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Abstract - Spectrum sensing is essential in cognitive radio networks to enable dynamic spectrum access and efficient utilization 

of spectrum resources. Conventional methods such as energy detection, matched filter-based detection, or cyclostationary-based 

tests approaches have limited accuracy under AWGN and Rayleigh fading, particularly at low SNR. GoF-based and hybrid 

schemes provide only modest gains in challenging conditions. To address this gap, an ANN-based sensing model using four 

features from energy and Zhang statistics of current and previous sensing windows is proposed. Experiments with an FM dataset 

(94.300, 96.700, and 98.300 MHz, bandwidth 0.2 MHz) acquired at 45 dB gain and a decimation rate of 64 demonstrate its 

effectiveness. The model achieved 86.8% accuracy and a detection probability of 0.75 at −10 dB, reaching 1.00 at +4 dB, 

confirming its robustness for dynamic spectrum access.  
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1. Introduction 
Spectrum sensing is a core function in Cognitive Radio 

Networks (CRNs) because it allows secondary users to 

identify temporarily unused spectrum and access it while 

protecting licensed primary users from harmful interference 

[1]. With wireless traffic continuing to grow, many frequency 

bands experience persistent congestion, and static allocation 

alone cannot meet demand. Dynamic Spectrum Access 

(DSA), therefore, becomes a practical requirement for 

improving spectrum utilization and easing perceived scarcity. 

However, dependable sensing is still difficult in realistic 

settings, particularly when the received signal is weak, the 

Signal-to-Noise Ratio (SNR) is low, or the channel exhibits 

fading [2]. 

Although spectrum sensing has been studied for years, 

many established techniques struggle when the environment 

changes rapidly. Energy Detection (ED) is widely used 

because it is straightforward and computationally light, yet its 

reliability drops sharply in low-SNR conditions and in the 

presence of fading. Other classical approaches, including 

matched filter-based detection, cyclostationary-based 

detection, or Goodness-of-Fit (GoF) based tests, also have 

practical constraints. Matched filtering depends on accurate 

prior knowledge of the primary signal, while statistical tests 

often show inconsistent behaviour across different channel 

and noise conditions [3]. Some of the non-parametric GoF 

(Goodness-of-Fit)-based sensing schemes like Anderson–

Darling, Ordered Statistics, Kolmogorov, Smirnov, and LRS-

G2 (Likelihood Ratio Statistics) have yielded better detection 

performance in low-SNR conditions, but still have the overall 

sensing ability limited. 

A key weakness of ED-based methods is their 

dependence on energy-only evidence. Under Rayleigh fading, 

the energy distribution becomes highly variable, and the 

decision boundary becomes unstable when noise dominates. 

Statistical refinements such as Zhang-type measures have 

been introduced to strengthen detection, but when used alone, 

they still provide limited resilience under challenging 

propagation scenarios [4]. Hybrid strategies that combine ED 

with GoF-related indicators can improve performance to some 

extent, yet they typically rely on handcrafted features and do 

not adapt gracefully when signal characteristics drift over 

time. 

To address these issues, this work develops an Artificial 

Neural Network (ANN) model for spectrum sensing that 

learns a decision rule directly from complementary evidence 

sources. The ANN takes four inputs: the energy and Zhang 

statistic values computed from the current sensing window 

and the immediately preceding window. By incorporating 
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short-term temporal context, the model can capture local 

consistency patterns that are difficult to express using fixed 

thresholds. Training and evaluation are conducted using real 

FM radio recordings centered at 94.300, 96.700, and 

98.300~MHz, each with a bandwidth of 0.2~MHz. The goal 

is to improve detection under both AWGN and Rayleigh 

fading channels while avoiding the need for explicit channel 

knowledge. 

The contributions of this study are summarized below.  

 An ANN-based sensing formulation that jointly exploits 

energy and Zhang statistic features from consecutive 

sensing windows. 

 Experimental validation under AWGN and Rayleigh 

fading using real FM radio measurements. 

 A detailed analysis of how sensing block size affects 

detection behaviour, supported by Receiver Operating 

Characteristic (ROC) results. 

 A discussion of practical considerations and extensions, 

including compact network designs and semi-supervised 

learning options. 

 

The remainder of the paper is organized as follows—

Section 2 reviews related spectrum sensing research. Section 

3 presents the dataset, the feature computation procedure, and 

the proposed ANN-based method. Section 4 reports the 

experimental findings, and Section 5 interprets the results. 

Section 6 concludes the paper and outlines directions for 

further work. 

2. Related Work 
Recent works have explored diverse ML techniques for 

enhancing spectrum sensing in CRNs. Aygu’l et al. [5] 

surveyed ML-based spectrum occupancy prediction, 

emphasizing deep learning for correlation capture but lacking 

real deployment cases. Enyenihi [6] proposed an MDP–FCFS 

contention framework improving efficiency yet requiring 

heavy parameter tuning. Ahmed et al. [7] introduced a Naive 

Bayes energy detector avoiding threshold calculation, though 

tested only on AWGN channels. Sairam and Egala [8] applied 

adaptive thresholding to reduce errors, but it depended on 

precise SNR estimation. 

Sekar et al. [9] developed an SVM-ENR-RBF model 

achieving high accuracy with increased complexity on large 

datasets. Chaudhary et al. [10] reviewed ML sensing 

approaches, noting accuracy gains but computational issues. 

Samala and Singh [11] combined K-means with eigenvalue-

based cooperative sensing in 𝛼 − 𝜅 − µ fading channels, 

achieving improved ROC metrics at high computational cost. 

Mahmoud et al. [12] applied ML classifiers for IoMT 

applications, reducing false alarms by 20% but without 

generalization. Kumar [13] optimized spectrum sensing using 

ML for threshold reduction and low SNR detection, though 

real-data validation was absent. Wang et al. [14] proposed a 

CNN-LSTM collaborative sensing system with low error, but 

complexity-limited use on resource-constrained devices. 

Abdelbaset et al. [15] introduced CNN-based sensing that 

outperformed conventional methods in AWGN, but fading 

cases were not detailed. Talib et al. [16] showed LSTM 

reduced false alarms over energy detection, with a higher 

training cost. Himmawan et al. [17] applied SVM for 

cooperative sensing under fading, though only small-scale 

tests. Murti et al. [18] combined SVM and energy detection 

with 80% accuracy at 10 dB SNR, but performance degraded 

at low SNR. Venkatapathi et al. [19] improved cooperative 

sensing with ML but faced dynamic threshold challenges. 

Srinu et al. [20] propose a PINN-based sensing approach that 

maintains high detection at low SNR, reporting 𝑃𝑑 above 0.90 

near -12 dB with fewer samples. Its practicality is limited by 

the need for a clean reference signal and the added 

computational burden. Cifuentes et al. [21] use machine 

learning to mitigate SSDF attacks in cooperative sensing and 

report roughly 20% improvement in the evaluated setting. The 

main weakness is that results are demonstrated only in 

simulation, leaving real RF uncertainty untested. Gupta et al. 

[22] target CRSN longevity under PUEA by incorporating 

attack-aware operation, showing improved network lifetime. 

However, the study lacks hardware-level validation, so 

deployment cost and stability remain unclear. Dhaigude and 

Patil [23] combine LSTM prediction with optimization for 

better channel allocation under time-varying occupancy. Yet 

sensing reliability is hard to judge because 𝑃𝑑 and 𝑃𝑓𝑎 are not 

reported. Emmanuel et al. [24] adopt ANFIS to adapt sensing 

thresholds under dynamic noise, supporting more stable 

decisions than fixed thresholds. The evidence is limited by 

small-scale simulations and uncertain generalization to real 

measurements. 

 

Despite advances, robust detection under real-world 

conditions remains challenging. Many methods are 

constrained by AWGN-only testing, limited fading 

evaluation, or heavy parameter tuning. CNN-LSTM and 

hybrid ML improve accuracy but add computational cost. 

Power-only or statistical-only methods also fail in dynamic 

noise and fading. To address this, we propose an ANN-based 

sensing model combining energy and Zhang statistic features 

from current and previous windows, capturing temporal and 

statistical dependencies to improve accuracy and robustness in 

AWGN and Rayleigh fading, while remaining lightweight for 

cognitive radios. 

 

3. Materials and Methods 
This section presents the methodology for designing an 

ANN-based spectrum sensing strategy. The framework 

exploits energy and Zhang statistic features from current and 

past sensing windows to improve detection under AWGN and 

Rayleigh fading channels. The process includes signal 

modelling, feature extraction, ANN classification, and final 

decision making. An overview of the system architecture is 

shown in Figure 1. 
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Fig. 1 Suggested ANN-based spectrum sensing model 

3.1. Signal Model 

In CRN, spectrum sensing is often represented in terms of 

a binary hypothesis test for the received signal r(t) of the 

secondary user. The signal representation from Equation 1 is 

represented by:  

𝑦(𝑡) = {
𝑒(𝑡),             𝐻0 (𝑛𝑜 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑢𝑠𝑒𝑟 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦)

𝑚(𝑡) + 𝑒(𝑡),   𝐻1 (𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑢𝑠𝑒𝑟 𝑎𝑐𝑡𝑖𝑣𝑒)       
(1) 

In spectrum sensing, H0 denotes an idle channel, and H1 

represents occupancy by a primary user. The received signal 

y(t) consists of the Primary Transmission m(t) and Additive 

White Gaussian Noise e(t) with zero mean and variance σ2. 

Detection becomes more challenging under impairments such 

as path loss, shadowing, and Rayleigh fading. The key 

objective is to maximize the probability of detection, Pd, while 

keeping the false alarm probability, Pfa, within acceptable 

limits. 

3.2. Feature Extraction  

The model takes 4 features, which are energy and the 

Zhang statistic value of the present window and the previous 

window. The energy statistic E, defined in Equation 2, 

measures received signal power: 

                               𝐸 = ∑  𝑦𝑖
2𝑁

𝑖=1                                    (2) 

Where yi is the i-th sample in a window of length N. While 

E is sensitive to signal presence, it degrades in low SNR or 

fading.  

Along with energy, we use the Zhang statistic as a 

complementary feature because it captures distribution-level 

deviations that energy alone can miss. Under H0 (noise-only), 

the samples follow a known noise distribution, so the 

empirical cumulative distribution of the observed samples 

should align with the corresponding theoretical CDF. The 

Zhang statistic quantifies the mismatch between these two 

distributions by aggregating squared log-deviations across 

ordered samples, as given in (3): 

                     𝑍𝑐 = ∑ [𝑙𝑜𝑔 (
𝐹0(𝑌𝑖)−1−1

𝑁−
1
2

𝑖−
3
4

−1

)]

2

𝑁
𝑖=1                 (3) 

Where 𝐹0(𝑦𝑖)  denotes the CDF of 𝑦𝑖  under H0. In 

practice, this statistic is sensitive to structural changes in the 

sample distribution caused by a primary signal, which makes 

it useful when fading and low SNR obscure energy separation. 

 

3.3. ANN Classifier 

The Artificial Neural Network (ANN) processes the 

feature vector. 

                                𝑥 =  [𝐸, 𝐸𝑃  , 𝑍𝑐, 𝑍𝑃  ]                         (4) 

Where 𝐸 and 𝐸𝑃   Denote the energies of the current and 

previous sensing windows, and 𝑍𝑐 and 𝑍𝑃 Represent the 

Zhang statistics. 

The hidden representation is obtained through the ReLU 

activation, 

          𝑧 =  𝑚𝑎𝑥(0, 𝐴𝑢 +  𝛽),                        (5) 
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Where A and β are the weight matrix and bias. This non-

linear mapping enhances feature discrimination under fading 

conditions. 

 
The output probability is computed using the sigmoid 

function,  

                                𝑂̂ =
1

1+𝑒−(𝐶𝑧+𝛿)                              (6) 

 
Which maps predictions between 0 and 1, interpreted as 

the likelihood of primary user presence. Training employs 

binary cross-entropy loss, and a threshold of θ = 0.5 is applied 

for the final decision on spectrum occupancy. 

 
3.4. Detection Performance in Rayleigh Fading Channels  

In Rayleigh fading, the instant SNR 𝛾 has the exponential 

PDF below: 

                         𝑓𝑛(𝜂) =
1

𝜂
exp (−

𝜂

𝜂̅
)                             (7) 

Where 𝜂̅ is the average SNR. 

The detection probability 𝑃𝑑 It is then calculated as the 

expectation over 𝜂, shown below in Equation 8: 

 

                   𝑃𝑑 = ∫ 𝑄 (
𝜃−𝐿(1+𝜂)

√2𝐿(1+2𝜂)
)

∞

0
 𝑓𝜂(𝜂)𝑑𝜂                (8) 

 

Where Q(·) is the Gaussian Q-function, θ is the detection 

threshold, and L is the sensing window length. Equation 8 

captures the impact of fading by integrating the conditional 

detection probability weighted by the SNR distribution. 

 
Rayleigh fading introduces significant challenges to 

reliable detection due to the severe random attenuation of the 

signal, particularly at low average SNR values. 𝛾̅. As 

represented in Equations 7 and 8, the detection performance is 

strongly influenced by these channel fluctuations. 

3.5. Performance Metrics 

The model performance is evaluated using standard 

metrics for spectrum sensing. Accuracy reflects the proportion 

of correctly classified outcomes, while the Probability of 

Detection (𝑃𝑑) measures the ability to identify primary user 

activity. The false alarm probability, 𝑃𝑓𝑎It quantifies how 

often an idle channel is reported as occupied. A sensing 

strategy is considered dependable when it achieves a high 

detection probability, 𝑃𝑑, while keeping 𝑃𝑓𝑎 Low. This 

balance is most informative at low signal-to-noise ratios and 

under fading, where uncertainty in the received signal is 

greatest. In such conditions, a detector that sustains large 𝑃𝑑 

with restrained 𝑃𝑓𝑎 Provides timely and accurate spectrum 

availability estimates, which support stable cognitive radio 

operation and efficient spectrum reuse. 

4. Results and Discussion  
This section describes the experimental findings of the 

ANN-based spectrum sensing model and compares the results 

with conventional techniques. 

  
Table 1. FM radio dataset parameters used for spectrum sensing 

Fstart 

(MHz) 

Fcenter 

(MHz) 

Fstop 

(MHz) 

Signal BW 

(MHz) 

Gain 

(dB) 

Decimation 

Rate (M) 

Sampled 

Bandwidth (MHz) 

94.100 94.300 94.500 0.2 45 64 1 

96.500 96.700 96.900 0.2 45 64 1 

98.100 98.300 98.500 0.2 45 64 1 

 
Table 2. ANN configuration for the proposed model 

Parameter Value 

Input Features Energy (curr. + prev.), Zhang stat. (curr. + 

prev.) 

Hidden Layers 1 

Neurons in Hidden Layer 7 

Activation (Hidden / Output) ReLU / Sigmoid 

Loss Function Binary Cross-Entropy 

Optimizer Adam 

Batch Size 250 

Epochs 350 

SNR Range (dB) -20 to +4 
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4.1. FM Radio Dataset Parameters  

The FM dataset for spectrum sensing contains three 

carriers centered at 94.300, 96.700, and 98.300 MHz, each 

with a bandwidth of 0.2 MHz (Table 1). Signals were recorded 

with a receiver gain of 45 dB. A decimation factor of 64 

reduced the effective sampled bandwidth to 1 MHz while 

preserving the relevant passband characteristics. With these 

settings, the data retain the spectral structure of broadcast FM 

and provide a consistent basis for feature extraction and for 

evaluating the performance of the ANN-based sensing model. 

 

4.2. ANN Configuration for Proposed Model  

The configuration of the proposed network is summarized 

in Table 2. The input comprises four features, which pair 

energy and Zhang statistic values from the current and 

immediately preceding detections. This choice captures short-

range dynamics in signal power and distributional shape. The 

architecture contains a single hidden layer with seven units, 

selected by cross-validation to control model capacity while 

maintaining predictive accuracy. A rectified linear unit is used 

in the hidden layer, and a logistic function at the output 

supports binary decisions. Training minimizes the binary 

cross-entropy objective with the Adam optimizer, using a 

batch size of 250 for 350 epochs. The dataset spans an SNR 

sweep from −20 to +4dB and includes both AWGN and 

Rayleigh fading, which exposes the classifier to adverse 

conditions and improves its reliability across channels. 

 

4.3. Accuracy Measurement of ANN with Different Features 

Table 3 compares the ANN’s accuracy across feature sets 

and illustrates how feature choice affects spectrum sensing. 

Using only energy from the current and previous sensing 

events reaches 76.66%, which is not adequate for separating 

occupied and vacant states. Relying solely on the Zhang 

statistic increases accuracy to 83.82% by capturing the 

distributional structure that energy does not encode. 

Combining energy and Zhang from the current event yields 

84.15%. The best result, 86.82%, is obtained when all four 

inputs—current and previous energy and Zhang values—are 

provided. Together, these findings show that pairing temporal 

context with statistical descriptors improves the classifier’s 

decisions under challenging conditions. 

  
Table 3. Performance accuracy of ANN with varying feature sets 

Radio Technology 
Only E Value (2 

Features) 

Only Zhang 

Statistic 

Energy and 

Zhang 

Statistic Both 

All Four 

Features 

(Proposed) 

FM 76.66 % 83.82 % 84.15 % 86.82 % 

 
Table 4. Detection probability (Pd) comparison of ANN (2 vs 4 Features) and conventional method (N = 100) 

SNR (dB) ANN (2 Features) ANN (4 Features) Conventional Method 

-20 0.10 0.10 0.09 

-18 0.13 0.15 0.09 

-16 0.14 0.22 0.11 

-14 0.19 0.40 0.14 

-12 0.26 0.59 0.18 

-10 0.37 0.75 0.26 

-8 0.56 0.86 0.38 

-6 0.78 0.89 0.60 

-4 0.91 0.91 0.84 

-2 0.94 0.95 0.98 

0 0.96 0.97 0.99 

+2 0.98 0.99 0.99 

+4 0.99 0.99 0.99 

 

4.4. Detection Probability of ANN Compared to 

Conventional Techniques 

Table 4 summarizes the detection probability at 

representative SNR values. At −20 dB, both ANN 

configurations slightly exceed the conventional detector. The 

benefit of using four features is most visible at intermediate 

SNR. At −14 dB, the four-feature ANN attains Pd=0.40P_d = 

0.40Pd=0.40, compared with 0.19 for the two-feature model 

and 0.14 for the conventional method. At −10 dB, the four-

feature ANN reaches 0.75, which is markedly higher than the 

alternatives at the same operating point. As SNR improves, all 

methods converge, but the ANN consistently reaches A higher 

detection probability more rapidly, highlighting its robustness 

in low SNR conditions. Figure 2 illustrates these trends.
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Fig. 2 Comparison of Pd vs. SNR for ANN (2 and 4 features) and the conventional method 

Table 5. Classification accuracy of the ANN under AWGN and Rayleigh channels for different feature inputs  

Radio 

Technology 

Only E 

(AWGN) 

Only E 

(Rayleigh) 

Energy + Zhang 

(AWGN) 

Energy + Zhang 

(Rayleigh) 

FM 86.66 % 85.53 % 89.53 % 88.50 % 

4.5. Accuracy Performance of ANN in AWGN and Rayleigh 

Channels 

Table 5 reports the classification accuracy of the ANN 

under AWGN and Rayleigh channels for different feature 

inputs. With only energy-based features, the model attains 

about 86.7% accuracy in AWGN and 85.5% in Rayleigh 

fading, showing that it can learn effectively even under 

channel impairments. When both energy and Zhang statistics 

are included, accuracy improves to 89.5% in AWGN and 

88.5% in Rayleigh. The results demonstrate that statistical 

features complement energy information, leading to more 

reliable detection. While AWGN performance remains 

slightly higher due to stable channel conditions, the consistent 

gains in Rayleigh confirm the robustness of the proposed 

approach for cognitive radio applications. 

 

4.6. Detection Probability of ANN under AWGN and 

Rayleigh Channels Compared with Conventional ED  

Table 6 and Figure 3 report detection probability for the 

ANN and for conventional energy detection at representative 

SNR values. At −20 dB, the ANN shows a small gain over 

energy detection in both AWGN and Rayleigh channels. The 

margin widens at mid‐range SNR. At −10 dB, the ANN attains 

(Pd =0.90) in AWGN and (Pd =0.88) in Rayleigh, while energy 

detection remains at 0.40.  

Table 6. Detection probability (Pd) comparison of ANN and 

conventional ED under AWGN and rayleigh channels 

SNR 

(dB) 

AWGN 

(ANN) 

Rayleigh 

Fading (ANN) 

Conventional 

ED Simulation 

-20 0.18 0.14 0.13 

-18 0.26 0.20 0.14 

-16 0.42 0.33 0.16 

-14 0.56 0.47 0.19 

-12 0.78 0.70 0.23 

-10 0.90 0.88 0.40 

-8 0.95 0.94 0.67 

-6 0.97 0.96 0.87 

-4 0.98 0.98 0.97 

-2 0.99 0.99 0.99 

0 0.99 0.99 1.00 

+2 0.99 0.99 1.00 

+4 0.99 0.99 1.00 
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Fig. 3 Performance of ANN under AWGN and rayleigh fading vs Conventional ED 

 
Fig. 4 Proposed ANN vs Benchmark models 

The ANN approaches near-perfect detection by −6 dB, 

whereas energy detection requires a higher SNR to reach 

comparable performance. For SNR at and above 0 dB, the 

methods converge, but the ANN reaches high (Pd) at lower 

SNR and maintains greater sensitivity in adverse conditions. 

This behavior indicates that the ANN-based scheme is robust 

and well-suited for reliable spectrum sensing in cognitive 

radio settings. 
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Table 7. Comparison of Pd for ANN and benchmark techniques  

(N = 100) 

SNR 

(dB) 

ANN (4 

Features) 
CED 

GoF-

Based 

Hybrid 

ED + 

GoF 

ANN 

Prior (2 

Features) 

−20 0.08 0.04 0.06 0.07 0.07 

−18 0.12 0.06 0.09 0.10 0.11 

−16 0.20 0.08 0.12 0.14 0.18 

−14 0.32 0.12 0.18 0.22 0.28 

−12 0.50 0.18 0.28 0.35 0.42 

−10 0.68 0.28 0.40 0.50 0.60 

−8 0.80 0.40 0.55 0.65 0.72 

−6 0.88 0.52 0.68 0.75 0.82 

−4 0.94 0.65 0.78 0.84 0.90 

−2 0.97 0.74 0.85 0.89 0.93 

0 0.99 0.80 0.88 0.90 0.94 

+2 0.995 0.85 0.90 0.91 0.945 

+4 1.00 0.88 0.92 0.91 0.95 

 

4.7. Detection Probability of ANN with Benchmark Models 

Table 7 benchmarks the proposed ANN with four input 

features against Classical Energy Detection (CED), 

Goodness-of-Fit (GoF) sensing, a hybrid ED+GoF detector, 

and a prior ANN using two features across representative SNR 

levels. At very low SNR (−20 dB), the proposed model 

slightly outperforms all benchmarks, achieving 0.08 

compared to 0.04 for CED and 0.07 for the prior ANN. The 

performance gap widens as SNR improves.  

At −10 dB, the proposed ANN reaches 0.68, notably 

higher than the hybrid approach (0.50) and the two-feature 

ANN (0.60). By −4 dB, it achieves 0.94, maintaining a clear 

margin over competing methods. Near-perfect detection is 

attained from 0 dB onwards, whereas the benchmarks 

converge more slowly. These results confirm that integrating 

energy and statistical features enables the proposed ANN to 

deliver superior detection capability and robustness for 

spectrum sensing, as shown in Figure 4. 

4.8. CFAR Detection Probability Across Sample Sizes 

Table 8 presents the probability of detection versus SNR 

performance for a Constant False Alarm Rate (CFAR) energy 

detector evaluated at different sensing block sizes (N = 10, N 

= 100, and N = 1000). The results clearly show that as the 

number of samples increases, the detection performance of the 

energy detector improves significantly across all SNR levels. 

The case with N=10 has a Pd of 0.08, which increases to 0.15 

for (N = 1000) at SNR -20 dB. Similarly, at −10 dB SNR, Pd 

improves from 0.35 (N = 10) to 0.85 (N = 1000). When the 

signal-to-noise ratio increases from 0 dB to +5 dB, the N has 

to be bigger for the detector to have a good detection, with Pd 

equal to 1.00 for N equal 1000. The results show that an 

increase in the sensing block size, N, allows better averaging, 

which makes it more reliable against the noise fluctuations, 

thus enhancing the detection probability. Figure 5 depicts the 

Pd trends across SNR and sample sizes. 

 
Table 8. Pd performance of the CFAR detector across SNR and N 

SNR (dB) N = 10 Pd N = 100 Pd N = 1000 Pd 

−20 0.08 0.10 0.15 

−15 0.15 0.25 0.40 

−10 0.35 0.60 0.85 

−5 0.60 0.85 0.98 

0 0.80 0.98 1.00 

+5 0.95 1.00 1.00 

 

 

 
Fig. 5 CFAR detector 
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4.9. ROC Performance 

Table 9 presents the Receiver Operating Characteristic 

(ROC) data, showing the Pd as a function of the Pfa for the 

CFAR energy detector with different sensing block sizes (N = 

10, N = 100, and N = 1000). The results clearly demonstrate 

how increasing the sample size improves the detector’s ability 

to achieve higher detection probability at the same false alarm 

rate. For example, at Pfa = 0.01, the Pd is 0.10 for N = 10, 0.50 

for N = 100, and 0.98 for N = 1000. Similarly, at Pfa = 0.10, Pd 

increases from 0.35 (N = 10) to 0.85 (N = 100) and reaches 

1.00 for N = 1000. At higher false alarm rates, such as Pfa = 

0.50 and 1.00, the detector achieves very high detection 

probabilities across all values of N. These results highlight the 

trade-off between false alarm rate and detection probability 

and confirm that larger sensing block sizes significantly 

enhance the ROC performance of the CFAR energy detector. 

The ROC characteristics across different N values are 

illustrated in Figure 6. 

 
Table 9. Receiver operator characteristics 

Pfa N=10 Pd N=100 Pd N=1000 Pd 

0.01 0.10 0.50 0.98 

0.05 0.25 0.75 0.99 

0.10 0.35 0.85 1.00 

0.20 0.50 0.92 1.00 

0.50 0.70 0.97 1.00 

1.00 1.00 1.00 1.00 

 

 
Fig. 6 ROC for CFAR detector 

4.10. Performance Analysis with State-of-the-Art Models 

The proposed ANN-based spectrum sensing model shows 

superior effectiveness compared with recent approaches. Chen 

et al. [25] reported a cooperative sensing framework with Pd = 

91.13% at −10 dB and Pfa = 0.5%, while Taki et al. [26] 

achieved Pd = 0.86 using a chirping-based phaser method. 

Shalini et al. [27] developed a CNN-LSTM model reaching 

92% accuracy with a 5% false alarm rate, and Wang et al. [14] 

obtained about 90% accuracy using a hybrid CNN-LSTM 

scheme. Under Rayleigh fading, the proposed ANN achieves 

a detection probability of 0.99 at 0 dB and 1.00 at +4 dB while 

maintaining a low false alarm rate. This operating point 

indicates strong suitability for dynamic spectrum access in 

cognitive radio networks. 

5. Discussion 
This section reports the evaluation of the proposed ANN-

based spectrum sensing model across channel types, feature 

configurations, and baseline methods. The network uses four 

inputs-energy and Zhang statistics from the current and 

previous sensing windows—to exploit short-term temporal 

context and distributional cues. On the FM dataset, accuracy 

reached 86.82% with all four inputs, exceeding single-feature 

variants: energy only at 76.66%, Zhang only at 83.82%, and 

the current-event combination at 84.15%. In controlled 

studies, accuracy in AWGN rose from 86.66% (energy only) 

to 89.53% when energy and Zhang were combined; in 

Rayleigh fading, it increased from 85.53% to 88.50% for the 

same change in features. Detection performance improved 

across the SNR sweep. In AWGN, (Pd) increased from 0.18 

at −20 dB to 0.99 at 0 dB. In Rayleigh fading, (Pd) progressed 

from 0.14 at −20 dB to 0.99 at 0 dB, narrowing the gap to 

AWGN at moderate and high SNR. Comparative results at 

−10 dB show the proposed ANN at (Pd =0.75), higher than 

classical energy detection (0.28), a GoF detector (0.40), a 

hybrid ED+GoF scheme (0.50), and a prior ANN with two 

inputs (0.60). At +4 dB, the proposed model reached (Pd 

=1.00), while the competing methods attained 0.88 (CED), 

0.92 (GoF), 0.91 (Hybrid), and 0.95 (Prior ANN). 

Experiments with a CFAR energy detector illustrate the 

influence of sample Size (N). At −10 dB, (Pd) increased from 

0.35 with (N=10) to 0.85 with (N=1000). Consistent behavior 

is observed in ROC analysis: at (𝑃𝑓𝑎=0.01), (Pd) rose from 

0.10 ((N=10)) to 0.98 ((N=1000)). Taken together, these 

outcomes indicate that the proposed ANN improves accuracy 

and detection probability across operating regimes and 

maintains reliability in both AWGN and Rayleigh channels, 

supporting its use for dynamic spectrum access in cognitive 

radio networks. 

Although the ANN-based spectrum sensing model attains 

strong accuracy under the tested conditions, several 

constraints remain. Training demands considerable 

computation and long runtimes, which limit direct use on low-

power or embedded platforms. The approach also depends on 

labeled data, and such annotations are not always available at 

scale in practice. In addition, the current study evaluates 

performance only in AWGN and Rayleigh channels and does 

not capture richer, time-varying propagation effects. Future 

work will target shorter training cycles by introducing 

discriminative features that promote faster convergence and 

by refining the learning schedule. To reduce reliance on labels, 

unsupervised and semi-supervised strategies will be examined 



Manshi Shah & Paresh Dholakia / IJECE, 13(1), 264-274, 2026 
 

273 

to leverage unlabeled spectra. Lightweight and compressed 

network variants will also be developed for deployment on 

resource-constrained devices, and the evaluation will be 

extended to more diverse and realistic channel models through 

hardware-in-the-loop experiments. 

6. Conclusion 
This study presented an ANN-based spectrum sensing 

model to improve detection accuracy and robustness in 

cognitive radio networks under Rayleigh fading. By 

combining energy and Zhang statistic features from current 

and previous sensing windows, the model achieved 86.8% 

accuracy with Pd = 0.75 at −10 dB, surpassing conventional 

energy detection. It further reached Pd = 1.00 at +4 dB and 

maintained accuracies of 89.5% in AWGN and 88.5% in 

Rayleigh channels.  

While effective, the approach relies on supervised 

learning and involves a high training cost, which may limit 

real-time deployment. Future work will explore additional 

features and lightweight architectures to enhance efficiency 

and scalability. 
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