Exact Linearization Control for Twin Rotor MIMO System

Nghiep V. Dinh^{* 1}, Hien N. Nguyen², Tan D. Vu³, Huong T.M. Nguyen⁴ and Minh T. Nguyen⁵ *Thai Nguyen University of Technology, Thai Nguyen, Vietnam*

Abstract:

Twin Rotor MIMO System (TRMS) is a nonlinear object of which the dynamic behavior resembles that of a helicopter. The TRMS has been significantly used to verify control algorithms' performance and it attracts attention of scholars in the area of modeling and control. In this paper, an exact linearization controller is designed for the TRMS according to the Euler Lagrange model. The outputs of the controller are compared to the reference inputs. All related formulas are analyzed and experimental results are shows that TRMS tracks the desired trajectory accurately.

Keywords: Exact linearization, Twin Rotor MIMO System

I. INTRODUCTION

Twin Rotor multiple input - multiple output (MIMO) System (TRMS), as shown in Figure 1-3, is an experimental system developed by Feedback Instrument Ltd (Feedback Co., 1998) for MIMO experiments. TRMS consists of two rotors placed on a beam together with a counterbalance. The whole unit is attached to a tower allowing for safe helicopter control experiments. The movements in the vertical plane and in the horizontal plane are implemented by a vertical rotor (main rotor) and a horizontal rotor (tail rotor) respectively. The above rotors are driven by DC motors.

TRMS's dynamic characteristics are similar to that of a helicopter and they are nonlinear systems and have a significant cross coupling between two rotors. It is challenging for scientists to design a controller with acceptable outcome. Domestically and internationally, there have been a large number of publications regarding controllers for TRMS. Nevertheless, according to their experimental results, the outputs have mostly tracked desired trajectories but significant errors have been recognized. Therefore, in this paper, a design method based on the Euler-Lagrange model of TRMS will be proposed.

Figure 1. Twin Rotor MIMO System

The rest of the paper is organized as follows. The object's model and the controller's design are addressed in Section II. Simulation and evaluation will be demonstrated in Section III. Finally, conclusions and also future work will be mentioned in Section IV. The list of key notations used in this paper are provided in Table1

Table I Key Notations					
Symbol	Unit	Feature Exaction Full name			
$\alpha_{v/h}$	rad	Angular position of the beam in			
		vertical/horizontal plane			
$\alpha_{m/t}$	rad	Angular position of the main/tail propeller			
g	m/s ²	Gravity acceleration			
т	kg	Mass			
J_{I}	kgm ²	Moment of Inertia of the beam			
m_{TI}	kg	Total mass of the beam			
l_{TI}	m	Centre of gravity of the beam			
m_t	kg	Mass of the tail part of the beam			
m_{tr}	kg	Mass of the horizontal rotor (tail rotor)			
m_{ts}	kg	Mass of the tail shield			
m_m	kg	Mass of the main part of the beam			
m_{mr}	kg	Mass of the vertical rotor (the main rotor)			
m_{ms}	kg	Mass of the main shield			
l_t	m	Length of the tail part of the beam			
l_m	m	Length of the main part of the beam			
$r_{m/ts}$	m	Radius of the main/tail shield			
$r_{mm/t}$	m	Radius of the main/tail rotor			
J_2	kgm ²	Moment of Inertia of the counterbalance beam			

m_b	kg	Mass of the counterbalance beam		
m_{T2}	kg	Total mass of the counterbalance beam		
m_{cb}	kg	Mass of the counter-weight		
l_{T2}	m	Centre of gravity of the counterbalance beam		
l_b	m	Length of the counterbalance beam		
l_{cb}	m	Distance from the counter-weight to the pivot		
r_{cb}	m	Radius of the counterbalance		
L_{cb}	m	Length of the counterbalance		
J_3	kgm ²	Moment of Inertia of the pivot		
J_4	kgm ²	Moment of Inertia of the rear part of the pivot		
m_h	kg	Mass of the pivot		
m_{hl}	kg	Mass of the rear part of the pivot		
h	m	Length of the pivot		
h_1	m	chiều dài phần sau của chốt quay		
J_{mm}	kgm ²	Moment of Inertia of motors		
$J_{m/tp}$	kgm ²	Moment of Inertia of main/tail propellers		
$\omega_{m/t}$	rad/s	Rotational speed of main/tail rotor		
$J_{m/tr}$	kgm ²	Moment of Inertia of mail/tail rotor		
Н	m	High from the base to the pivot		
kg		Gyroscopic momentum parameter		
M _v	Nm	Total moment in vertical plane		
M _h	Nm	Total moment in horizontal plane		
M _{m/t}	Nm	Total moment exerted on main/tail rotor		
$B_{m/tr}$	kgm ² /s	Viscous friction constant of main/tail motors.		
$B_{\nu/h}$	kgm ² /s	Viscous friction constant of the pivot in		
		vertical/horizontal plane.		
$F_{v/h}$	Nm	Sliding friction of the pivot in		
		vertical/horizontal plane.		
$\tau_{_{m/t}}$	Nm	Electromagnetic moment of motor for vertical		
		rotor/ horizontal motor		

II. CONTROL DESIGN

Euler-Lagrange Equation

Lagrange function of TRMS is concluded from the sum of potential and kinetic energies [2] as follows.

Figure 2. Vertical Position α_v of TRMS

$$L = \frac{a_{1}}{2} \dot{\alpha}_{v}^{2} + \frac{1}{2} \left(a_{5} + a_{4} \cos^{2} \alpha_{v} \right) \dot{\alpha}_{h}^{2} + a_{6} \omega_{v} \dot{\alpha}_{v} + a_{7} \omega_{m} \dot{\alpha}_{h} \cos \alpha_{v} + \frac{a_{6}}{2} \omega_{v}^{2} + \frac{a_{7}}{2} \omega_{m}^{2} - b_{1} \sin \alpha_{v}$$
(1)

$$+ \left(a_{2}\sin \alpha_{v} - a_{3}\cos \alpha_{v}\right)\dot{\alpha}_{v}\dot{\alpha}_{h} + b_{2}\cos \alpha_{v}$$

where

$$a_{1} = J_{1} + J_{2} + J_{tr}; a_{2} = m_{T2}l_{T2}h; a_{3} = m_{T1}l_{T1}h; a_{4} = J_{1} + J_{mr} - J_{2}$$

$$b_{1} = m_{T1}l_{T1}g; b_{2} = m_{T2}l_{T2}g; a_{5} = J_{3} + J_{4} + m_{T2}h^{2} + m_{T1}h^{2} + J_{2}$$

$$a_{6} = J_{tr}; a_{7} = J_{mr}; \dot{\alpha}_{t} = \omega_{t}; \dot{\alpha}_{m} = \omega_{m}$$

$$J_{1} = \left(\frac{1}{3}m_{t} + m_{tr} + m_{ts}\right)l_{t}^{2} + \left(\frac{1}{3}m_{m} + m_{mr} + m_{ms}\right)l_{m}^{2}$$

$$+ \frac{1}{2}m_{ms}r_{ms}^{2} + m_{ts}r_{ts}^{2} + \frac{1}{2}m_{tr}r_{mt}^{2} + \frac{1}{2}m_{mr}r_{mm}^{2}$$

$$m_{T1} = m_{t} + m_{tr} + m_{ts} + m_{m} + m_{mr} + m_{ms}$$

$$l_{T1} = \frac{(m_{m}/2 + m_{mt} + m_{ms})l_{m} - (m_{t}/2 + m_{tr} + m_{ts})l_{t}}{m_{T1}}$$

$$J_{2} = \frac{1}{3}m_{b}l_{b}^{2} + m_{cb}l_{cb}^{2} + \frac{1}{4}m_{cb}r_{cb}^{2} + \frac{1}{12}m_{cb}L_{cb}^{2}$$
$$m_{T2} = m_{b} + m_{cb}, \ l_{T2} = \frac{m_{b}l_{b}/2 + m_{cb}l_{cb}}{m_{T2}}, \ J_{4} = \frac{m_{h1}h_{1}^{2}}{3}, \ J_{4} = \frac{m_{h1}h_{1}^{2}}{3}$$

Apply Lagrange's equation:

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}}\right) - \frac{\partial L}{\partial q} = M_{ex} , \qquad (2)$$

where $q = \begin{bmatrix} \alpha_v & \alpha_h & \alpha_m & \alpha_t \end{bmatrix}^T$.

Then, the dynamic Euler-Lagrange of TRMS can be written as follows.

$$M \ddot{q} + C \dot{q} + G = M_{ex}, \qquad (3)$$
where
$$\ddot{q} = \begin{bmatrix} \ddot{\alpha}_{v} & \ddot{\alpha}_{h} & \ddot{\alpha}_{m} & \ddot{\alpha}_{t} \end{bmatrix}^{T}, \quad \dot{q} = \begin{bmatrix} \dot{\alpha}_{v} & \dot{\alpha}_{h} & \dot{\alpha}_{m} & \dot{\alpha}_{t} \end{bmatrix}^{T}$$

$$G = \begin{bmatrix} b_{2} \sin \alpha_{v} + b_{1} \cos \alpha_{v} & 0 & 0 & 0 \end{bmatrix}^{T}$$

$$M_{ex} = \begin{bmatrix} M_{v} & M_{h} & M_{m} & M_{v} \end{bmatrix}^{T}$$
and

$$M = \begin{bmatrix} a_1 & z_1 & 0 & a_6 \\ z_2 & z_3 & a_7 \cos \alpha_{\nu} & 0 \\ 0 & a_7 \cos \alpha_{\nu} & a_7 & 0 \\ a_6 & 0 & 0 & a_6 \end{bmatrix},$$
(4)

where

$$z_1 = a_2 \sin \alpha_v - a_3 \cos \alpha_v, z_2 = a_2 \sin \alpha_v - a_3 \cos \alpha_v$$
$$z_3 = a_5 + a_4 \cos^2 \alpha_v$$

$$C = \begin{bmatrix} 0 & n_1 & 0 & 0 \\ n_2 & -a_4 \sin \alpha_{\nu} \cos \alpha_{\nu} \dot{\alpha}_{\nu} & 0 & 0 \\ 0 & -a_7 \dot{\alpha}_{\nu} \sin \alpha_{\nu} & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} , \quad (5)$$

where

$$n_{1} = \sin \alpha_{v} (a_{4}\dot{\alpha}_{h} \cos \alpha_{v} + a_{7}\omega_{m})$$

$$n_{2} = -a_{4} \sin \alpha_{v} \cos \alpha_{v}\dot{\alpha}_{h} - a_{7}\omega_{m} \sin \alpha_{v}$$

$$+ (a_{2} \cos \alpha_{v} + a_{3} \sin \alpha_{v})\dot{\alpha}_{v}$$

$$M_{v} = l_{m}k_{fv}\dot{\alpha}_{m} |\dot{\alpha}_{m}|_{W} - k_{tr}\dot{\alpha}_{t}|\dot{\alpha}_{t}| - B_{v}\dot{\alpha}_{v} - F_{v}sign(\dot{\alpha}_{v}) - k_{g}l_{m}k_{fv}\dot{\alpha}_{m} |\dot{\alpha}_{m}|_{W}\dot{\alpha}_{h} \cos \alpha_{v}$$

(6) where

$$w = \frac{1}{1 - \left(\frac{r_{mr}}{4\left(H + l_{m}\sin\alpha_{v}\right)}\right)^{2}}$$

$$M_{h} = l_{t}k_{fh}\dot{\alpha}_{t}\left|\dot{\alpha}_{t}\left|\cos\alpha_{v} - k_{tm}\dot{\alpha}_{m}\right|\dot{\alpha}_{m}\left|\cos\alpha_{v} - B_{h}\dot{\alpha}_{h}\right|$$

$$-F_{h}sign\left(\dot{\alpha}_{h}\right) - C_{c}\left(\alpha_{h} - \alpha_{h0}\right)$$
(7)
$$M_{m} = \tau_{m} - sign\left(\dot{\alpha}_{m}\right)k_{tv}\dot{\alpha}_{m}^{2} - B_{mr}\dot{\alpha}_{m}$$
(8)

 $M_{t} = \tau_{t} - sign(\dot{\alpha}_{t})k_{th}\dot{\alpha}_{t}^{2} - B_{tr}\dot{\alpha}_{t}.$ (9)

Consequently, the above Euler-Lagrange model shows that TRMS lacks actuators with 2 inputs and 4 outputs.

A. Control Design

Firstly, equation (10) can be rewritten as follows: $M \ddot{q} + C \dot{q} + G = M_{ex}$

or

$$\begin{cases} M_{11}\ddot{q}_{1} + M_{12}\ddot{q}_{2} + C_{11}\dot{q}_{1} + C_{12}\dot{q}_{2} + \phi_{1} = 0 \\ M_{21}\ddot{q}_{1} + M_{22}\ddot{q}_{2} + C_{21}\dot{q}_{1} + C_{22}\dot{q}_{2} + \phi_{2} = \begin{bmatrix} \tau_{m} \\ \tau_{r} \end{bmatrix} (12) \end{cases}$$

where

$$q_{1} = \begin{bmatrix} \alpha_{v} & \alpha_{h} \end{bmatrix}^{T}, q_{2} = \begin{bmatrix} \alpha_{m} & \alpha_{r} \end{bmatrix}^{T}$$
$$M_{11} = \begin{bmatrix} a_{1} & a_{2} \sin \alpha_{v} - a_{3} \cos \alpha_{v} \\ a_{2} \sin \alpha_{v} - a_{3} \cos \alpha_{v} & a_{5} + a_{4} \cos^{2} \alpha_{v} \end{bmatrix}$$

$$M_{12} = \begin{bmatrix} 0 & a_{6} \\ a_{7} \cos \alpha_{v} & 0 \end{bmatrix}, M_{21} = \begin{bmatrix} 0 & a_{7} \cos \alpha_{v} \\ a_{6} & 0 \end{bmatrix}$$

$$M_{22} = \begin{bmatrix} a_{7} & 0 \\ 0 & a_{6} \end{bmatrix}$$

and
$$C_{11} = \begin{bmatrix} 0 & \sin \alpha_{v} (a_{4}\dot{\alpha}_{h} \cos \alpha_{v} + a_{7}\omega_{m}) \\ x & -a_{4} \sin \alpha_{v} \cos \alpha_{v}\dot{\alpha}_{v} \end{bmatrix}$$

$$x = -a_{4} \sin \alpha_{v} \cos \alpha_{v}\dot{\alpha}_{h} - a_{7}\omega_{m} \sin \alpha_{v}$$

$$+ (a_{2} \cos \alpha_{v} + a_{3} \sin \alpha_{v})\dot{\alpha}_{v}$$

$$C_{12} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, C_{21} = \begin{bmatrix} 0 & -a_{7}\dot{\alpha}_{v} \sin \alpha_{v} \\ 0 & 0 \end{bmatrix}, C_{22} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

and
$$\phi_{1} = \begin{bmatrix} b_{2} \sin \alpha_{v} + b_{1} \cos \alpha_{v} - M_{v} \end{bmatrix}$$

0 | 0 |

$$\phi_{1} = \begin{bmatrix} & -M_{h} \\ & \end{bmatrix}$$

$$\phi_{2} = \begin{bmatrix} sign(\omega_{m})k_{tv}\omega_{m}^{2} + B_{mr}\omega_{m} \\ & sign(\omega_{r})k_{th}\omega_{r}^{2} + B_{tr}\omega_{r} \end{bmatrix}$$

From (4), we have

$$\begin{cases} M_{11}\ddot{q}_{1} + M_{12}\ddot{q}_{2} + C_{11}\dot{q}_{1} + C_{12}\dot{q}_{2} + \phi_{1} = 0\\ M_{21}\ddot{q}_{1} + M_{22}\ddot{q}_{2} + C_{21}\dot{q}_{1} + C_{22}\dot{q}_{2} + \phi_{2} = \begin{bmatrix} \tau_{m} \\ \tau_{r} \end{bmatrix}$$
(13)
or

$$\begin{cases} \ddot{q}_{2} = -M_{12}^{-1} \left(M_{11} \ddot{q}_{1} + C_{11} \dot{q}_{1} + C_{12} \dot{q}_{2} + \phi_{1} \right) \\ M_{21} \ddot{q}_{1} + M_{22} \ddot{q}_{2} + C_{21} \dot{q}_{1} + C_{22} \dot{q}_{2} + \phi_{2} = \tau \end{cases}$$
(14)
where $\tau = \begin{bmatrix} \tau_{m} \\ \tau_{t} \end{bmatrix}$.

A control problem for TRMS is that the first joint variable q_1 has to approach the reference trajectory q_{1r} regardless of the second joint parameter q_2 . It can be seen that the first controller, namely inner loop, can be expressed in the following the equations as follows.

$$\tau = M_{21}\ddot{q}_{1} + C_{21}\dot{q}_{1} + \phi_{2}$$

$$-M_{22}M_{12}^{-1} (M_{11}\ddot{q}_{1} + C_{11}\dot{q}_{1} + C_{12}\dot{q}_{2} + \phi_{1})$$

$$(11) = (M_{21} - M_{22}M_{12}^{-1}M_{11})\ddot{q}_{1} + C_{21}\dot{q}_{1} + C_{22}\dot{q}_{2}$$

$$+\phi_{2} - M_{22}M_{12}^{-1} (C_{11}\dot{q}_{1} + C_{12}\dot{q}_{2} + \phi_{1})$$
or $\tau = D\ddot{q}_{1} + \phi(q,\dot{q})$
(15)

where

$$\begin{cases} \varphi(q,\dot{q}) = C_{21}\dot{q}_1 + C_{22}\dot{q}_2 + \phi_2 - M_{22}M_{12}^{-1} \left(C_{11}\dot{q}_1 + C_{12}\dot{q}_2 + \phi_1\right) \\ D = M_{21} - M_{22}M_{12}^{-1}M_{11} \end{cases}$$

The closed loop system will have a joint variable set that is derived from the controller (17) and the model (18) as follows:

$$D \ddot{q}_1 = D v \quad \Leftrightarrow \quad \ddot{q}_1 = v .$$
 (19)
In other words, the inner controller in Equation

In other words, the inner controller in Equation (20) has linearized q_1 in Equation (21) in the whole joint variable domain. Therefore, the inner controller can be rewritten as follows.

 $\tau = Dv + \varphi(q, \dot{q}) \cdot (22)$

The controller in Equation (9) is called the exact linearization controller. Obviously, despite the q_1 linearization, the system is unstable because of the second order integral in Equation (23).

After that, in order to apply the unstable q_1 to the desired values q_{1r} , the outer loop controller will be used.

$$v = \ddot{q}_{1r} + K_1 e_1 + K_2 \dot{e}_1, \qquad (24)$$

where $e_1 = q_{1r} - q_1. \qquad (25)$
a denotes the tracking error: $K = K$ are two arbit

 e_1 denotes the tracking error; K_1 , K_2 , are two arbitrary symmetric positive definite matrices. The outer loop controller in (26) probably makes the tracking error e_1 decrease to zero. From (27) and(28), we have:

$$\ddot{q}_{1} = \ddot{q}_{1r} + K_{1}e_{1} + K_{2}\dot{e}_{1},$$
 (29)
and
 $\underline{0} = \ddot{e}_{1} + K_{1}e_{1} + K_{2}\dot{e}_{1},$ (30)

and

where

$$K = \begin{pmatrix} 0 & I \\ -K_1 & -K_2 \end{pmatrix}.$$
 (32)

is the Hurwitz matrix.

Finally, the addition of the outer loop controller leads the system to having the total controller as shown in Equation(33).

$$\tau = D\left(\dot{q}_{1r} + K_{1}e_{1} + K_{2}\dot{e}_{1}\right) + \varphi(q,\dot{q}) .$$
(34)

Figure 4 illustrates the diagram of the tracking system according to the exact linearization of q_1 .

Figure 4. TRMS Control Diagram

Figure 5. TRMS Control System Simulation

III. SIMULATION RESULTS

With the aim of verifying the performance of the proposed controller, MATLAB-SIMULINK has been used to conduct simulations according to parameters in Table II. The model of TRMS and controller are implemented via S-function. For the sake of simplicity, there will be one S-function for both the outer loop controller and the inner loop controller. The output position $\alpha_{v/h}=av/h$ ($\alpha_v=pitch$ angle, $\alpha_h=yaw$ angle) and the reference angle $q_{1r} = [avr ahr]$. In order to observe effects of the cross reaction, the simulation with the 2 degree of freedom model and 2 reference inputs have been created. Let's choose K1=1.I and

Figure 7. Horizontal Position α_h with the Reference Input: 0.12 sin(0.6283t)+ 0.045 sin(0.3142t)

Figure 8. Vertical Position a_v with the Reference Input: 0.25 sin(1.9t)

Input: 0.5 sin(0.2t)

Figure 10. Vertical Position α_v with the Reference Input: 0.25 sin(1.9t)

Figure 11. Horizontal position a_h with the Reference input: $1 \sin(0.5t)$

l_t	0.282 m	kg	0.05
$l_{\rm m}$	0.254 m	h	6e-2 m
l_b	0.265 m	h_1	0.02 m
l_{cb}	0.25 m	m _{h1}	0.05 kg
r _{ms}	0.155 m	m_h	0.09 kg
r _{ts}	0.1 m	g	9.81 m/s ²
m _{tr}	0.221 kg	L _c	3e-2 m
m _{mr}	0.236 kg	r _{cb}	1e-2 m
m _{cb}	0.068 kg	Н	0.5 m
m _m	0.014 kg	r _{mt}	0.007 m
m _t	0.015 kg	r _{mm}	0.007 m
m _b	0.022 kg	m _{mrr}	0.042 kg
m _{ts}	0.119 kg	m _{trr}	0.016 kg
m _{ms}	0.219 kg	k _{chp}	0.00854
\mathbf{J}_{mr}	21.624e-5 kgm ²	J_{tr}	3.1432e-5kgm ²
\mathbf{B}_{mr}	4.5e-5 kgm ² /s	B _{tr}	2.3e-5 kgm ² /s
\mathbf{k}_{tv}	23.03e-6	k _{th}	10e-6
\mathbf{B}_{v}	0.6e-2 Nms/rad	F_{v}	0.1e-2 Nms/rad
$\mathbf{B}_{\mathbf{h}}$	0.1 Nms/rad	F_{h}	0.01 Nms/rad
C _c	0.016 Nm/rad	α_{h0}	-0.4602 rad

IV. CONCLUSIONS AND FUTURE WORK

In this paper, the 2-degree of freedom movement of TRMS has been discussed. The mathematical model of TRMS based on Euler Lagrange equations has been built by using MATLAB/SIMULINK. The controller is designed to be able to work in vertical and horizontal planes. Outputs of the controller have been compared to the reference inputs. It is clear that TRMS tracks the desired trajectory accurately. In our future work, the application of the controller for a real object would be implemented.

ACKNOWLEDGEMENTS

This work is supported by the project ĐH 2014-TN02-05, Thai Nguyen University (TNU) and Thai Nguyen University of Technology (TNUT), Thai Nguyen city, Vietnam.

REFERENCES

- [1] Feedback Instruments Ltd(2010) ,Twin Rotor Mimo System Advanced Teaching Manual 1. 33-007-4M5.
- [2] Nguyễn Như Hiến, Đinh Văn Nghiệp, Mô hình động học của hệ thống twin rotor MIMO. Tạp chí tự động hóa ngày nay, Tháng 12/2014.
- [3] Saber, R.O. (2001), Nonlinear control of under-actuated mechanical systems with application to robotics and aerospace vehicles, Dissertation MIT.
- [4] Spong, M.W. (1994), Partial feedback linearization of underactuated mechanical systems Proceedings if the IEEE Int. Conference on Intelligent Robotics and Systems, Vol. 1, pp. 314-321.
- [5] Avila-Vilchis, J. C., Brogliato, B., Dzul, R., & Lozano, R(2003) Nonlinear modelling and control of helicopters. Automatica, 39(9), 1583–1596.
- [6] Ahmad, S. M., Chipperfield, A. J., & Tokhi, M. O (2000) Dynamic modelling and optimal control of a twin rotor MIMO system. In Proceedings of the 2000 IEEE international conference on national aerospace and electronics (pp. 391– 398).
- [7] Ahmad, S. M., Shaheed, M. H., Chipperfield, A. J., & Tokhi, M. O (2000) Nonlinear modelling of a twin rotor MIMO system using radial basis function networks. In Proceedings of the 2000 IEEE international conference on national aerospace and electronics (pp. 313–320).
- [8] Nguyễn Doãn Phước, Phân tích và điều khiển hệ phi tuyến,Nhà xuất bản Bách khoa-Hà Nội.