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Abstract  

The paper proposes an approach to design 

optimal receding horizon controller for tracking 

control a TRMS (Twin Rotor MIMO System), which is 

a nonlinear system with two degrees of freedom and 

cross couplings. The here proposed controller uses an 

infinite horizon and continuous time nonlinear model. 

Hence it always guarantees the adaptive tracking 

stability of obtained closed loop systems in real time, 

without using an additional penalty function in 

objective function as usual. The obtained simulation 

result by using this controller has confirmed its 

promising applicability in practice.  
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I.  INTRODUCTION 

Some decades ago, the research of the control 
of Twin Rotor MIMO Systems (TRMS), which is 
depicted symbolically in Fig.1, has been considered as 
a benchmark of controlling the flight of air vehicle 
such as helicopter or UAV (unmanned air vehicle). 
Therefore several control methods and techniques for 
TRMS have been proposed and implemented regularly, 
in which the conventional control method namely PID 
and the modern one such as MPC are all employed. 
For example:  in 2002 Ahmad et al. provided the open 
loop control along longitudinal axis [1]; in 2007 Lu at 
al. proposed the time optimal control based on LQR 
[2], in 2010 Pratap et al. introduced a sliding mode 
state observer controller [3]; in 2014 Pandey et al. 
presented a PID controller, and in 2012 proposed 
Ramalakshmi et al. a nonlinear control approach based 
on Lyapunov [4], or an optimal LQR for the 
stabilization around an equilibrium had been 
introduced by Pandey et al. in 2015 [5] etc.,. Moreover, 
if in control problem of TRMS, there are some 
required constraints which are not ignorable, then the 
methods introduced by Akbar Rahideh in 2009 based 
on MPC seem to be good alternative solutions to 
overcome [6]. However, all these methods are 
restricted if the TRMS is additionally disturbed and if 
the trajectory to be tracking is a complicatedly desired 
hover [12]. 

This approach can be considered as an extension of 
the method, which is already proposed in [7] for 
bilinear discrete time systems. The extension here 
means that this approach is established for nonlinear 
continuous time systems without time discretizing 
them as well as without implementation of any  

 

constrained optimization algorithm as usual by 
applying MPC techniques.  

Moreover, since the discrete model obtained 
by discretizing could not reflect all inter-sample 
behaviors of the real system, which may be cause a 
number of critical event in practical applications, this 
proposed sample data controller with its avoidance of 
model discretization improves therefore indirectly the 
internal control performance of closed loop systems. 

 

 

Figure 1. Twin rotor MIMO system (TRMS) 

 

II. MAIN CONTENT 

A. Nonlinear continuous time model of TRMS 

A various number of TRMS model has been 
proposed in [8,9,10]. Under which this paper uses the 
TRMS model given in [10], where the pivot length is 
not negligible. Simulation results obtained in [10] 
show that this model is much precise than the other 
introduced earlier. This model was established by 
using the Euler-Lagrange equations and has an 
equivalent continuous time state equation as follows: 

 
( , )x f x u

y Cx



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
 (1) 

where 
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( , , , , , )v h v h m tx          is the vector of  pitch 

angle, yaw angle, derivative of pitch angle, 
derivative of yaw angle, velocity of main rotor 
and velocity of tail rotor respectively. 

 1 4( , ) , , ( , ),   , ( , )
T

v hf x u f x u f x u      with 

   1
1 4( , ),   , ( , ) ( ) ( ) ( , )

T
f x u f x u M q I u N q q  

 

where ( , , , )v h m tq      is the vector of  pitch 

angle, yaw angle, angle of main rotor and angle of 
tail rotor respectively, and 
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B. Receding horizon control model 

It is obviously that the function ( , )f x u  of 

TRMS model given in (1) is continuously 

differentiable. Therefore, at the current time instant kt  

and during a short time interval 1[ , )k kt t   with 

1 ,  0 1k k k kt t        afterward it can be 

approximated by: 

 

   1 1( , ) ( , )k k k k k k

k k k

f x u f x u A x x B u u

A x B u d

     

    

where 
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f f
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 

 

 
 
 

  

 (2) 

Therefore, the original nonlinear state equation in (1) 
can be now replaced accordingly during the same time 

interval 1[ , )k kt t   by a linear model: 

 ( , ) k k kx f x u A x B u d     

It is clearly that all matrices ,  k kA B  and vectors kd  is 

determined, since ( )k kx x t  at the current time instant 

kt  are measureable and 1 1( )k ku u t   at the previous 

time instant is already known. 

Hence, the original nonlinear model (1) of TRMS 
can be now replaced accordingly during the current 

time interval 1[ , )k kt t   by the following determined 

LTI model: 

 
k k kx A x B u d

y Cx

  

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
 (3) 

Each model (3) can be replaced the original original 
model (1) only during the appropriate time interval 

1[ , )k kt t   and all of them together with 0,1,k    will 

be called hereafter the receding horizon LTI models as 
depicted in Fig.2. 

 

 

 

 

 

 

 

Figure 2. Receding horizon control with LQR 

C. Sample data controller design 

In the following, the obtained LTI model (3) 
will be used to design the state feedback controller 

( )u x  based on linear quadratic variation technique to 

control TRMS (1) during an appropriate time interval 

1[ , )k kt t  . The obtained optimal controller, which is 

obviously also valid only during the next time interval 

1 2[ , )k kt t  , will be denoted by ,  0,1,k k R   as 

illustrated in Fig.2. The merged controller from them: 

 1 2,  ,  0,1,k k kt t t k     R R  (4) 

for all time domain t , will be called the receding 
horizon controller. Consistently, the purpose of this 
receding horizon controller R  is the asymptotical 
convergence to zero of tracking error 

k  

kt  1kt   

2kt   

3kt   

1kR  

2kR  

t  

, , ,

,

k k k
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R d
 

LQR kR  
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( ) ( )k k ke w t y t   of closed loop system for all k , 

where ( )w t  is the desired output. 

With (4) the designing of R  can be now replaced 
by determining of all instant controllers 

,  0,1,k k  R . In order to avoid tracking errors 

1 1( ) ( )k kw t y t   by designing of kR , which could be 

remaining from previous control time instant 1kt  , an 

alternative desired value kr  for the current time instant 

kt   given below will be used instead of the original 

( )kw t : 

  1 1( ) ( ) ( )k k k kr w t w t y t    . (5) 

Now, for a possible usage of optimal variation 

technique to design the controller kR , such that the 

outputs y  of linear time invariant system (3) converge 

asymptotically to desired output kr , it is required 

firstly this tracking problem to be converted 
correspondingly in a stabilizing control problem. 

Signify the steady state of closed loop system of (3) 

after tracking phase with [ ]sx k  and [ ]su k , then this 

steady state must be satisfied: 

 
0 [ ] [ ]

[ ]

k s k s k

k s
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
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which implies immediately: 

 

1
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 (6) 

if the matrix 

 
k k

k

A B
F

C

 
   0

 (7) 

is invertible. Then, with the new symbols: 

 [ ],  [ ]s sz x x k v u u k     

the tracking control problem of (3) to an alternative 

desired value kr  will be converted correspondingly in 

the stabilization problem of following nominal system: 

 k kz A z B v  . (8) 

 It is easy to recognize that for the invertibility 

of matrix kF  the number of inputs u  and of output y  

must be coincided. 

For optimal stabilizing this above obtained nominal 
system the following cost-function could be used: 

 
0

1
min

2

T T
k k kJ z Q z v R v dt


   
   (9) 

where ,  k kQ R  are two arbitrarily chosen symmetric 

positive definite matrices. Thence, based on the 
continuous time variation technique the optimal input 
v  it is deduced: 

 1 T
k k k kv R B L z z   R  (10) 

where the symmetric positive definite matrix kL  is 

obtained by solving the algebraic Riccati equation: 

 1 T T
k k k k k k k k k kL B R B L A L L A Q     (11) 

and it is equivalent to: 

 

 1

( ) [ ]

[ ]

[ ] [ ]

s

k s

T
k k k s s

u x v u k

z u k

R B L x x k u k

 

  

   

R  (12) 

The obtained value ( )u x  above is sent 

subsequently to the system (1) as control signal for a 

while of 1 2k kt t t   . To receive the next control 

value for the next time interval 2 3k kt t t    all 

calculation steps above have to be repeated. 

III. SIMULATION RESULTS 

 The following simulation was carried out 
with particular parameter values of TRMS given in 
Table I. 

Table I. Physical Parameters of the TRMS for Simulation 

Symbol Definition Value Unit 

g  Gravity acceleration 9.81 2
m s  

tm  Mass of the tail part of the beam 0.015 kg  

trm  Mass of the tail rotor 0.221 kg  

tsm  Mass of the tail shield 0.119 kg  

mm  
Mass of the main part of the 

beam 
0.014 kg  

mrm  Mass of the the main rotor 0.236 kg  

msm  Mass of the main shield 0.219 kg  

tl  
Length of the tail part of the 

beam 
0.282 m  

ml  
Length of the main part of the 

beam 
0.254 m  

msr  Radius of the main shield 0.155 m  

tsr  Radius of the tail shield 0.1 m  

mmr  Radius of the main rotor 0.007 m  

mtr  Radius of the tail rotor 0.007 m  

bm  
Mass of the counterbalance 

beam 
0.022 kg  

cbm  Mass of the counter-weight 0.068 kg  

bl  
Length of the counterbalance 

beam 
0.265 m  

cbl  
Distance from the counter-

weight to the pivot  
0.25 m  

cbr
 

Radius of the counterbalance 1e-2 m  

cbL  Length of the counterbalance 3e-2 m  

bm
 

Mass of the pivot 0.09 kg
 

1bm
 

Mass of the rear part of the 

pivot 
0.05 kg

 

h  
Length of the main part of the 

pivot 
6e-2 m  

1h  
Length of the tail part of  the 

pivot 
0.02 m  

mrJ  Moment of Inertia of main rotor 21.624e-5 2kgm  
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trJ  Moment of Inertia of tail rotor 3.1432e-5 2kgm  

H  High from the base to the pivot 0.5 m  

mrB  
Viscous friction constant of 

main motor 
4.5e-5 2kgm s  

trB  
Viscous friction constant of tail 

motor 
2.3e-5 2kgm s  

vB  
Viscous friction constant of the 

pivot in vertical plane 
0.6e-2 2kgm s  

bB  
Viscous friction constant of the 

pivot in horizontal plane 
0.1 2kgm s  

fvk  Coefficient of thrust due to 

main rotor 
1.13e-5 kgm  

fhk  Coefficient of thrust due to tail 

rotor 
2.23e-6 kgm  

,tv tmk k  Main rotor drag coefficient 3.646e-7 2kgm  

,th ttk k  Tail rotor drag coefficient 2.436e-8 2kgm  

cC  Cable spring constant 0.016 Nm rad  

0b  Steady yaw angle -0.4602 rad  

vF  
Sliding friction of the pivot in 

vertical plane 
0.1e-2 Nm  

hF  
Sliding friction of the pivot in 

horizontal plane 
0.01 Nm  

as well as with: 

1 2 3 4

5 6 7 1

2

 0.0347,  0.0013,  2.497 4,  0.029,

0.0047,  1.24 5,  6.36 5,  0.0408,  

0.2154

a a a e a

a a e a e b

b

    

     



 

Obtained simulation result, which is obtained 
by applying proposed control algorithm above to 
adaptively tracking control the TRMS, is exhibited in 
Fig.3. The simulation result of tracking ability of 

closed loop system to desired sinus hovers ( )w t  is 

exhibited. Again, the obtained convergence behavior of 

system outputs ( )y t  to the desired references ( )w t  

illustrated in this figure showed ones the tracking 
performance as desire. 
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Figure 3. Sinus references  

 

IV. CONCLUSIONS 

The paper has presented an approach for 
asymptotically tracking control to any desired 
trajectory of a nonlinear smooth continuous time 
system subjected to unavoidable constraints of control 

signals ( )u t U . This approach is created based on 

receding horizon technique with the movement of 
flexibly adjustable LQR along time axis. Thus, this 
proposed approach acts essentially as an adaptive 
constrained optimal controller in real time sample data 
systems. 

To verify the desired control performance of 
proposed approach, this method had been also in the 
paper implemented to simulate the tracking control of a 
TRMS. The simulation result has definitely confirmed 
that the adaptive tracking performance has met the 
desired expectation and therefore the proposed method 
could be now completely applicable in practice.  
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