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Abstract  

 A paper [1] indicated that the survey results 

apply Model Predictive Control for the TRMS based 

on Bellman’s dynamic programming method in order 

to consider the stability with the predictive horizon 

goes to infinity. The results of [1] has just proved the 

stability of system but they did not satisfy constraint 

conditions of state parameters. In this article, author 
provide rules of change of weight matrix in objective 

function in order to satisfy constraint conditions of  

the inputs, the outputs and the state parameters of this 

system. All of the state parameters reach to zero and 

satisfied with constraint conditions, the stable global 

of the system when the predictive horizon (NP) goes to 

infinity proved a reasonable rule with simulation 

results. 
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I. INTRODUCTION  

Optimization of the model predictive control 

is a problem that is researching by many scientists. 

Until now, it was mainly used line search methods 

with finite predictive horizon for solving to optimize 

the model predictive control [2], [3], [8] because these 

methods are quite favorable for contrainted optimal 

problems. Moreover, there have few other 

optimization methods as Levenberg-Marquardt or trust 

region. However, all above methods were only used 

for finite predictive horizons. Therefore, these do not 
ensure the global optimization. So, the system is 

difficult to be stable [4]. 

The dynamic programming method has 

outstanding advantages when applying to solve  

multivariable optimal problems with ensuring the 

global of the optimal solution. However, this method 

is just applied to solve the optimal problem for linear 

systems with constant parameters or parameters 

changing over time.  

Besides the above outstanding advantages, 

this method also reveals certain limitations that it does 

not directly satisfy the constraint conditions. In this 

study, the author applies the dynamic programming 

method to solve the optimal problem for the system 

with parameters depend on the TRMS state. At the 

same time, propose a rule to change the weight matrix 

of the objective function to overcome the above 
limitation in order to improve control quality.  

II. THE TRMS MODEL 

Considering the TRMS was given in figure 1, 

the predictive model as follows: 
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Fig 1. The TRMS 
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In order to determine the control signal ku  at 

the current predictive window, such that the effect of 

model deviations 
k  to the stable quality 0kx          

is minimal respectively with the predictive model (1), 

we will use the quadratic objective function [1]: 
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with ,  k kQ R  are two arbitrary positive definite  

symmetric matrixes. To increase the flexibility of the 

controller, we can change ,  k kQ R  follow k , it means 

to change along the time axis  at kT .  

When the predictive window is infinite 

(  PN ), the optimization is done as follows: the 

objective function (2) will be rewritten to: 
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The dynamic programming method gives the 

results [1]: 
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where L is symmetric solution of: 
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The TRMS is a bilinear system with two 

inputs and two outputs. It can be described by the 

continuous model:  
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State variables, inputs, outputs, respectively are: 
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Where: 

ωh: Rotational velocity of the tail rotor (rad/s) 

Sh : Angular velocity of the TRMS beam in the 

horizontal plane without effect of the main rotor (rad/s) 

h : Yaw angle of the TRMS beam (rad) 

ωv: Rotational velocity of main rotor(rad/s)  

Uv: Input voltage signal of the main motor (V) 

Uh: Input voltage signal of the tail motor (V) 

Sv: Angular velocity of the TRMS beam in the vertical 

plane without effect of the tail rotor (rad/s) 

v: Pitch angle of the TRMS beam (rad) 

In which: 
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are positive constants, h and v  is defined by 
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The nonlinear continuous state space 

equations of the TRMS are expressed in [5], [6], [7],[9] 

as (12): 
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III. DESIGNING PREDICTIVE CONTROLER 

FOR THE TRMS BASED ON DYNAMIC 

PROGRAMMING METHOD 

 Consider the state-dependent space model of 

the TRMS: 

 ( ) ( )             (13) 
dx

A x x B x u
dt

 

in  t = k.Ts 

In  which:  Ts is sample time (small enough) 

( )  kx t x  with ( 1)  s sk T t kT  

( )  ku t u with  ( 1)  sk T t kTs  

inferred: ( ) ( ) k k
dx

A x x B x u
dt

 with  

s( 1)  sk T t kT  
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Algorithm diagrams of dynamic programming method 

is shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2. Algorithm diagrams of dynamic  

programming method 

IV.  SIMULATION RESULTS 

 With the mathematical model of TRMS was 

built in (12) and the parameters of the system as 

shown in table 1, the algorithm diagrams shown in 

figure 2, the simulation on Matlab obtained the time 

response of the state variables of the TRMS are shown 

from figure 3 to figure 8. 

Table 1: System parameters 

Parameters Cost Parameters  Cost 

( )tl m  0,282 ( )aR  8 

( )ml m  0,246 ( )aL mH  0,86 

( )bl m  0,290 ( )av vk Nm A  0,0202 

( )cbl m  0,276 2( )mrJ gcm  
1272 

( )msr m  0,155 2( )trJ gcm  
248 

( )tsr m  0,100 2( )trB kgm s  2,310-5 

( )trm kg  0,221 2( )mrB kgm s  4,510-5 

( )mrm kg  0,236 
thk  3,610-7 

( )cbm kg  0,068 
tvk  8,710-7 

( )tm kg  0,015 
fhpk  1,8410-6 

( )mm kg  0,014 
fhnk  2,2010-7 

( )bm kg  0,022 
fvpk  1,6210-5 

( )tsm kg  0,119 
fvnk  1,0810-5 

( )msm kg  0,219 
tk  2,610-5 

kg  0,2 
mk  210-4 

( )ah hk Nm A
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Fig 3. The response of the first state variable 

 
Fig 4. The response of the second state variable 
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Fig 5. The response of the third state variable 

 
Fig 6. The response of the fourth state variable 

 

Fig 7. The response of the fifth state variable 

 
Fig 8. The response of the sixth state variable 

 

With a simulation time of 5s, the simulation 

results show: the first and fourth state variables 

( h , v ) move to 0 at 0.2s of the simulation process 

and satisfy their state constraint condition. When the 
simulation time is 200s the second and third state 

variables ( hS , h ) go to 0 at 20th seconds, the fifth 

and sixth state variables ( vS , v ) also go to 0 at the 

simulation time of the 100th second. So when the 

predictive window (Np) goes to infinity, all 6 status 

parameters of the TRMS system are approaching 0, 

which proves that the system is globally stable. 

However, state variables hS , vS , h  and v  are the 

relatively large adjustment, which shows that the 

method has not directly solved the input constraint 
conditions of the state variables, the fifth and sixth 

state variables have a lot of fluctuations. So we 

propose to change the weight matrix in the objective 

function as follows: keeping the matrix unchange kR  

and change the value of the weight matrix kQ  as a 

rule 2
1 k kQ i Q  in which 1 2 i  to satisfy the 

constraint conditions of system state variables given 

from figure 9 to figure 14. 

 
Fig 9. The response of the first state variable 

 
Fig 10. The response of the second state variable 

 

Fig 11. The response of the third state variable 

 
Fig 12. The response of the fourth state variable 

 
Fig 13. The response of the fifth state variable 

 
   a) 

 
   b) 
Fig 14. The response of the sixth state variable 

    
Comment: With simulation time of 5s, the 

simulation results from Figure 9 to Figure 14 show: 

state variables h , hS , h , v  and vS  are all going 

to zero at 0.2 second during the simulation and satisfy 

the input and output constraints of the state parameters 

compared to them that were given from Figure 3 to 
Figure 7. In particular, the 6th state parameter 
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v although it has not reached 0 in the first second of 

the simulation process like other state variables, the 
adjustment is only from - 0.2 rad to 0.35 rad compared 

to the actual constraint conditions. Infact, the output of 

the object is -2 rad to 2 rad. 

When we keeping the matrix unchange kR  

and change the value of the weight matrix kQ  as a 

rule 

1

4
1 k kQ i Q  in which 1 3 i  to satisfy the 

constraint conditions of system state variables given 

from Figure 15 to Figure 20. 

 
Fig 15. The response of the first state variable 

 

Fig 16. The response of the second state variable 

 

Fig 17. The response of the third state variable 

 
Fig 18. The response of the fourth state variable 

 

Fig 19. The response of the fifth state variable 

 

Fig 20. The response of the sixth state variable 

Comment: With simulation time of 5s, the 

simulation results from Figure 15 to Figure 20 show: 

state variables 
h , 

hS , h ,
v ,

vS  and v  are all 

going to 0 at 0.2 second during the simulation and 

satisfy the input and output constraints of the state 

parameters compared to them that were given from 

Figure 3 to Figure 8 and from Figure 9 to Figure 14. 

 

V. CONCLUSION 
By using Bellman's dynamic programming 

method, we have built a predictive controller for the 

TRMS to consider the stability of the system when the 

predictive window is infinite. At the same time, 

overcome the limitations of this method when 

proposing rules to change the weight matrixes in the 

objective function to satisfy the constraint conditions 
of the state parameters of the system. The simulation 

results on Matlab prove that the system is global stable 

and also resolves the constraint conditions. This 

results also prove the rationale for changing the 

weight matrix has been proposed. 
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