 73.53 1112 CNN 

Liu et al. [36] 75.20 1112 Multi-atlas deep ensemble (MADE) network 

Proposed method (for 

entire ABIDE-I data) 
90 1112 3D-ResNet50 + SVM 

Proposed method (for 

NYU site) 
97 184 3D-ResNet50 + SVM 
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Figure 8 displays the ROC Curve assessment of different 

classification models, which include Logistic Regression 

(LR), Support Vector Machine (SVM), Random Forest (RF), 

and K-Nearest Neighbors (KNN) applied to the NYU site. 

Support Vector Machine revealed the best testing 

performance by generating an area under the curve of 0.95, 

demonstrating its strong capability to separate ASD from 

healthy controls. Random Forest achieved an AUC value of 

0.85, and KNN reached an AUC of 0.85, and both provided 

good classification results. The models included Logistic 

Regression with an AUC of 0.80 and Random Forest with an 

AUC of 0.75, which exhibited moderate classification ability. 

A model lacking discrimination ability would perform at a 

random guess rate, which equates to an AUC of 0.5. 

 

The accuracy assessment of the proposed 3D-ResNet50 

+ ML framework for ASD classification becomes more 

effective than earlier studies on ABIDE, as reported in Table 

8. Existing CNN, 3D-CNN, and Graph Convolutional 

Networks (GCN) models achieved ASD classification 

accuracies between 66%, as reported by Thomas et al. (2020), 

and 75.20%, as observed by Liu et al. (2024). The ensemble 

of 3D-CNN achieved an accuracy of 74.53%, according to 

Deng et al. (2022).  

 

However, Sabegh et al. (2023) and Wang et al. (2021) 

reported accuracies of 73.53% and 71.60%, respectively, 

using CNN and GCN. The proposed method produced 

superior results compared to existing works by reaching 

87.14% accuracy on the entire ABIDE-I dataset and an 

outstanding 97.40% accuracy on the NYU site through 

integrating 3D-ResNet50 for feature extraction and machine 

learning classifiers.The proposed machine learning ML) 

framework outperformed existing techniques. The summary 

of the existing algorithms is shown in Table 7. Thomas et al. 

proposed a 3D-CNN algorithm and achieved a 66% accuracy. 

In contrast, Sherkatghana et al proposed a 2D-CNN and 

achieved 70.22%. Compared to 3D-based CNN algorithms, 

the 2D-based CNN algorithm achieved good accuracy. Due 

to fewer parameters and reduced overfitting, the 2D-CNN 

achieved good results. The proposed ML framework 

achieved high accuracy by integrating 3D-ResNet50 with 

ML classifiers. The proposed 3D-ResNet50 efficiently 

extracts spatio-temporal features from fMRI images. These 

features are provided to the ML classifiers for classifying 

ASD controls. Remarkable results were achieved due to this 

DL and ML integration method.   

 

5. Conclusion 
The Neurodevelopmental condition, autism spectrum 

disorder, causes significant interference with how people 

communicate and interact socially and impacts their 

cognitive processing abilities. Behavioural assessments, 

which traditionally diagnose autism, use highly subjective 

and time-consuming methods that produce inconsistent 

results, thus requiring automated data-based solutions. The 

research designs an innovative ASD diagnostic structure 

using 3D-ResNet50 for extracting features while machine 

learning classifiers perform the classification operation on 

fMRI data collected from the ABIDE-I dataset. The proposed 

approach successfully reduces problems in high-dimensional 

fMRI data and site-specific variations in different imaging 

facilities. The feature extraction capabilities of the 3D-

ResNet50-based approach surpassed those of conventional 

CNN and 3D-CNN since it avoided their generalization and 

overfitting weaknesses, thus enhancing ASD classification 

outputs. The evaluation of ABIDE-I data yielded 90% overall 

classification accuracy and 97% accuracy at the NYU site 

while surpassing all previous state-of-the-art methods.  

 

The SVM classifier exploited deep features successfully 

during analysis and demonstrated the best AUC value (0.95) 

in ASD categorization. Research efforts for the upcoming 

years will concentrate on developing domain adaptation and 

transfer learning methods to boost the generalization of the 

proposed 3D-ResNet50 + ML system. Using multiple 

neuroimaging data methods (sMRI together with Diffusion 

tensor imaging and EEG) enables researchers to obtain 

additional information about brain connectivity structures, 

leading to better classification results. Implementing 

Explainable AI (XAI) methods will make models more 

interpretable, which will help clinicians use neurobiological 

indicators for specific clinical decisions. Physicians can 

execute automated ASD screening through cloud-based and 

edge-computing systems for real-time clinical deployment, 

which enables early diagnosis. The extraction of features and 

scalability improvement requires more validation on large 

independent datasets, graph-based approaches, transformer 

modelling, and self-supervised learning.
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