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 ABSTRACT : The proposed research work on the 

topic Infinite Impulse Response “IIR Structure and 

Its Application” is basically state space 

representation for the digital filter of different form 

obtained from analog filter and transformation to 

digital one. In the normal course of analysis the 

digital filter transfer function are realized in 

different forms using time delay elements and 

multipliers. 

 This realization can be eased if digital 

filter are represented in state space techniques 

opening a new field for computation analysis. This 

aspect has been incorporated in the proposed 

research work things outlining the introduction of 

IIR filter and different structure including ladder 

and wave structure realization, state space 

description of IIR filter is presented in detail 

including the normal form which has complex 

structure but simple form of state equation. 

 IIR filter design is based on state space 

technique using Lattice structure. The generalized 

technique of state space equation realized from 

general form of digital filter transfer function has 

been developed then the technique is demonstrated 

using differential form of various filter like LPF, 

HPF and BPF for the required order of analog 

filters. Statistical analysis of digital filter like 

round off error and dynamic scaling has been 

incorporated, where the two direct computes have 

been lumped together in the common state space 

representation. Autocorrelation and uncorrelation 

between noise and input samples gives round off 

noise and dynamic scaling give expression for the 

factor forms, round off error and dynamic range. 

This aspect on statistical analysis of digital filter 

has opened a new field for research. 

Keywords –correlation, filter realization, 

Infinite Impulse Response, ladder, lattice, noise, 

wave.  

1 INTRODUCTION 

Digital filter got its significance when it was 

discovered as less complex filter circuit with great 

flexibility compared to that of analog filter. Digital 

filter has less complex structure. Also simple 

alternation of its coefficients can change cut off 

frequencies of a designed filter as per requirement. 

This flexibility does not hold for analog filter. 

Digital filter has two basic structure namely  

1. FIR and 

2. IIR 

Among these IIR requires stores of large data due 

to long stream of input required. However this can 

be realized with linear phase character. IIR filter 

has recursive in nature which is capable of 

generating outputs for inputs recursively. These 

have comparatively less complicated structure. 

 IIR filter can be converted to algebraic 

form in discrete time domain. This has opened in 

new chapter in digital filter designed as state 

variable approach. This aspect of filter design 

forms the basis for proposed thesis. This approach 

is used for various structures of digital filter like 

direct structure, cascade and parallel structure etc. 

 Round off noise and dynamic range are 

two important aspects in filter design. These can 

also be incorporated in state variable approach.

 The proposed thesis begins with brief 

study of IIR digital filter structures like direct 

realization, cascade realization, ladder realization 

and some other structures as well. 

 State variable output in digital filter design 

has been described for all the structure discussed 

together with state variable approach for IIR filter 

which are complex in nature. This approach has 

been developed for all forms of filter discussed 

earlier. Lattice structure is also discussed here. This 

structure gives very complex filter. A band pass 

digital filter has been designed as an illustration of 

state space techniques at the end. 

 Digital filter designed remains incomplete 

without analysis of round of noise and dynamic 

range of this filter coefficient. These problems are 

discussed as noise by various authors [4-6]. This 

aspect of digital filter design has been incorporated 

in state variable approach. In normal method of 

filter design these two aspects of noise are analyzed 

separately but in state variable approach both are 

lumped in the state equation for filter.  
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2 INFINITE IMPULSE RESPONSE (IIR)        

DIGITAL FILTER 

A digital filter (DFT) selects the required 

frequency components in a given discrete Signal 

and rejects the unwanted frequency. Its output is 

also discrete signal with selected frequency 

components. Thus a digital filter has input and 

output signals both discrete in nature (fig. 2.1) 

       x(nT)                                             y(nT) 

                             Fig. 2.1 

A time invariant digital filter has internal 

parameters not varying with time. For initial 

relaxed such system filter will have input and 

output relationship as  

 x(nT – kT) = y(nT–kT) …..(2.1) 

For all possible excitation where   denotes filter 

operation and for initially relaxed system 

x(nT) = y(nT) = 0 for all n < 0 

A digital filter characterized as 

y(nT) =  [x(nT)] = 2nT x(nT)  

is not time invariant as 

  [x(nT–kT)] = 2nT [x(nT–kT)] ≠ y(nT–kT) 

A digital filter on the other hand characterized as 

y(nT)= [x(nT)=12x(nT–T)+11x(nT–

2T)………..(2.2)                                 

represents time invariant digital filter. 

On the similar steps properties of causality and 

linearity can be defined for digital filter. 

From equation (2.1) and (2.2) It can be seen that 

digital filter can be realized with delay blocks. Unit 

limit time delay refers to one sampling time delay 

or some time called one clock delay.  

2.1 Characterization of digital filter 

Analog filters are characterized in terms of 

differential equation. Digital filters on the other 

hand are characterized by difference equation. Two 

types of digital filter can be identified as   1) 

Recursive and  2) Non recursive 

2.1.1 Recursive digital filter 

In this digital filter output at any instant of time 

depends on present and past inputs as well as on 

past outputs. General from of equation for such 

filter can be expressed as 

 
 


N

i

N

i

ii iTnTybiTnTxanTy
0 1

)()()(

 …..(2.3) 

Such equation can be used to generate outputs from 

present input and past records of input/output. 

Evidently such systems have to be system with 

memory. Simulation of such filter will have delay 

blocks in the feedback path as well. Simulation of 

equation 2.3 can be expressed in block diagram as 

in Fig 2.2 

2.1.2 Non Recursive filter 

Such filter response does not require records of 

past output. Evidently its output will be linear 

combination of present and past inputs only as 

  











)(
0

iTnTxanTy
N

i

i

                      

…….(2.4) 

This will denote N
th

 order digital filter It will have 

only feed forward path. This can be seen from 

simulation of equation 2.4 in block diagram in fig. 

2.3 

   

 

 2.2 Units impulse response of a digital filter 

Digital filter response to unit input can be obtained 

from Z-transform techniques since filter transfer 

function is in z domain as 

 ………..(2.5) 

      DFT 
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Where               denotes z 

transformation  

For unit impulse input 

  δ(nT) = 1 for n = 0  

             = 0

 elsewhere ………..(2.6) 

     It‟s z-transform is unity.i.e. X(z) = 1 

    Response of filter then becomes  

 Y(z) = H(z)  

 …………(2.7) 

Thus unit impulse response will be simply Z
–1

 of 

transfer function of  H(z) as h(nT) 

As an illustration 

H(z) =   
))((

1
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 ……..(2.8) 

Will give impulse response after partial fraction for 
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……(2.9) 

2.3 Digital filter realization 

For this realization unit time‟s delay in time 

domain is represented as Z
–1

 in Z domain. This 

concept is used in digital filter realization. Digital 

filter realization techniques can be classified 

according to its structure as 

1. Direct          2. Direct canonic   3. Cascade   

  4. Prallel        5. Ladder         6. Wave structure. 

2.3.1 Direct realization 

This realization directly implement the filter 

transfer function H(z) in z-domain. This can be 

seen from fig 2.2 and fig. 2.3 

As simple demonstration example 

 
2

2

1

1

1

1

1
)(










zbzb

zaa
zH o ………..(2-

10) 

Can be considered whose direct realization is 

obtained from 

      

Which gives 

 …(2.11) 

This gives structure for direct realization as in Fig. 

2.4 

2.3.2 Direct Canonic form 

Direct realization is said to be canonic if number of 

delay elements is equal to the order of transfer 

function. In fig. 2.4 number of delay used for 

numerator is one which for denominator is two 

confirming the order of numerator and denominator 

of polynomial of order 2. 

2.3.3 Cascade structure 

This structure is called simplest structure for high 

order transfer function of digital filter. In this 

realization high order digital filter transfer function 

is factorized into first and second order section. 

Then each such section is realized separately for 

their cascade connection. Transfer function H(z) of 

high order is expressed into M cascade section as 
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This gives i'th section as 

)()()()()()( 2
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 

 …..(2.13) 

This gives realization structure as in fig. 2.5 
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         Filter section in Cascaded structure. 

2.3.4 Parallel realization 

In this realization transfer function H(z) in 

expressed  as summation of several   (M sections) 

H(z) as 

  



M

i

i zHzH
1

)()(   

 ………(2-14) 

It‟s structure is shown in fig. 2.6 

2.3.5 Ladder realization 

In these techniques continued fraction can be used 

to realize this structure. Transfer function H(z) can 

be written as 

 

Then Y(z) + Y(z) H1(z) = X(z) H2(z) 

Y(z) = –Y(z) H1(z) + X(z) H2(z) 

        = Y
1
(z) H1(z) + X(z) H2(z)  …….. 

(2.15) 

WhereY
1
(z) = –Y(z) 

Transfer function H1(z) will be of the form, 
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In Continued fraction form       
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…… (2.16) 
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Where K is integer having highest value 
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Consider for example a transfer function 
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for ladder structure realization, in this H(z) both 

numerator and denominator have same highest 

order of z. A constant is therefore taken out to 

reduce highest part of z in numerator that is, 
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Expressing numerator N(z) =
i

i

i za

 
gives ao = –0.0582, a1 = 0.0817, a2 = –0.0723 

Again expressing N(z) = 
i

ii znd )(  

Gives 

 n1(z) = –1 

 n2(z) = –(c1z+1) 
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2
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Thus 309.1,4092.0 2211  cmcm  

 and 856.233  cm  

Here N = 3 then 

 N1(z) = –1 

 n2(z) = (c1z+1) 

 n2(z) = c1c2z
2
 + c2z+1 

Coefficients d1, d2 and d3 are given by 
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With evaluation of these coefficient the ladder 

structure can be drawn as shown in fig 2.7 

 

  

 

2.3.6 Wave realization 

Wave filter in case of analog signal use resonant 

cavity represented by equivalent LC tuned circuit. 

If these elements could be simulated through digital 

circuits then the along wave filter becomes digital 

wave filter for this purpose bilinear transformation. 
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will be very useful. 

Detailed analysis of this structure will be taken in 

next chapter. Where conversion table will be 

established as in table 2.1 these digital filter 

structures are derived from state space analysis of 

digital filter described in detail in next unit. 
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3 STATE DESCRIPTION OF I I R FILTER 

IIR filter called recursive filter can be represented 

by recursive difference equations. These equation 

together form state equation in matrix form. This 

form of IIR filter is derived from generalized form 

of filter transfer function as 

H(z) = 


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
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3.1 State equation derivation 

IIR filter transfer function in (3.1) can be expressed 

as linear difference equation of high order (Nth 

order) as 

y(n) = 
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Where delay i denotes i‟th sample period delay (= 

iT) 

Equation (3.1) can be expressed in cascaded form 

as 
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If first block has the response v(n) as shown in fig 

3.1 
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Now assume that x(n) is applied directly to F2 then 

response y
1
(n) is given by 


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 …….(3.4) 

With variable x1(n), x2(n), ……………xN(n) 

defined as 

x1(n) = y׳(n–N)           

………..(3.5) 

x2(n) = y׳(n–N+1)                    

………..(3.6) 

………………. 

xN(n) = y׳(n–1)         

…………(3.7) 

Then state equations can be expressed as 

x1 (n+1) = y׳ (n–N+1) = x2(n) 

 ………..(3.8) 

x2 (n+1) = y׳ = (n–N+2) = x3(n) 

 ………..(3.9) 

……………………………………………………

…… 

xN–1(n+1) = y׳ (n-1) = xN(n) 

 …………(3.10) 

and finally    

  

xN(n+1) = y׳(n) = x(n) – b1 y׳(n-1) –b2 y׳(n–2) 

  ……………bN y
1
(n–N) 

= x(n) – b1 xN(n) –b2 xN–1(n)………bNx1(n) 

They can be expressed in matrix form 

as……….(3.11) 

 

Now response y(nT) from F2 block due to input 

V(n) is given by,             
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Where 2  is filter operation from block F2. Using 

(3.5) to (3.7) equation (3.12) becomes 

y(n) = ao x(n) + c1x1(n) + ……….+ cN xN (n)

 ……….(3.13) 

Where,  c1 = aN – aobN 

c2 = aN–1 – aobN–1 

……………………… 

cN = a1 – ao – aob1      ……………..(3.14) 

Then complete response is given by 

y(n) = [X] [c]                ………..(3.15) 

Thus a digital filter in general can be characterized 

by state and input equations as 

X(n+1) = A X (n) + B y(n)  ……….(3.16) 

 Y(n) = C X (n) + D x(n) ……….(3.17) 

Where X (n) = [x1(n)……….xN(n)]
T
 

A is state matrix 

B is input vector for single input x(n) 

C is output matrix in terms of constant C1, C2 

……….. 

D is input vector for output equation. 

As an illustration a digital filter characterized by 

y(n) = 1.5 x(n) + 2x(n) + 0.5 x (n-2) –0.5y(n–1) + 

0.25 y(n-2) 

Gives state space representation with 
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3.2 Direct form realization from state space 

representation 

Output y(n) can be expressed in terms of state 

variables as 

y(n) = aN x1(n) + aN–1 x2(n) + ………+a1xN(n) + 

aoxN(n+1)             …..(3.18)                                                                                   

xn (n+1) = –bN x1(n) –bN–1 x2(n) …….–b1 xN(n) + 

x(n)…(3.19)          

These two equations give direct form of filter 

realization as shown in Fig 3.2 This is in canonic 

form due to number of delays equal to order of 

filter transfer function. 

3.3 Cascaded form 

In this form each block is second order or first 

order filter with state equation of the form 

x1(n+1) = x2(n)    

x2(n+1) = –b2 x1(n) – b1x2(n) + x(n)  

output equation is of the form 

y(n) = a2x1(n) + a1x2(n) +aox2(n+1)   

These equations give filter block diagram for each 

section as shown in fig. 3.3 

 

 

3.4 Parallel form 

In this form the denominator is factorized into 

product of quadratic and first order expression of z 

for the purpose of partial fraction and each section 

is realized. The sum of these section outputs give 

the final output (fig 3.4) Each factored block will 
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have transfer function of the form 
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This can be realized in terms of state variable x1(n) 

and x2(n) as 
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Output equation then becomes 

y(n) = a1x2(n) + aox2(n+1)      ………….(3.22) 

Substituting for x2(n+1) from (3.21) gives 

       y(n) = a1x2(n) + ao[–b2x1(n)–b1x2(n)+x(n)] 

      = (–aob2) x1(n)+(a1–aob1)x2(n)+aox(n)  

………..(3.23) 

The circuit realization for the section is shown in 

fig. 3.5 

 

 

3.5 Normal form 

In partial fraction form transfer function H(z) can 

be expressed as 
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Where do, αi are constant while λi may be complex 

as 

λi = σ+jω or in conjugate form 

Consider two conjugate terms in summation with 

complex conjugate poles as   

 












 *

1

2

1

1









zz
 

Suppose response to transfer function 

1

1





z
is 

21 jxx   

while for 
*

1

2





z
 is 21 jxx  then for input „x‟ the 

two terms together gives  

x

jxx

z

z
and

x

jxx

z

z 21

1*

1

1

221

1

1

1

1

11









 













  

Substituting for  j1  above responses are 

expressed as 

  )()(1 21

11

1 jxxjzxz     

or  

)()( 21

11

121 jxxjzxzjxx     

after simplification it becomes  

H1 z
-1

x = x1 + jx2 – z
-1

 (x1σ + ωx2) –     z
-1

j(x2σ– 

ωx1) ……..(3.24) 

Similarly for conjugate response 

H2 z
-1

x = x1 – jx2 – z
-1

 (x1σ + ωx2) –z
-1

j(x2σ– ωx1)  

.……(3.25) 

Adding them and on simplification      

x1= (H1+H2)z
–1

x + z
–1

 x1σ – z
–1

 ωx2      ………(3.26) 

In time domain it becomes 

x1(n+1) = (H1+H2) x(n) + σx1(n) +  ωx2(n)

 ……….(3.27) 

Similarly subtracting (3.26) from (3.25) gives 

x2 (n+1) = (H1–H2) x(n) + σx2(n) – ωx1(n)

 ……….(3.28) 

Suppose response to two sections is Y(z) then 

*

1

2

1

1

)(

)(















zzzX

zY
 

Or 
*

1

2

1

1 )()(
)(















z

zX

z

zX
zY  

Then y(n) = H1 [x1(n) + jx2(n)] + H2 [x1(n)–jx2(n)] 
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       = (H1+H2) x1(n) + j(H1–H2) x2(n) 

Or, y(n) = c1x1(n) + c2x2(n) 

 …………(3.29) 

Equation (3.27) to (3.29) gives the normal form of 

digital filter realization. 

State and output equation in matrix form becomes. 

)(
)(

)(

)1(

)1(

2

1

2

1

2

1
nx

b

b

nx

nx

nx

nx













































 .(3.30) 

and  

  









)(

)(
)(

2

1

21
nx

nx
ccny

 ………….(3.31) 

Normal form realization gives structure of the form 

shown in fig. 3.6 

 

With this concept of state space techniques for IIR 

filter structure realization next chapter is dedicated 

to IIR filter design. 

4 IIR FILTER DESIGN STATE SPACE 

TECHNIQUES 

State space techniques for IIR filter realization was 

discussed in previous chapter. The same approach 

can be extended to filter design. Standard method 

of IIR filter design is lattice filter which has many 

advantages. 

 Digital lattice filter plays an important role 

in finite word length problems. Some of the major 

obstacles in realizing a digital lattice filter are the 

efficient use of hardware and an efficient method 

for directly transforming a Direct II structure into 

corresponding lattice or ladder structure. 

4.1 General solution to problem of realizing lattice 

structure  

Gray and Marked [8] have considered a more 

general solution to problem of realizing lattice 

structure. It is canonic both in multiplies and 

delays. Lattice structure for all pole system 

Transfer function 

H(z) = 





N

K

k

N zk
1

)(1

1



     …….. 

(4.1) 

 can be realized in the following steps. 

 Difference equation for (4.1) becomes 

y(n) = 



N

k

N nxknyk
1

)()()(

 ………(4.2) 

This gives 

x(n) = y(n) + 



N

k

N knyk
1

)()(  

 ……….(4.3) 

For N = 1(single pole) 

x(n) = y(n) + a1(1) y(n–1)  

 ………(4.4) 

This can be realized in lattice structure with 

 x(n) = f1(n)  

 ……….(4.5) 

y(n) = fo(n)= f1(n)–k1 go(n–1) 

         = x(n) – k1 y(n–1) 

 ………..(4.6) 

g1(n)= k1fo(n)+ go(n–1) 

           = k1 y(n) + y(n–1)                    

 ………..(4.7) 

(4.5) to (4.7) give single stage all pole lattice filters 

as shown in fig. 4.1 

For N = 2 

x(n) = f2(n) 

y(n) = x(n) – a2(1) y(n–1)– a2(2) y(n-2) 

so 

f2(n) = x(n) ………..(4.8) 

f1(n) = f2(n) – k2g1(n–1)…..(4.9) 

g2(n) = k2f1(n) + g1(n–1) …..(4.10) 

fo(n) = f1(n) –k1go(n–1) ….(4.11) 

g1(n) = k1fo(n)+go(n–1)   ….(4.12) 

yo(n)= fo(n) = go(n) 

        = f1(n) – k1go(n–1) ...(4.13) 

(4.8) to (4.13) gives two stage lattice structure 

shown in fig. 4.2 
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For N – stage IIR lattice structure 

fN(n) = x(n) ………(4.14) 

fm–1(n) = fm(n) – km  gm–1(n–1)….(4.15) 

gm (n) = km fm–1(n) + gm–1(n–1)...(4.16) 

For m = N, N-1, ………., 

(4.14 to (4.16) for various m gives state equations 

as  

x(n) = fN(n)                 ……..(4.17) 

fm(n) = fm–1(n) + km gm-1(n-1)...(4.18) 

gm(n) = gm–1(n) + km fm–1(n) ….(4.19) 

for m = N, N-1, ………., 1 

(4.18) and (4.19) gives state equation in matrix 

form as 

..(4.20)

output equation is given by   

     

y(n) = fo(n) = go(n)      ………(4.22) 

On expansion of recursive equation and comparing 

with the all pass expressions 

For N = 2 which gives 

y(n)= z(n) – a2(1) y(n–1)–a2(2) y(n-2)    

………(4.23) 

And from recursive equations (4.9) to (4.12) 

y(n) = x(n) – k1 (1+k2) y(n–1) –k2 y(n-

2)………(4.24) 

Comparison of (4.23) and (4.24) gives 

 a2(2) = k2 , a2(1) = k1 (1+k2), 

a2(o) = 0 

4.2 General form of state space matrix equation for 

IIR filter 

IIR filter in discrete form domain can be expressed 

in general form as 

 
 


N

i

N

i

ii inybinxany
0 1

)()()(

 …………(4.25) 

When sampling time T is incomplete for each 

sample instant i. 

This filter fo can be decomposed into pair of 

cascade filter (fig 4.2) as F1 & F2 

       

v(n) is response of F1 filter as operator 

1 describes. as 
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(n) = )]([1 nx  

       = 



N

i

i inxa
0

)(       ……..(4.26) 

And output y(n) of F2 is characterized with operator 

2  as 

y(n) =  



N

i

i inybnn
1

2 )()()]([ 

   

Let us assume x(n) to be applied directly as input to 

F2 then it‟s response )(ny will be defined as 

)(ny = 



N

i

i inybnxnx
1

2 )()()]([  

Let new variables q1(n), q2(n)…….. ,qN(n) be  

defined as 

q1(n) = )( Nny     

                                   

         = )1(  Nny        

         = )( Nny     

)1(  Nny = q2(n)  

   

This will give 

q2(n+1)=q3(n)    

qN-1(n+1) =qN(n)    

and 

qN(n+1)= )(ny = x(n)–

b1 )().........2()1( 2 Nnybnybny N 

  

 

These equation give state space representation of 

general IIR filter as …(4.27)  

                                                                         

Output equation can be expressed as 









 



N

i

i inxanvny
0

22 )()]([)(  

       = 
 


N

i

N

i

ii inyainxa
0 0

2 )()]([  

or y(n)= 



N

i

i inya
0

)(  …..(4.28) 

 (3.29) to (3.31) output equation (4.28) can be re-

written as 

Y(n) = aox(n)+c1 q1(n) + ………. + cN. qN(n) 

Where,    c1 = aN –aobN   

  

 c2 = aN–1 – ao bN–1 

 ----------------------- 

 cN = a1 – aob1                                                                       

Output equation in matrix form can be expressed, 

as 

y(n) = [C1 C2…….CN]   



























)(

.

.

.

)(

)(

2

1

nq

nq

nq

N

+ao x(n) 

……(4.29) 

Thus for the Nth order IIR filter State space 

representation can be written as 

q (n–1) = A qo(n) + B x(n) 

 y(n) = C q(n) + D x(n) 

 ……….(4.30) 

Where A, B, C and D are matrices. 

And the N auxiliary variables q1(n), q2(n), ……. 

QN(n) are called state variables. This state space 

concept will be described for Low pass and High 

pass IIR filter in next section  

4.3 Low Pass Filter (LPF) 

Consider second order Butterworth LPF whose 

transfer function is given by 

H(s) = 
12

1
2  ss

  ……..(4.31) 
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Bilinear transformation 

)1(

)1(2
1

1




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
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z

z

T
S   

It gives, 

H(z) = 

1
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1
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1
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=
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4
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=
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1
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1
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4

21































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

z
T

z
TT
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For simplicity let sampling time be normalized to 

unity then discrete transfer function becomes 

H(z) = 
21

21

586.27414.6

21








zz

zz
  

Or 

21

21

4.009.11

156.031.0156.0
)(

)(

)(









zz

zz
zH

zX

zY
…….(

4.32) 

This gives difference equation of output as 

y(n) = 0.156 x(n)+0.31 x(n–1)+0.156 x(n–

2) 

+1.09 y(n–1)–0.4z
-

2
…….(4.33) 

Comparing it with (4.25) coefficient become as 

ao = 0.156, a1 = 0.31, a2 = 0.156 

b1 = 1.09, b2 = –0.4 

then state equation become 














)1(

)1(

2

1

nq

nq
 = 






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
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10

bb
 





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
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2

1

nq

nq
+










1

0 x(n) 

 …….(4.34)  

Output equation become 

y(n) = aox(n)+c1q1(n)+c2q2(n)….(4.35) 

where 

c1 = a2 – aob2 = 0.156 – 0.156 (–0.4) = 

0.218 

c2 = a1 – aob1 = 0.31 – 0.156 × 1.09 = 0.14 

Solution of (4.34) and (4.35) together gives 

solution in time domain for state variable q1(n) and 

q2(n) and output y(n) for input x(n) 

4.4 High Pass Filter (HPF) 

In s – domain HPF is derived from LPF transfer 

function by replacing s by 
s

1
. Then second order 

Butterworth HPF transfer function is obtained from 

(4.3) as 

H(s) = 

12
1

21

1
2

2

2











 ss

s
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Using bilinear transformation 

)1(

)1(2
1
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
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




z

z
s  

Assuming T to be normalized to unity we get 

discrete transfer function as 

H(z) = 

1
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1
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        =
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2.26828.7
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zz
zH

zX
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….(4.36) 

This gives coefficient ao, a1 a2 etc as 

ao = 0.51, a1 = –1.02, a2 = 0.15 

b1 = –0.766, b2 = 0.28 

This gives state equation as 














)1(

)1(

2

1

nq

nq
 = 








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bb
 





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

2

1

q

q
+ 









1

0
x(n)

 ……(4.37) 

and output equation as 

y(n)= aox(n)+c1q1(n)+c2q2(n)                                 

…(4.38) 

where, 
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c1 = a2 –aob2 = 0.15 – 0.51 × 0.28 

               = 0.007 

c2 = a1 – aob1 = –1.02 – 0.51 × (–0.766) = 

0.63 

4.5 Band Pass filter (BPF) 

Second order Butterworth LPF in s–domain gives 

equivalent BPF by Quadratic transformation  

)(

2

lh

hl

s

s
s








  ……..(4.39) 

Whose n and l are higher and lower cut off 

frequencies; this gives transfer function for BPF is 

s–domain as 

H(s) = 
12

1
2  ss
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s

s
s








  …….(4.40) 

=

2222234
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)(2)()(2
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ssss
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





  

For normalized centre frequency o = 1 linear and 

high frequency is assumed as l = 0.4 and h = 1.1 

then BPF in (4.40) becomes 

H(s) 

=

21.181.02.01.19.02)21.181.0(22

04.0
234

2

 ssss

s

 =
98.028.002.283.2

04.0
234

2

 ssss

s

 ….(4.41) 

when converted to discrete with bilinear 

transformation 
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becomes 
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on simplification it becomes 

 

4321

42

0385.033.0776.116.21

0033.00033.0033.0
)(

)(

)(









zzzz

zz
zH

zX

zY

…(4.43)

                                                                                

This gives coefficient as 

ao = 0.0033, a1 = 0, a2 = –0.0033, a3= 0, 

a4 = 0.0033 

b1 = –2.16, b2 = 1.776, b3 = –0.33, b4  = 

0.0385  

This gives state equation as 
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x(n)  

……(4.44) 

and output equation becomes 

y(n) 

=aox(n)+c1q1(n)+c2q2(n)+c3q3(n)+c4q4(n)……(4.4

5) 

Where     c1 = a4–aob4 = 0.00317 

 c2 = a3–aob3 = 0.001 

 c3 = a2–aob2 = 0.009 

 c4 = a1–aob1 = 0.007 

Then (4.45) becomes 

y(n) = 0.0033 x(n) + 0.00317 q1(n) + 0.0011 

q2(n)+0.009 q3(n) +0.007q4(n) 

         = 10
–3

 [3.33 

x(n)+3.17q1(n)+1.1q2(n)+9×q3(n)+7q4(n)]

 ……(4.46) 

On the same procedure bond stop filter can be 

designed in terms of state equations. 

State equation approach of filter design gives real 

time solution for the filter. This method requires 

solution of state matrix equation whose order 

increases with the order of filter. 

 In matrix equation solution coefficient 

may have wide spread values then quantization is 

required beyond a finite decimal places. It‟s may 

affect filter response to some extent.  

0 
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5 STATE SPACE METHOD FOR ANALYSIS 

OF                          ROUND OFF ERROR & 

SCALING 

 Digital filters designed in the frequency 

domain from well established techniques for analog 

filter. This designed filter when implemented on a 

general purpose computer, the word length is 

generally fixed. One is interested in estimation of 

accuracy of filter operation with this word length. 

This estimation of optimum word length helps in 

hardware implementation. 

 Specific sources of quantization error in 

the implementation and operation of digital filter 

are 

a. The filter coefficient: These real number must 

be 

quantized to some finite number of binary bits. 

b. The input samples: these real or complex 

numbers must be quantized to a finite number 

of binary digits before being introduced into 

filter. 

c. The results of the multiplication of input 

data by coefficient within the filter: these 

must be truncated or rounded off to a specific 

number of bits. 

Input quantization error is integrant in any system 

where A/D conversion takes place. The error due to 

quantization of the filter coefficient is deterministic 

and can be analyzed on the basis set up by 

designer. The third (3) source of error is called 

round off noise and complex in nature.  

5.1 Round off noise in multiplication of input data 

with coefficient 

This error is dependent on filter architecture: This 

affects word length requirements for the coefficient 

quantization and operating characteristic such as 

the round off noise. This requires selection of 

optimum filter architecture for achieving minimum 

word length requirement. This should posses low 

coefficient sensitivity and a high immunity to 

round-off error at the output. 

  If signal through the filter architecture is 

much larger than Q, the quantization step size 

(reference level for quantization of sampled signal). 

Few assumptions can be made such as 

1. jifor
Q

kneneE ji  ,
12

)]()([
2

  

This shown auto correlation to be constant and 

gives noise characteristic as,  

2. jiforkneneE ji  0)]()([   

This gives zero cross correlation or uncorrelated 

noise source. 

3. 0)]()([  knxneE i   

This gives uncorrelation between noise and input 

samples. 

Digital filter model with noise is shown in Fig (5.1) 

  

 

Round off noise at filter output due to noise input 

ei(n) is given by convolution  





n

k

iix knekhne
0

)()()(  ……..(5.2) 

Where hi(k) is the impulse response of single 

input/single output time shift invariant filter. 

Round off error variance due to ei(n) is given by 

)]()([)(2 knemneEn
ii xxx   

=
 


n

m

n

k

iiii knemneEkhmh
0 0

)]()([)()(  

= 
 


n

m

n

k

keii mkkhmh
i

0 0

2 )()()(   

This follows from property (3) of uncorrelation 

property of )( mkk   gives 





n

m

iex mhn
0

22 )()(    …….(5.3) 

When 
2

e  is the error variance of round-off noise 

from error source, Round off noise for various 

noise inputs can be calculated using state variable 

techniques. 

5.2 Scaling 

If amplitude of internal signal in a fixed-point 

digital filter excels dynamic range overflow occurs. 

On the other hand if amplitude is kept at much 

lower level it will give poor S/N ratio. Then for 

optimum filter operations scaling of amplitudes are 

required. Suppose input signal is bounded by M in 

l2 space then  

||2(n)|| ≤ M   …..(5.4) 
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For filter transfer function F(z) roundness of output 

v(z) to M in time domain can be obtained by a 

scaling constant λ obtained from filter relationship. 

v(z) = λF(z) X(z) …….(5.5) 

Where v(z) is output of system with transfer 

function F(z) and input X(z) 

Using schwartz inequality 

|v(n)| ≤ ||X||2 ||λF||2  …….(5.6) 

Where lower suffix 2 denotes l2 space, and  

|x(n)| ≤ ||X||2 ≤ M 

Then |v(n) ≤ M ||λF||2 .(5.7) 

For |v(n)| ≤ M, condition gives limitation on λ as 

||λF||2 ≤ 1 

or  λ ≤ 

2||||

1

F
   …….(5.8) 

5.3 State space method for round off error 

 In round off error and scaling analysis of 

filter two separate analysis are required to be done : 

Analysis of round off error requires computation of 

a series of impulse response while the 

determination of dynamic range. Constraints are 

done in l2 space. 

State variable technique determines both in 

algebraic form. Consider a linear time shift 

invariant digital filter characterized in algebraic 

form as 

X(n+1) = AX(n) + bu(n) …….(5.9) 

And output equation as 

y(n) = cX(n) + d u(n)     …….(5.10) 

Whose X(n) is n-dimensional vector, A is state 

matrix, u(n) is scalar input, b, c and d are real 

constant metrics. For n-dimensional state equation 

impulse response is also n-dimensional as 

}1;0)0({)(  kforbCAkfordkh k
……..

(5.11) 

 and state variable X(n) is given by 

)()(
0

1 knubAnX
n

k

k 





……..(5.12) 

Where i‟th row of (A
k–1

 b) will be denoted as fi(n). 

For unit impulse input state variable is bounded in 

l2 space as 

 

||Xi||2 = ||Fi||2  ……..(5.13) 

A scale factor δ ≥ 1 determines probability of 

overflows for state variable as 

2

1

222

2

22

2 )]12([)(|||||||| 







 





in

k

iii QkffX  , 

for all i  ……..(5.14) 

Where Q is the quantization reference size and ni is 

the word length of i'th state variable. 

5.4 Analysis of round off error 

Assume errors are uncorrelated, uniformly 

distributed (while noise) random process out [–Q/2 

, Q/2] such that each error source contributes an 

error variance of 
12

2Q
 for each multiplication. 

Suppose there are mi non-integer multiplication in 

computation of xi(n) then mi round off error 

sources corrupt xi(n). With proper scaling the 

sources error saves are not allowed to overflow. 

Impulse response in (5.11), can then be analyzed in 

terms of a parameter gi, the i'th component of row 

vector CA
k–1

. The noise appearing at the output due 

to xi(n) is given by  

12

|||| 22
2 ii
i

gQm
   ……(5.15) 

Total output round off noise is then simply the sum 

of all the individual error statistic r 





n

i

i
ix

Qg
m

1

22
2

12

||||
   ……(5.16) 

5.5 Mullis and Roberts [9] method of computing 
2

x   

Two new matrices K and W are defined as 

K = AKA
T
 + bb

T
 = 



0

))((
k

Tkk bAbA

 …..(5.17) 
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W = 





0

)()(
k

KTK
TT

CACACCWAA

 …..(5.18) 

These matrices are positive definite for stable 

filters with no pole-zero cancellation Kij is the inner 

product of fi and fj while Wij is the inner product of 

gi and gj then scaling constraint in (5.14) can be 

interpreted in terms of diagonal elements of k as 

 22 )12(  ni

ii Qk ; i = 1, 2, ……… n

 ……..(5.19) 

While for Output errors variance in (5.16) becomes 

( δ = 1) 



 ii

n

i

i

x W

Qm

12

1

2

2   ……(5.20) 

 In general a non-singular matrix T can be 

obtained to transform A into diagonal matrix by 

replacing state variable X by new state variable X 

defined as 

X′ = T
–1

 X  ……(5.21) 

Then metrics ( A, b,c) are transformed to (A′, b′, c′) 

and element. 

11

1
1

T

x
X   and (k′,w′) = ),(

11

WTTTkT
rT 

          

…….(5.22) 

Where Tr denotes transpose & T11 is 1
st
 diagonal 

element of matrix T.so that, 

k′11 = 
2

11

11

T

K
and 

2

11

11
11

T

W
W     …….(5.23) 

If word length is assumed uniform as 

 Ni = m   for all i 

Then output error variance becomes 









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






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n

i

iiiimx wk
n

nn

1

2

2 1

23

)1( 
  

k′ and w′ are explicit functions of T. It is then 

evident that scaling and round off errors are 

architecture dependent. 

Thus state variable approach combines problem of 

round off error and dynamic range into single set of 

state variable. They are computed separately from 

state equation solution.  

6 COMMENTS & CONCLUSION 

Various structure of digital filter like direct 

structure  were presented, in this work, cascade 

structure was most simple form for hardware 

realization point of view. 

In article 3 state space representation of cascade 

structure in simple matrix form was observed to be 

most suitable for computational analysis. Each 

cascade section will have second order state matrix. 

Normal form of realization discussed here had very 

complex structure although they had simple form 

of matrix representation. 

 Simplicity of state space representation by 

cascade structure was demonstrated in article 4 

where general form of higher order digital filter 

was represented in state space work various simple 

state space elements which all the state having “0” 

or “1” element except the last one with 

denominator coefficient b1, b2, ……..bN of general 

transfer function, biqued section of each LPF, HPX 

etc, are related in the thesis by the method of 

bilinear transformation arranging them be fined 

that state variable form requires large calculation 

but the final form is very simple. 

 In round off and scaling problem 

discussed in article 5 it was observed that both can 

be simultaneous analyzed in state space 

representation, closed form analysis best and some 

assumption like white noise character and 

uncorrelated noise simplify the problem. 

FUTURE SCOPE OF RESEARCH WORK 

State space analysis of round off and dynamic 

scaling lumped together opens a new field of state 

space statistical analysis for digital filter. This field 

of research can provide further scope of research 

work. 
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