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Abstract  

            The paper deals with tracking and vibration 

suppression problem of a gantry system. Based on 

flatness property of the gantry, a controller that 

ensures zero tracking error of the payload and 

minimizes payload fluctuation is designed. In addition, 

a PI controller is integrated to the system to drive the 

payload-swinging angle to a certain range. Numerical 

simulations are also given to prove the effectiveness of 

the proposed controller. 
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I. INTRODUCTION 
 

Due to the flexibility in handling loads, gantry 

crane systems are essential in industrial and logistic 

applications. Expected operating condition of the 

gantry system is the desired positions of the trolley 

and the payload are coinciding. In practice, this is 

impossible because of swinging motion of the 

payload. Swinging payload phenomenon slows down 

goods handling operations and can be a potential 

threat to human and surrounding devices. Certain 

types of payload can ignite multi-modes or double-

link pendulum effects [1] -[4]. In addition, char-

acterized as a class of under-actuated systems, 

precisely controlling trolley position and suppressing 

payload vibration simultaneously pose many 

challenges for control engineers. 

In order to tackle the aforementioned control 

problem, a decoupling control law is proposed in [5] 

to asymptotically stabilize trolley position and swing 

angle of the payload. Actually, the designed control 

only guarantee bounded swing angle. An improvement 

is made in [6] with a gantry system with varying rope 

length. A switching control action is derived based on 

feedback linearization technique. Position control and 

vibration suppression of gantry crane is considered in 

[7], the control problem is partly solved with the 

coupling effect between trolley and payload motions 

are taken into account. However, the obtained results 

are relatively limited in practice since the variance of 

system’s parameters and actuator’s dynamics are not 

considered. Practically, parameters of a gantry system 

is varying and challenging to identify due to 

hydrodynamic forces acting on the payload and the 

variance of payload mass and geometry. In order to 

deal with system uncertainty, an adaptive mechanism  

 

is integrated in proposed control law suggested in 

[8]. Well-known with its robustness against system 

uncertainty and disturbances, sliding mode control is 

applied in gantry control in [9]. However, it is need to 

cooperate with a pre-shape input to  

gain better performances [10]. Several adaptive 

schemes for gantry control also presented in [11] and 

[12]. 

Although having some promising results, feedback 

control seems to be suitable with automated gantry 

systems (where desired payload positions are pre-

defined via a human machine interface). The reason is 

when in manual operating modes, human-in-the-loop 

actions may interfere with control decision of the 

feedback controller and deteriorate system responses. 

Instead of feedback controls, control actions from 

operators are modified before sending to the gantry 

actuators as shown in [13] and [14]. The advantage of 

pre-shape input technique over feedback control is that 

measurement of system states is not required but a full 

knowledge of the system must be available. To rectify 

this drawback, pre-shape input method can be 

hybridised with a robust control as indicated in [14]-

[16]. A brief literature review above shows that the 

limitation of aforementioned researches rooted in the 

modeling step. Gantry control problem are solved with 

an assumption of pendulum motions of the payload 

that results in a system of ordinary differential 

equations govern system motions. Practice has shown 

that it is not the case, and gantry cable actually 

considered as a flexible system whose motions are 

modeled as a system of partial differential equations. 

The paper designs a gantry control algorithm based 

on flatness property of the system. Trolley position 

and swinging payload suppression are simultaneously 

controlled, the payload swing angle in restricted in a 

define range. Finally, the effectiveness of the closed-

loop system is proven numerically 
 

II. MATHEMATICAL MODEL 
 

The gantry system is illustrated in Fig. 1A trolley 

of mass M rolls along OX axis of the overhead crane. 

The trolley is actuated by a motor that produces a 

horizontal force of intensity F through a transmission 

system. The trolley carries a winch of radius  around 

which is a winding of hoisting cable with the payload 

attached at its end 
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A load of mass m attached to the coordinates (, ). 

The torque exerted on the winch by a second motor is 

denoted by C. The cable length, its tension and the 

angle of the cable with respect to the vertical are 

denoted by R, T and , respectively. 

The working space is limited to R < R0 (R0 is a 

strictly positive number) to avoid that the load touches 

the ground, and we assume that the tension T of the 

cable is always positive, i.e. the cable does not 

experience slack. We use the angular sign convention 

for  as follows:  ≤ 0 if  ≤ x and  > 0 otherwise. 

 
Fig.1. Two – dimensional overhead crane 

 

We also assume that a viscous friction force, noted 

, including the aerodynamic friction of the cable, 

is opposing to the trolley's displacement and that 

another viscous friction torque, noted , resists 

to the winch motion. The functions 1


 and 2


 are non-

negative and such that  

According to Newton's law, we get the equation 

describing crane system   

   (1) 

The geometric constraints between the coordinates 

of the trolley and the load is given by 
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From (1) and (2) we can obtain the mathematic 

model of the crane:  
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(3) 

Where it is assumed that friction forces are 

proportional to velocity  

 

III.  FLATNESS PROPERTY OF THE GANTRY 

CRANE SYSTEM 
 

From the system dynamics given in (3), the tension 

force T from the two first equations of (1) through the 

following mathematical transformation 

   (3) 

Using (2), we can rewrite equation (4) as       

 
 

2 2 2
tan ,

x
x R


  




    

  (4) 

Finally, eliminating  tanq  from (3) and (4), we get 

the differential – algebraic relation below 

   (5) 

Using (6) it is straightforward to show that 

   (6) 

From the first three equations of (1), the 

expression of driving force F can be calculated as 

   (7) 
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Similarly, from the last equations of (1), we can 

show that the torque C acting on the winch can be 

given as 

  (8) 

It is easy to see that all variables of the system 

denoting by  , , , , , , ,x R T F C    can be expressed in 

function of   and   (the coordinates of the load) and 

of their derivatives up to the fourth order, this result is 

compatible with the principle of flatness. 
 

IV. TRAJECTORIES GENERATION 
                  

It is assumed that the angle q  remains sufficiently 

small, as well as its angular speed , so that, 

according to [17], we have x » x  and z R . We 

want to drive the payload follow a straight line starting 

from the initial position , 
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Fig.2. Load displacement in straight line crane 
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According to Rest-to-Rest Trajectories, we have  
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The polynomial rest-to-rest trajectories are of the 

form 
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With 
0 r 1
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Denoting by the transfer duration, motion planning 

of the load is given by 
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And: 
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We find: 
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According to condition 
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                  (13) 

   (14) 
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It is desired that the swing angle of the payload is 

limited to a certain range. This ability is essential 

when maneuvering the gantry crane in a narrow space.  

It is assumed that the angle   remains sufficiently 

small, as well as its angular velocity, hence we will 

design motion trajectoris with limit angle constrains, 

then use a traditional PD controller to achieve the 

control objective. 

We have the equation describing swing angle of 

the form:  

   (15) 

With the angular sign convention for 

0   x
 and otherwise, this will lead to the 

following definition 
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It is straightforward to show that 

   (16) 
 

V. SIMULATION 
 

In order to show the effectiveness of the proposed 

control algorithm, a set of simulations are carried out. 

In the first case, no swing angle limit is placed, the 

payload responses are given in Fig 3, 4 and 5. It can 

be seen that, the payload swing angle is quite large. 

 
Fig 3. The position responses (x-axis) 

 
Fig 4. The position responses (z-axis) 

 

 
Fig 5. Load geometric displacement 

 
Fig 6, 7, 8 and 9 demonstrate system responses 

when angle limit is considered,  

 
Fig 6. The position responses (x-axis) 

 
Fig 7. The position responses (z-axis) 

 
Fig 8. Motion planning angle 
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Fig 9. Load displacement 

 
With the action of the additional PI controller, 

swing angle is restricted to a certain limit. The limit 

can be tighten which results in slower system 

responses, and the relaxed limit will posses faster 

responses.  

VI. CONCLUSIONS 
 

     The tracking and vibration suppression problems 

are investigated in the paper. Based on flatness 

property’s of the system a controller is designed to 

tackle the aforementioned problem. Payload 

trajectories are designed to achieve desired location 

with minimum vibrations. A set of simulation results 

are given to illustrate the control ability of the system.   
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