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Abstract - Spectrum sensing is essential in cognitive radio networks to enable dynamic spectrum access and efficient utilization
of spectrum resources. Conventional methods such as energy detection, matched filter-based detection, or cyclostationary-based
tests approaches have limited accuracy under AWGN and Rayleigh fading, particularly at low SNR. GoF-based and hybrid
schemes provide only modest gains in challenging conditions. To address this gap, an ANN-based sensing model using four
features from energy and Zhang statistics of current and previous sensing windows is proposed. Experiments with an FM dataset
(94.300, 96.700, and 98.300 MHz, bandwidth 0.2 MHz) acquired at 45 dB gain and a decimation rate of 64 demonstrate its

effectiveness. The model achieved 86.8% accuracy and a detection probability of 0.75 at —10 dB, reaching 1.00 at +4 dB,

confirming its robustness for dynamic spectrum access.

Keywords - Artificial Neural Network, Cognitive Radio, Energy Detection, Rayleigh fading, Spectrum sensing.

1. Introduction

Spectrum sensing is a core function in Cognitive Radio
Networks (CRNs) because it allows secondary users to
identify temporarily unused spectrum and access it while
protecting licensed primary users from harmful interference
[1]. With wireless traffic continuing to grow, many frequency
bands experience persistent congestion, and static allocation
alone cannot meet demand. Dynamic Spectrum Access
(DSA), therefore, becomes a practical requirement for
improving spectrum utilization and easing perceived scarcity.
However, dependable sensing is still difficult in realistic
settings, particularly when the received signal is weak, the
Signal-to-Noise Ratio (SNR) is low, or the channel exhibits
fading [2].

Although spectrum sensing has been studied for years,
many established techniques struggle when the environment
changes rapidly. Energy Detection (ED) is widely used
because it is straightforward and computationally light, yet its
reliability drops sharply in low-SNR conditions and in the
presence of fading. Other classical approaches, including
matched filter-based  detection, cyclostationary-based
detection, or Goodness-of-Fit (GoF) based tests, also have
practical constraints. Matched filtering depends on accurate
prior knowledge of the primary signal, while statistical tests
often show inconsistent behaviour across different channel
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and noise conditions [3]. Some of the non-parametric GoF
(Goodness-of-Fit)-based sensing schemes like Anderson—
Darling, Ordered Statistics, Kolmogorov, Smirnov, and LRS-
G? (Likelihood Ratio Statistics) have yielded better detection
performance in low-SNR conditions, but still have the overall
sensing ability limited.

A key weakness of ED-based methods is their
dependence on energy-only evidence. Under Rayleigh fading,
the energy distribution becomes highly variable, and the
decision boundary becomes unstable when noise dominates.
Statistical refinements such as Zhang-type measures have
been introduced to strengthen detection, but when used alone,
they still provide limited resilience under challenging
propagation scenarios [4]. Hybrid strategies that combine ED
with GoF-related indicators can improve performance to some
extent, yet they typically rely on handcrafted features and do
not adapt gracefully when signal characteristics drift over
time.

To address these issues, this work develops an Atrtificial
Neural Network (ANN) model for spectrum sensing that
learns a decision rule directly from complementary evidence
sources. The ANN takes four inputs: the energy and Zhang
statistic values computed from the current sensing window
and the immediately preceding window. By incorporating
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short-term temporal context, the model can capture local
consistency patterns that are difficult to express using fixed
thresholds. Training and evaluation are conducted using real
FM radio recordings centered at 94.300, 96.700, and
98.300~MHz, each with a bandwidth of 0.2~MHz. The goal
is to improve detection under both AWGN and Rayleigh
fading channels while avoiding the need for explicit channel
knowledge.

The contributions of this study are summarized below.
An ANN-based sensing formulation that jointly exploits
energy and Zhang statistic features from consecutive
sensing windows.

Experimental validation under AWGN and Rayleigh
fading using real FM radio measurements.

A detailed analysis of how sensing block size affects
detection behaviour, supported by Receiver Operating
Characteristic (ROC) results.

A discussion of practical considerations and extensions,
including compact network designs and semi-supervised
learning options.

The remainder of the paper is organized as follows—
Section 2 reviews related spectrum sensing research. Section
3 presents the dataset, the feature computation procedure, and
the proposed ANN-based method. Section 4 reports the
experimental findings, and Section 5 interprets the results.
Section 6 concludes the paper and outlines directions for
further work.

2. Related Work

Recent works have explored diverse ML techniques for
enhancing spectrum sensing in CRNs. Aygu’l et al. [5]
surveyed ML-based spectrum occupancy prediction,
emphasizing deep learning for correlation capture but lacking
real deployment cases. Enyenihi [6] proposed an MDP—-FCFS
contention framework improving efficiency yet requiring
heavy parameter tuning. Ahmed et al. [7] introduced a Naive
Bayes energy detector avoiding threshold calculation, though
tested only on AWGN channels. Sairam and Egala [8] applied
adaptive thresholding to reduce errors, but it depended on
precise SNR estimation.

Sekar et al. [9] developed an SVM-ENR-RBF model
achieving high accuracy with increased complexity on large
datasets. Chaudhary et al. [10] reviewed ML sensing
approaches, noting accuracy gains but computational issues.
Samala and Singh [11] combined K-means with eigenvalue-
based cooperative sensing in a —k —p fading channels,
achieving improved ROC metrics at high computational cost.
Mahmoud et al. [12] applied ML classifiers for IoMT
applications, reducing false alarms by 20% but without
generalization. Kumar [13] optimized spectrum sensing using
ML for threshold reduction and low SNR detection, though
real-data validation was absent. Wang et al. [14] proposed a
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CNN-LSTM collaborative sensing system with low error, but
complexity-limited use on resource-constrained devices.
Abdelbaset et al. [15] introduced CNN-based sensing that
outperformed conventional methods in AWGN, but fading
cases were not detailed. Talib et al. [16] showed LSTM
reduced false alarms over energy detection, with a higher
training cost. Himmawan et al. [17] applied SVM for
cooperative sensing under fading, though only small-scale
tests. Murti et al. [18] combined SVM and energy detection
with 80% accuracy at 10 dB SNR, but performance degraded
at low SNR. Venkatapathi et al. [19] improved cooperative
sensing with ML but faced dynamic threshold challenges.
Srinu et al. [20] propose a PINN-based sensing approach that
maintains high detection at low SNR, reporting P, above 0.90
near -12 dB with fewer samples. Its practicality is limited by
the need for a clean reference signal and the added
computational burden. Cifuentes et al. [21] use machine
learning to mitigate SSDF attacks in cooperative sensing and
report roughly 20% improvement in the evaluated setting. The
main weakness is that results are demonstrated only in
simulation, leaving real RF uncertainty untested. Gupta et al.
[22] target CRSN longevity under PUEA by incorporating
attack-aware operation, showing improved network lifetime.
However, the study lacks hardware-level validation, so
deployment cost and stability remain unclear. Dhaigude and
Patil [23] combine LSTM prediction with optimization for
better channel allocation under time-varying occupancy. Yet
sensing reliability is hard to judge because P, and Py, are not
reported. Emmanuel et al. [24] adopt ANFIS to adapt sensing
thresholds under dynamic noise, supporting more stable
decisions than fixed thresholds. The evidence is limited by
small-scale simulations and uncertain generalization to real
measurements.

Despite advances, robust detection under real-world
conditions remains challenging. Many methods are
constrained by AWGN-only testing, limited fading
evaluation, or heavy parameter tuning. CNN-LSTM and
hybrid ML improve accuracy but add computational cost.
Power-only or statistical-only methods also fail in dynamic
noise and fading. To address this, we propose an ANN-based
sensing model combining energy and Zhang statistic features
from current and previous windows, capturing temporal and
statistical dependencies to improve accuracy and robustness in
AWGN and Rayleigh fading, while remaining lightweight for
cognitive radios.

3. Materials and Methods

This section presents the methodology for designing an
ANN-based spectrum sensing strategy. The framework
exploits energy and Zhang statistic features from current and
past sensing windows to improve detection under AWGN and
Rayleigh fading channels. The process includes signal
modelling, feature extraction, ANN classification, and final
decision making. An overview of the system architecture is
shown in Figure 1.
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Fig. 1 Suggested ANN-based spectrum sensing model

3.1. Signal Model

In CRN, spectrum sensing is often represented in terms of
a binary hypothesis test for the received signal r(t) of the
secondary user. The signal representation from Equation 1 is
represented by:

e(t), H, (no primary user activity)

Y@ = {m(t) + e(t), H, (primary user active) )
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In spectrum sensing, Ho denotes an idle channel, and H;
represents occupancy by a primary user. The received signal
y(t) consists of the Primary Transmission m(t) and Additive
White Gaussian Noise e(t) with zero mean and variance 2.
Detection becomes more challenging under impairments such
as path loss, shadowing, and Rayleigh fading. The key
objective is to maximize the probability of detection, Pg, while
keeping the false alarm probability, Ps, within acceptable
limits.

3.2. Feature Extraction
The model takes 4 features, which are energy and the
Zhang statistic value of the present window and the previous
window. The energy statistic E, defined in Equation 2,
measures received signal power:
E=3%L, v} 2
Where yi is the i-th sample in a window of length N. While

E is sensitive to signal presence, it degrades in low SNR or
fading.

Along with energy, we use the Zhang statistic as a
complementary feature because it captures distribution-level
deviations that energy alone can miss. Under Hq (noise-only),
the samples follow a known noise distribution, so the
empirical cumulative distribution of the observed samples
should align with the corresponding theoretical CDF. The
Zhang statistic quantifies the mismatch between these two
distributions by aggregating squared log-deviations across
ordered samples, as given in (3):

2

Z,= 3)

Where F,(y;) denotes the CDF of y; under Ho. In
practice, this statistic is sensitive to structural changes in the
sample distribution caused by a primary signal, which makes
it useful when fading and low SNR obscure energy separation.

3.3. ANN Classifier
The Artificial Neural Network (ANN) processes the
feature vector.
x = [E,Ep,Ze,Zp ] )
Where E and E, Denote the energies of the current and

previous sensing windows, and Z. and Z, Represent the
Zhang statistics.

The hidden representation is obtained through the ReLU
activation,
©)

z = max(0,Au + f),
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Where A and f3 are the weight matrix and bias. This non-
linear mapping enhances feature discrimination under fading
conditions.

The output probability is computed using the sigmoid
function,

A 1
0= e@® ©)
Which maps predictions between 0 and 1, interpreted as
the likelihood of primary user presence. Training employs
binary cross-entropy loss, and a threshold of 8 = 0.5 is applied

for the final decision on spectrum occupancy.

3.4. Detection Performance in Rayleigh Fading Channels
In Rayleigh fading, the instant SNR y has the exponential
PDF below:

fuln) = 2exp (= 2) 7)

Where 7 is the average SNR.

The detection probability P, It is then calculated as the
expectation over n, shown below in Equation 8:

0-L(1+n)

Py = fow Q (m) () d, (8)

Where Q(+) is the Gaussian Q-function, 4 is the detection
threshold, and L is the sensing window length. Equation 8
captures the impact of fading by integrating the conditional
detection probability weighted by the SNR distribution.

Rayleigh fading introduces significant challenges to
reliable detection due to the severe random attenuation of the
signal, particularly at low average SNR values. y. As
represented in Equations 7 and 8, the detection performance is
strongly influenced by these channel fluctuations.

3.5. Performance Metrics

The model performance is evaluated using standard
metrics for spectrum sensing. Accuracy reflects the proportion
of correctly classified outcomes, while the Probability of
Detection (P;) measures the ability to identify primary user
activity. The false alarm probability, Pr,It quantifies how
often an idle channel is reported as occupied. A sensing
strategy is considered dependable when it achieves a high
detection probability, P;, while keeping Pr, Low. This
balance is most informative at low signal-to-noise ratios and
under fading, where uncertainty in the received signal is
greatest. In such conditions, a detector that sustains large P,
with restrained P, Provides timely and accurate spectrum
availability estimates, which support stable cognitive radio
operation and efficient spectrum reuse.

4. Results and Discussion

This section describes the experimental findings of the
ANN-based spectrum sensing model and compares the results
with conventional techniques.

Table 1. FM radio dataset parameters used for spectrum sensing

Fstart Fcenter Fstop Signal BW Gain Decimation Sampled
(MHz) (MHz) (MHz) (MHz) (dB) Rate (M) Bandwidth (MHz)
94.100 94.300 94.500 0.2 45 64 1
96.500 96.700 96.900 0.2 45 64 1
98.100 98.300 98.500 0.2 45 64 1
Table 2. ANN configuration for the proposed model
Parameter Value
Input Features Energy (curr. + prev.), Zhang stat. (curr. +
prev.)
Hidden Layers 1
Neurons in Hidden Layer 7

Activation (Hidden / Output)

ReLU / Sigmoid

Loss Function

Binary Cross-Entropy

Optimizer Adam
Batch Size 250
Epochs 350
SNR Range (dB) -20to +4
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4.1. FM Radio Dataset Parameters

The FM dataset for spectrum sensing contains three
carriers centered at 94.300, 96.700, and 98.300 MHz, each
with a bandwidth of 0.2 MHz (Table 1). Signals were recorded
with a receiver gain of 45 dB. A decimation factor of 64
reduced the effective sampled bandwidth to 1 MHz while
preserving the relevant passband characteristics. With these
settings, the data retain the spectral structure of broadcast FM
and provide a consistent basis for feature extraction and for
evaluating the performance of the ANN-based sensing model.

4.2. ANN Configuration for Proposed Model

The configuration of the proposed network is summarized
in Table 2. The input comprises four features, which pair
energy and Zhang statistic values from the current and
immediately preceding detections. This choice captures short-
range dynamics in signal power and distributional shape. The
architecture contains a single hidden layer with seven units,
selected by cross-validation to control model capacity while
maintaining predictive accuracy. A rectified linear unit is used
in the hidden layer, and a logistic function at the output

supports binary decisions. Training minimizes the binary
cross-entropy objective with the Adam optimizer, using a
batch size of 250 for 350 epochs. The dataset spans an SNR
sweep from —20 to +4dB and includes both AWGN and
Rayleigh fading, which exposes the classifier to adverse
conditions and improves its reliability across channels.

4.3. Accuracy Measurement of ANN with Different Features

Table 3 compares the ANN’s accuracy across feature sets
and illustrates how feature choice affects spectrum sensing.
Using only energy from the current and previous sensing
events reaches 76.66%, which is not adequate for separating
occupied and vacant states. Relying solely on the Zhang
statistic increases accuracy to 83.82% by capturing the
distributional structure that energy does not encode.
Combining energy and Zhang from the current event yields
84.15%. The best result, 86.82%, is obtained when all four
inputs—current and previous energy and Zhang values—are
provided. Together, these findings show that pairing temporal
context with statistical descriptors improves the classifier’s
decisions under challenging conditions.

Table 3. Performance accuracy of ANN with varying feature sets

Energy and All Four
Radio Technology Onllz/eith/?elge 2 Or;ltygér;ing Zh%%g Features
Statistic Both (Proposed)
FM 76.66 % 83.82 % 84.15 % 86.82 %
Table 4. Detection probability (Pd) comparison of ANN (2 vs 4 Features) and conventional method (N = 100)
SNR (dB) ANN (2 Features) ANN (4 Features) Conventional Method
-20 0.10 0.10 0.09
-18 0.13 0.15 0.09
-16 0.14 0.22 0.11
-14 0.19 0.40 0.14
-12 0.26 0.59 0.18
-10 0.37 0.75 0.26
-8 0.56 0.86 0.38
-6 0.78 0.89 0.60
-4 0.91 0.91 0.84
-2 0.94 0.95 0.98
0 0.96 0.97 0.99
+2 0.98 0.99 0.99
+4 0.99 0.99 0.99

4.4. Detection Probability of ANN Compared
Conventional Techniques

Table 4 summarizes the detection probability at
representative  SNR values. At —-20 dB, both ANN
configurations slightly exceed the conventional detector. The
benefit of using four features is most visible at intermediate
SNR. At —14 dB, the four-feature ANN attains Pd=0.40P_d =

to
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0.40Pd=0.40, compared with 0.19 for the two-feature model
and 0.14 for the conventional method. At —10 dB, the four-
feature ANN reaches 0.75, which is markedly higher than the
alternatives at the same operating point. As SNR improves, all
methods converge, but the ANN consistently reaches A higher
detection probability more rapidly, highlighting its robustness
in low SNR conditions. Figure 2 illustrates these trends.
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P4 Comparison: ANN (2 vs 4 Features) vs Conventional Method (N = 100)
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Fig. 2 Comparison of P4 vs. SNR for ANN (2 and 4 features) and the conventional method

Table 5. Classification accuracy of the ANN under AWGN and Rayleigh channels for different feature inputs

Radio Only E Only E Energy + Zhang | Energy + Zhang
Technology (AWGN) (Rayleigh) (AWGN) (Rayleigh)
FM 86.66 % 85.53 % 89.53 % 88.50 %

4.5. Accuracy Performance of ANN in AWGN and Rayleigh
Channels

Table 6. Detection probability (Pq) comparison of ANN and
conventional ED under AWGN and rayleigh channels

Table 5 reports the classification accuracy of the ANN
under AWGN and Rayleigh channels for different feature

inputs. With only energy-based features, the model attains
about 86.7% accuracy in AWGN and 85.5% in Rayleigh

fading, showing that it can learn effectively even under

channel impairments. When both energy and Zhang statistics
are included, accuracy improves to 89.5% in AWGN and

88.5% in Rayleigh. The results demonstrate that statistical

features complement energy information, leading to more
reliable detection. While AWGN performance remains

slightly higher due to stable channel conditions, the consistent

gains in Rayleigh confirm the robustness of the proposed
approach for cognitive radio applications.

4.6. Detection Probability of ANN under AWGN and
Rayleigh Channels Compared with Conventional ED

Table 6 and Figure 3 report detection probability for the

ANN and for conventional energy detection at representative
SNR values. At —20 dB, the ANN shows a small gain over

energy detection in both AWGN and Rayleigh channels. The

margin widens at mid-range SNR. At—10 dB, the ANN attains
(P4 =0.90) in AWGN and (p: =0.88) in Rayleigh, while energy

SNR AWGN Rayleigh Conventional
(dB) (ANN) Fading (ANN) | ED Simulation
-20 0.18 0.14 0.13

-18 0.26 0.20 0.14

-16 0.42 0.33 0.16

-14 0.56 0.47 0.19

-12 0.78 0.70 0.23

-10 0.90 0.88 0.40

-8 0.95 0.94 0.67

-6 0.97 0.96 0.87

-4 0.98 0.98 0.97

-2 0.99 0.99 0.99

0 0.99 0.99 1.00

+2 0.99 0.99 1.00

+4 0.99 0.99 1.00

detection remains at 0.40.
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Comparison of Probability of Detection
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Fig. 3 Performance of ANN under AWGN and rayleigh fading vs Conventional ED
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Fig. 4 Proposed ANN vs Benchmark models

The ANN approaches near-perfect detection by —6 dB, SNR and maintains greater sensitivity in adverse conditions.
whereas energy detection requires a higher SNR to reach This behavior indicates that the ANN-based scheme is robust
comparable performance. For SNR at and above 0 dB, the and well-suited for reliable spectrum sensing in cognitive
methods converge, but the ANN reaches high (Ps) at lower  radio settings.
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Table 7. Comparison of P4 for ANN and benchmark techniques

(N = 100)
SNR | ANN (4 GoF- | Hybrid | ANN
(dB) | Features) CED Based ED + Prior (2
GoF | Features)
-20 0.08 0.04 | 0.06 0.07 0.07
—18 0.12 0.06 | 0.09 0.10 0.11
-16 0.20 0.08 | 0.12 0.14 0.18
—14 0.32 0.12 | 0.18 0.22 0.28
—12 0.50 0.18 | 0.28 0.35 0.42
-10 0.68 0.28 | 0.40 0.50 0.60
—8 0.80 0.40 | 0.55 0.65 0.72
—6 0.88 0.52 | 0.68 0.75 0.82
—4 0.94 0.65 | 0.78 0.84 0.90
-2 0.97 0.74 | 0.85 0.89 0.93
0 0.99 0.80 | 0.88 0.90 0.94
+2 0.995 0.85 | 0.90 0.91 0.945
+4 1.00 0.88 | 0.92 0.91 0.95

4.7. Detection Probability of ANN with Benchmark Models

Table 7 benchmarks the proposed ANN with four input
features against Classical Energy Detection (CED),
Goodness-of-Fit (GoF) sensing, a hybrid ED+GoF detector,
and a prior ANN using two features across representative SNR
levels. At very low SNR (20 dB), the proposed model
slightly outperforms all benchmarks, achieving 0.08
compared to 0.04 for CED and 0.07 for the prior ANN. The
performance gap widens as SNR improves.

At —10 dB, the proposed ANN reaches 0.68, notably
higher than the hybrid approach (0.50) and the two-feature
ANN (0.60). By —4 dB, it achieves 0.94, maintaining a clear
margin over competing methods. Near-perfect detection is
attained from 0 dB onwards, whereas the benchmarks

converge more slowly. These results confirm that integrating
energy and statistical features enables the proposed ANN to
deliver superior detection capability and robustness for
spectrum sensing, as shown in Figure 4.

4.8. CFAR Detection Probability Across Sample Sizes

Table 8 presents the probability of detection versus SNR
performance for a Constant False Alarm Rate (CFAR) energy
detector evaluated at different sensing block sizes (N = 10, N
= 100, and N = 1000). The results clearly show that as the
number of samples increases, the detection performance of the
energy detector improves significantly across all SNR levels.
The case with N=10 has a P4 of 0.08, which increases to 0.15
for (N = 1000) at SNR -20 dB. Similarly, at =10 dB SNR, Pq
improves from 0.35 (N = 10) to 0.85 (N = 1000). When the
signal-to-noise ratio increases from 0 dB to +5 dB, the N has
to be bigger for the detector to have a good detection, with Pd
equal to 1.00 for N equal 1000. The results show that an
increase in the sensing block size, N, allows better averaging,
which makes it more reliable against the noise fluctuations,
thus enhancing the detection probability. Figure 5 depicts the
Pq trends across SNR and sample sizes.

Table 8. P4 performance of the CFAR detector across SNR and N

SNR (dB) | N=10Pd | N=100 Pd | N = 1000 Pd
=20 0.08 0.10 0.15
15 0.15 0.25 0.40
~10 0.35 0.60 0.85
=5 0.60 0.85 0.98

0 0.80 0.98 1.00
+5 0.95 1.00 1.00

1.2

Pd Performance of CFAR Detector Across SNR and N

EN=10Pd ®=mN=100Pd

N = 1000 Pd

Detection Probability (Pd)

-15

—-10

SNR (dB)

=5

Fig. 5 CFAR detector
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4.9. ROC Performance

Table 9 presents the Receiver Operating Characteristic
(ROC) data, showing the pq as a function of the pr for the
CFAR energy detector with different sensing block sizes (N =
10, N =100, and N = 1000). The results clearly demonstrate
how increasing the sample size improves the detector’s ability
to achieve higher detection probability at the same false alarm
rate. For example, at P = 0.01, the P4 is 0.10 for N = 10, 0.50
for N =100, and 0.98 for N = 1000. Similarly, at P = 0.10, Ps
increases from 0.35 (N = 10) to 0.85 (N = 100) and reaches
1.00 for N = 1000. At higher false alarm rates, such as P =
0.50 and 1.00, the detector achieves very high detection
probabilities across all values of N. These results highlight the
trade-off between false alarm rate and detection probability
and confirm that larger sensing block sizes significantly
enhance the ROC performance of the CFAR energy detector.
The ROC characteristics across different N values are
illustrated in Figure 6.

Table 9. Receiver operator characteristics

Pfa N=10 Pd N=100 Pd N=1000 Pd
0.01 0.10 0.50 0.98
0.05 0.25 0.75 0.99
0.10 0.35 0.85 1.00
0.20 0.50 0.92 1.00
0.50 0.70 0.97 1.00
1.00 1.00 1.00 1.00

ROC Curve for CFAR Detector at Different N

P i

0.8

0.6

0.4

Detection Probability (Pd)

04 0.6 0.8

Probability of False Alarm (Pfa)
Fig. 6 ROC for CFAR detector

0.0 02

4.10. Performance Analysis with State-of-the-Art Models
The proposed ANN-based spectrum sensing model shows
superior effectiveness compared with recent approaches. Chen
et al. [25] reported a cooperative sensing framework with py =
91.13% at —10 dB and P = 0.5%, while Taki et al. [26]
achieved ps = 0.86 using a chirping-based phaser method.
Shalini et al. [27] developed a CNN-LSTM model reaching
92% accuracy with a 5% false alarm rate, and Wang et al. [14]
obtained about 90% accuracy using a hybrid CNN-LSTM
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scheme. Under Rayleigh fading, the proposed ANN achieves
a detection probability of 0.99 at 0 dB and 1.00 at +4 dB while
maintaining a low false alarm rate. This operating point
indicates strong suitability for dynamic spectrum access in
cognitive radio networks.

5. Discussion

This section reports the evaluation of the proposed ANN-
based spectrum sensing model across channel types, feature
configurations, and baseline methods. The network uses four
inputs-energy and Zhang statistics from the current and
previous sensing windows—to exploit short-term temporal
context and distributional cues. On the FM dataset, accuracy
reached 86.82% with all four inputs, exceeding single-feature
variants: energy only at 76.66%, Zhang only at 83.82%, and
the current-event combination at 84.15%. In controlled
studies, accuracy in AWGN rose from 86.66% (energy only)
to 89.53% when energy and Zhang were combined; in
Rayleigh fading, it increased from 85.53% to 88.50% for the
same change in features. Detection performance improved

across the SNR sweep. In AWGN, (Pq) increased from 0.18

at—20 dB to 0.99 at 0 dB. In Rayleigh fading, (Pqd) progressed
from 0.14 at —20 dB to 0.99 at 0 dB, narrowing the gap to
AWGN at moderate and high SNR. Comparative results at
—10 dB show the proposed ANN at (Pq =0.75), higher than
classical energy detection (0.28), a GoF detector (0.40), a
hybrid ED+GoF scheme (0.50), and a prior ANN with two
inputs (0.60). At +4 dB, the proposed model reached (Pqg
=1.00), while the competing methods attained 0.88 (CED),
0.92 (GoF), 0.91 (Hybrid), and 0.95 (Prior ANN).
Experiments with a CFAR energy detector illustrate the
influence of sample Size (N). At —10 dB, (Pg) increased from
0.35 with (N=10) to 0.85 with (N=1000). Consistent behavior
is observed in ROC analysis: at (Pfa:0.0l), (P4) rose from
0.10 ((N=10)) to 0.98 ((N=1000)). Taken together, these
outcomes indicate that the proposed ANN improves accuracy
and detection probability across operating regimes and
maintains reliability in both AWGN and Rayleigh channels,
supporting its use for dynamic spectrum access in cognitive
radio networks.

Although the ANN-based spectrum sensing model attains
strong accuracy under the tested conditions, several
constraints  remain.  Training demands considerable
computation and long runtimes, which limit direct use on low-
power or embedded platforms. The approach also depends on
labeled data, and such annotations are not always available at
scale in practice. In addition, the current study evaluates
performance only in AWGN and Rayleigh channels and does
not capture richer, time-varying propagation effects. Future
work will target shorter training cycles by introducing
discriminative features that promote faster convergence and
by refining the learning schedule. To reduce reliance on labels,
unsupervised and semi-supervised strategies will be examined
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to leverage unlabeled spectra. Lightweight and compressed and previous sensing windows, the model achieved 86.8%
network variants will also be developed for deployment on accuracy with Pg = 0.75 at —10 dB, surpassing conventional
resource-constrained devices, and the evaluation will be energy detection. It further reached Py = 1.00 at +4 dB and
extended to more diverse and realistic channel models through maintained accuracies of 89.5% in AWGN and 88.5% in
hardware-in-the-loop experiments. Rayleigh channels.

6. Conclusion While effective, the approach relies on supervised

This study presented an ANN-based spectrum sensing learning and involves a high training cost, which may limit
model to improve detection accuracy and robustness in real-time deployment. Future work will explore additional
cognitive radio networks under Rayleigh fading. By  features and lightweight architectures to enhance efficiency
combining energy and Zhang statistic features from current ~ and scalability.
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