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Abstract:  

Twin Rotor MIMO System (TRMS) is a non-

linear object of which the dynamic behavior resembles 

that of a helicopter. The TRMS has been significantly 

used to verify control algorithms' performance and it 

attracts attention of scholars in the area of modeling 

and control. In this paper, an exact linearization 

controller is designed for the TRMS according to the 

Euler Lagrange model. The outputs of the controller 

are compared to the reference inputs. All related 

formulas are analyzed and experimental results are 

shows that TRMS tracks the desired trajectory 

accurately. 
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I. INTRODUCTION 

Twin Rotor multiple input - multiple output 

(MIMO) System (TRMS), as shown in Figure 1-3, is an 

experimental system developed by Feedback 

Instrument Ltd (Feedback Co., 1998) for MIMO 

experiments. TRMS consists of two rotors placed on a 

beam together with a counterbalance. The whole unit is 

attached to a tower allowing for safe helicopter control 

experiments. The movements in the vertical plane and 

in the horizontal plane are implemented by a vertical 

rotor (main rotor) and a horizontal rotor (tail rotor) 

respectively. The above rotors are driven by DC 

motors.   

TRMS’s dynamic characteristics are similar to 

that of a helicopter and they are nonlinear systems and 

have a significant cross coupling between two rotors. It 

is challenging for scientists to design a controller with 

acceptable outcome. Domestically and internationally, 

there have been a large number of publications 

regarding controllers for TRMS. Nevertheless, 

according to their experimental results, the outputs have 

mostly tracked desired trajectories but significant errors 

have been recognized. Therefore, in this paper, a design 

method based on the Euler-Lagrange model of TRMS 

will be proposed. 

 

 

 
 

 

 

 

 

 

 

 

 

 

The rest of the paper is organized as follows. 

The object’s model and the controller’s design are 

addressed in Section II. Simulation and evaluation will 

be demonstrated in Section III. Finally, conclusions and 

also future work will be mentioned in Section IV. The 

list of key notations used in this paper are provided in 

Table1  

 
Table I Key Notations 

Symbol Unit Feature Exaction Full name 

αv/h rad Angular position of the beam in 

vertical/horizontal plane 

αm/t rad Angular position of  the main/tail propeller 

g m/s2 Gravity acceleration 

m kg Mass 

J1 kgm2 Moment of Inertia of the beam 

mT1 kg Total mass of the beam 

lT1 m Centre of gravity of the beam 

mt kg Mass of the tail part of the beam 

mtr kg Mass of the horizontal rotor (tail rotor) 

mts kg Mass of the tail shield 

mm kg Mass of the main part of the beam 

mmr kg Mass of the vertical rotor (the main rotor) 

mms kg Mass of the main shield 

lt m Length of the tail part of the beam 

lm m Length of the main part of the beam 

rm/ts m Radius of the main/tail shield 

rmm/t m Radius of the main/tail rotor 

J2 kgm2 Moment of Inertia of the counterbalance beam 

Figure 1. Twin Rotor MIMO System 



SSRG International Journal of Electrical and Electronics Engineering ( SSRG – IJEEE ) – Volume 3 Issue 12 – December 2016 

ISSN: 2348 – 8379                     www.internationaljournalssrg.org                            Page 13 

mb kg Mass of the counterbalance beam 

mT2 kg Total mass of the counterbalance beam 

mcb kg Mass of the counter-weight 

lT2 m Centre of gravity of the counterbalance beam 

lb m Length of the counterbalance beam 

lcb m Distance from the counter-weight to the pivot  

rcb m Radius of the counterbalance 

Lcb m Length of the counterbalance 

J3 kgm2 Moment of Inertia of the pivot 

J4 kgm2 Moment of Inertia of the rear part of the pivot  

mh kg Mass of the pivot 

mh1 kg Mass of the rear part of the pivot 

h m Length of the pivot 

h1 m chiều dài phần sau của chốt quay 

Jmm kgm2 Moment of Inertia of motors 

Jm/tp kgm2 Moment of Inertia of main/tail propellers 

ωm/t rad/s Rotational speed of main/tail rotor 

Jm/tr kgm2 Moment of Inertia of mail/tail rotor 

H m High from the base to the pivot 

kg  Gyroscopic momentum parameter 

Mv Nm Total moment in vertical plane  

Mh Nm Total moment in horizontal plane  

Mm/t Nm Total moment exerted on main/tail rotor 

Bm/tr kgm2/s Viscous friction constant of main/tail motors. 

Bv/h kgm2/s Viscous friction constant of the pivot in 

vertical/horizontal plane. 

Fv/h Nm Sliding friction of the pivot in 

vertical/horizontal plane. 

/


m t
 Nm Electromagnetic moment of motor for vertical 

rotor/ horizontal motor 

 

II. CONTROL DESIGN 

 

Euler-Lagrange Equation 

Lagrange function of TRMS is concluded from 

the sum of potential and kinetic energies [2] as follows. 
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Then, the dynamic Euler-Lagrange of TRMS can be 

written as follows. 
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and 

Figure 2. Vertical Position αv of TRMS 

 

Figure 3. Horizontal Position αh of TRMS 
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Consequently, the above Euler-Lagrange model shows 

that TRMS lacks actuators with 2 inputs and 4 outputs. 

 

A. Control Design 

Firstly, equation (10) can be rewritten as follows: 
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A control problem for TRMS is that the first 

joint variable q1 has to approach the reference trajectory 

q1r regardless of the second joint parameter q2. It can be 

seen that the first controller, namely inner loop, can be 

expressed in the following the equations as follows.    
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The closed loop system will have a joint variable 

set that is derived from the controller (17) and the 

model (18) as follows: 
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1 1
          D q D v q v . (19) 

In other words, the inner controller in Equation 

(20) has linearized q1 in Equation (21) in the whole 

joint variable domain. Therefore, the inner controller 

can be rewritten as follows. 

( , )   D v q q . (22) 

 

The controller in Equation (9) is called the 

exact linearization controller. Obviously, despite the q1 

linearization, the system is unstable because of the 

second order integral in Equation (23).  

After that, in order to apply the unstable q1 to the 

desired values q1r, the outer loop controller will be 

used.  
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e1 denotes the tracking error; K1, K2, are two arbitrary 

symmetric positive definite matrices. The outer loop 

controller in (26) probably makes the tracking error e1 

decrease to zero. From (27) and(28), we have: 
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is the Hurwitz matrix. 

 

Finally, the addition of the outer loop controller leads 

the system to having the total controller as shown in 

Equation(33).  
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Figure 4 illustrates the diagram of the tracking system 

according to the exact linearization of q1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III. SIMULATION RESULTS 

With the aim of verifying the performance of 

the proposed controller, MATLAB-SIMULINK has 

been used to conduct simulations according to 

parameters in Table II. The model of TRMS and 

controller are implemented via S-function. For the sake 

of simplicity, there will be one S-function for both the 

outer loop controller and the inner loop controller. The 

output position αv/h=av/h (αv=pitch angle, αh=yaw 

angle) and the reference angle 
1

[avr ah r]
r

q . In order 

to observe effects of the cross reaction, the simulation 

with the 2 degree of freedom model and 2 reference 

inputs have been created. Let’s choose K1=1.I and 

K2=100.I and the results are demonstrated in Figures 6 

to 11.  
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Table II TRMS Parameters 

lt 0.282 m kg 0.05 

lm 0.254 m h 6e-2 m 

lb 0.265 m h1 0.02 m 

lcb 0.25 m mh1 0.05 kg 

rms 0.155 m mh 0.09 kg 

rts 0.1 m g 9.81 m/s2 

mtr 0.221 kg Lc 3e-2 m 

mmr 0.236 kg rcb 1e-2 m 

mcb 0.068 kg H 0.5 m 

mm 0.014 kg rmt 0.007 m 

mt 0.015 kg rmm 0.007 m 

mb 0.022 kg mmrr 0.042 kg 

mts 0.119 kg mtrr 0.016 kg 

mms 0.219 kg kchp 0.00854 

Jmr 21.624e-5 kgm2 Jtr 3.1432e-5kgm2 

Bmr 4.5e-5 kgm2/s Btr 2.3e-5 kgm2/s 

ktv 23.03e-6 kth 10e-6 

Bv 0.6e-2 Nms/rad Fv 0.1e-2 Nms/rad 

Bh 0.1 Nms/rad Fh 0.01 Nms/rad 

Cc 0.016 Nm/rad αh0 -0.4602 rad 

 

IV. CONCLUSIONS AND FUTURE WORK 

In this paper, the 2-degree of freedom 

movement of TRMS has been discussed. The 

mathematical model of TRMS based on Euler Lagrange 

equations has been built by using 

MATLAB/SIMULINK. The controller is designed to 

be able to work in vertical and horizontal planes. 
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Figure 7. Horizontal Position αh with the Reference 

Input: 0.12 sin(0.6283t)+ 0.045 sin(0.3142t) 

 

Figure 8. Vertical Position αv with the Reference Input: 

0.25 sin(1.9t) 

Figure 9. Horizontal Position αh with the Reference 

Input: 0.5 sin(0.2t) 

 

Figure 10. Vertical Position αv with the Reference Input: 

0.25 sin(1.9t) 

 

Figure 11. Horizontal position αh with the Reference 

input: 1 sin(0.5t) 
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reference inputs. It is clear that TRMS tracks the 

desired trajectory accurately. In our future work, the 

application of the controller for a real object would be 

implemented. 
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