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Abstract 

            There are many methods to optimize the 

installation of  service search algorithm optimized for 

testing optimization problem *
a rg m in ( )
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U U  of 

model predictive control, these algorithms called the 

nonlinear programming [2], [7]. In Model Predictive 

Control, when dealing with the binding conditions 

attached to the nonlinear programming to plan is 

often used to test optimization problems like: 

Quadratic Programming (QP),  Sequential quadratic 

programming (SQP), interior point, or Genetic 

algorithm  (GA). When the control problem is in the 

form 
0

( ) ( , , )   m in 

T

u

Q u g x u t d t ,we can propose 

optimal control methods such as: the Bellman’s 

dynamic programming, Pontragin's maximal principle 

or variation methods [7], [8]. Each method has its 

advantages and disadvantages. This paper compares 

two methods of solving optimal problems in model 

predictive control that apply the TRMS object control 

as Sequential quadratic programming (SQP), 

variational  method. 
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I.  INTRODUCTION 
 

       Optimization of the model predictive control is a 

problem that is researching by many scientists. Until 

now, it was mainly used line search methods with 

finite predictive horizon for solving to optimize the 

model predictive control [1], [2], because these 

methods are quite favorable for contrainted optimal 

problems. Moreover, there have few other 

optimization methods as Levenberg-Marquardt or trust 

region. However, all above methods were only used 

for finite predictive horizons. Therefore, these do not 

ensure the global optimization. So, the system is 

difficult to be stable [3]. 

The dynamic programming method is an effective 

one for solving optimal problems in multivariation 

with ensuring the global of the optimal solution. 

Currently, this method is just applied to solve the 

optimal problem for linear systems with constant 

parameters or parameters changing over time.  

In [8], we present the tracking model predictive 

control method to get desired output and an infinite 

predictive horizon for bilinear continuous systems by 

using the variational method. In this paper, we will 

present the advantages and disadvantages of  the SQP 

and variational methods for solving optimal problems 

in model predictive control that apply the TRMS. 

II. THE TRMS MODEL 

The TRMS was given in figure 1 

The TRMS is a bilinear system with two inputs and 

two outputs. It can be described by the continuous 

model:  

( ) ( )
(1)

( )

 




 A B

C

x x x x u

y x x
 

State variables, inputs, outputs, respectively are: 

 

 

[ , , , , , ]

(3 )

( 4 )

T

h h h v v v

T

h v

T

h v

x S S

u U U

y

   

 

                  

                                       

                                       

 

 

Main rotor

Free beam

Tail rotor

Pivot

TRMS 33-220

Tower

Counterbalance

Main shield

Tail shield

 
Fig 1. The TRMS 

Where: 

ωh: Rotational velocity of the tail rotor (rad/s) 

Sh :Angular velocity of the TRMS beam in the 

horizontal plane without affect of the main rotor 

(rad/s) 
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 h : Yaw angle of the TRMS beam (rad) 

ωv: Rotational velocity of main rotor(rad/s) 

The nonlinear continuous state space equations of 

the TRMS are expressed in [4], [5], [6] as (7): 

Where: 

Sv: Angular velocity of the TRMS beam in the vertical 

plane without affect of the tail rotor (rad/s) 

v: Pitch angle of the TRMS beam (rad) 

Uh: Input voltage signal of the tail motor (V) 

Uv: Input voltage signal of the main motor (V) 
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are positive constants, h and v  is defined by 
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III. INSTALLATION OF NONLINEAR MODEL 

PREDICTIVE CONTROL FOR THE TRMS 

A. Control algorithm applying for SQP     

         Based on the mathematical models of the above 

TRMS, in this part, the author will present the 

installation of the constraint system applied to TRMS 

system which uses SQP and the variational method. 

Considering the constant bilinear system model as 

follows: 
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     If that model is rewritten by sampling signals with 

sampling cycle T and approximations for the 

derivative formula is used, we have: 

1
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( ) ,  ( )                                         (9 )
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A uncontinuous model is found: 
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where: 

( ) ( ),  ( ) ( ),  ( ) ( )   k k k k k kI T A T B CA B Cx x x x x x  

Hence, we get the predictive model for bilinear 

systems throughout the current predictive 

window , 
 pk k N  as follows: 
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Block of predictive model 
Through regression calculations by the predictive 

model (11) as follows:
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It will be modified through a range of the predictive 

output values which are in the current predictive window 

, 
 pk k N . Due to the status ( )k k kx x  of the system 

at the time of k (it is made by using sensors measurement 

or observe, ˆ
Y  only depends on ˆ

U : 
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Constructing the objective function 
If we exchange the given relationship in the formula 

(12): 
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into the  formula of penetration function  

ˆ( ( ) )
p k

s x k N , then: as ( )kx x k k  is supposed to 

have been known through the measurement by sensors or 

observation, we have: 

  ˆˆ ( ) ( ) ps k N k s Ux just depends on ˆ
U . Therefore, 

when we use more symbols: 
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The corresponding objective function for TRMS system 

will be: 
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Constraints conditions 
In case there are the constraints conditions, the 

algorithm is installed: 
m in m ax

( | ) ,  1, 2 ,   ,    (17)    j j j py y k i k y i N
 

m in m ax
( 1 | ) ,  1, 2 ,   ,       (18)j j j cu u k i k u i N       

m in m ax
( 1 | ) ,  1, 2 ,   ,   (19)        j j j cu u k i k i N  

where 1, 2j  is the number of elements of vector 

( | ),  ( | ) k i k k i ky u  and ( | ) k i ku  at the time 
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k i  in the future and belongs to the t h
k  predictive window k : 
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As 1  hy  is the third element, 2  vy  is the sixth 

element and it is two elements of u that is the control 

signal. Therefore, the  formula presents the constraint 

system will be: 


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B.Control algorithm applying for variational method     

      Consider a bilinear system MIMO with the same 

input and output signals, presented by continuous 

model: 
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where m
 Ru are vector of m  the input signals, 

m
 Ry  are vector of m  the output signals, and 

n
 Rx  are vector of n  the state variables. 

( ),  ( )A Bx x  and ( )C x   are state dependent matrices. In 

general, the model (22) has n m . 

   Assuming that the system is controlled by the model 

predictive controller with the interval 1k k kT t t   of 

predictive horizon which is also the sample time 

signal. If kT  is small enough, the matrices 

( ),  ( ),  ( )A B Cx x x  can be approximated by constant 

matrices: 

( ) ,  ( ) ,  ( ) (2 3)k k kA A B B C C   x x x

 

when 1k kt t t   .  An in this case, the system can be 

approximated by a linear model with constant 

parameters: 
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Let r e fy  be the sample output signals that system 

must follow. Assume that the sample signals are 

constants (or may be segment constants) as well as 

under the influence of constant signals, state feedback 

closed-loop system (24) will tend to the steady state, 

with steady state ex , i. e, constant signals e  0x , and 

input signals are also in steady state. Now, the 

established values of this system will satisfy:  
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This system allow us to find the steady state values 

 ,e ex u  from the sample output signals r e fy . Put  

e x x  and e u u . Since  ,e ex u  are constant 

vectors, and in (24) and (25), we have the  equivalent 

model in transitional process as the following: 

k kA B        

In order to design model predictive control for the 

continuous system (22) to get stable tracking, i.e., 

r e fy y , we will control the system (27) to achieve 

e   0x x  and e   0u u  by using the 

optimal control method LQR for the translated step of 

the k t h  predictive horizon with the infinite 

predictive horizon. That means, we minimize the 

objective function 

      
1

( ) . ( 2 8 )
2

k

T T

k k k

t

J Q R d t



                  

where ,  k kQ R  are two arbitrary symmetric positive 

definite  matrices, which can be changed at each 

translated step of the predictive horizon. 

Using the variation method to find solution *
  of the 

optimal problem in transitional process, given by (27), 

(28). We will have [7]: 

        
1

( 2 9 )
T T

k k k k k k k k k kL B R B L L A A L Q


                 

and 

 
* 1 1

(3 0 )
T T

k k k k k k eR B L R B L
 

                 x x   

From these, we get optimal control signals: 
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* *
( ) ( ) et t u u   với 1 (3 1)k kt t t     

for bilinear continuous systems (22) in the current 

predictive horizon. 

Summarily, model predictive control with infinite 

predictive horizon to apply for bilinear continuous 

systems (22), will work well with an algorithm including 

iterative steps as follows: 

Algorithm: The state feedback model predictive control 

so that the output signals track the reference  for bilinear 

continuous systems with an infinite predictive horizon.   

1. Choose the appreciate symmetric positive definite 

weight matrices ,k kQ R . Take 0 0t   and 0k  .  

2. Sample kx  and approximate ( ), ( ), ( )A x B x C x  by        

, ,k k kA B C   as (23). 

3. Determine  ,e ex u  from r e fy  by (26). 

4. Find kL  that is a symmetric positive semidefinite 

solution of Riccati equation (29). 

Find *
  corresponding kL  by (30), then find *

u  from 

(10). 

5. Choose 1kt   so that 1( )
1k k kA t t

e  




 with 

1
 


T

k k k k k kA A B R B L
. Put 

*
u  as the input of (22) in 

the interval 1 k kt t t
 and assign : 1 k k  , then go 

back to step 2. Here, kQ  and kR  are the arbitrary weight 

matrices, which can be changed at each step of the 

translation of the predictive horizon, i. e they depend on 
k  such that the solution of the optimal problem satisfies 

the bounded condition                 

      R

with   is the given upper bounded value whereas 

e   0x x . Moreover, to  set up the algorithm, we 

have to use a method for solving the Riccati equation 

(29). We can find some methods to seek kL  effectively 

in [7]. 

A model predictive control working in the way of this 

algorithm was illustrated Figure 5. This close-loop 

system works basing on the state feedback principles and 

is  not a discrete system. In each control horizon with a 

infinite width ,k    , *
( )tu  are used to control the plant 

only in an sample time interval 1k kt t t   . Thus, we 

denote *
( )tu  instead of *

( )k tu . In the whole control 

proccess, control signals ( )tu  will be a sequence of 

continuous signals *
( ) , 0 ,1, .. .ku t k  Therefore, this close-

loop system is one of the sampled data systems [1].  

IV. SIMULATION RESULTS 

    With the object model, objective function and 

constraint conditions discussed above when installed into 

model prediction controllers using SQP and variational 

method to solve the problem. I obtain the following 

results: 

 

A. Using SQP method 

 

 

 

 
Fig 2. Structure of Model Predictive Control to Applying SQP 
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Fig 3. The response of Pitch angle as reference signal is the substep 
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Fig 4. The response of Yaw angle as reference signal is the substep 

 

C. Using variational method 
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Fig 5. Structure of Model Predictive Control to Applying variational method 
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Fig 6. The response of the Yaw angle control loop with respect to a substep 
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Fig 7. The response of the pitch angle control loop with respect to a substep 
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Comparison and evaluation of quality  

Advantages, disadvantages of methods: 

Advantages of SQP: Satisfies constraints (including 

constraints on status and input constraints, output 

constraints). 

Disadvantages of SQP: It is imperative to use a 

discrete model, a long time to compute, an online 

calculation, a finite predictive horizon, stable quality 

of the system depends on the penalty ( ( ) )cs x k N k is 

choosen, while there is not an optimal penalty, it is 

difficult to apply for  reallity. 

To determine the restriction of SQP method, this paper 

offer the variable method. 

Advantages of variational method: calculating time is 

faster, using a continuous model, easy to install and 

practical application, works with infinite predictive 

horizon, definitely ensure stability. 

Disadvantages of variational method: The complexity 

of the constraints can not be directly dealt with.  

V. CONCLUSION 

        In the Model Predictive Control, one of the 

important  jobs must be implemented is to build the 

model and to solve the optimal problem so that the 

object function is minimized, and satisfy the 

constraints condition. This paper, author has compared 

two methods to solve optimal problem, analyze the 

advantages and disadvantages of each method, 

compare simulation runtime and real runtime on the 

same computer to see the advantages of the variational 

method. However, to overcome the limitation of the 

variational method is difficult to solve directly the 

complex constraint conditions. The author proposed 

the law of changing the weight matrix in the objective 

function, the constraint conditions will be satisfied. It 

will study in future work. 
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