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Abstract—In this paper we undertake the designs of two
reduced order compensators for a (fourth order) switching dc-to-
dc converter. For each, the design methodology of modern control
theory is utilized in that optimal controller gains are derived
using the linear quadratic regulator (LQR) methodology and
state estimators with loop transfer recovery (LTR) are designed
to obviate the need for state measurement and to ensure desirable
loop gain characteristics. The resulting compensators, in each
case, are further order reduced whereby states with relatively
small Hankel singular values are discarded. In the first case,
the final third order compensator design is achieved by model
reducing the fifth order transfer function of a loop transfer
recovered (four state) full order estimator together with (one
state) integral control. In the alternative design, model reduction
is applied to the transfer function of a loop transfer recovered
(three state) reduced order estimator together with (one state)
integral control, resulting in a second order compensator. In
terms of implementation, the second design approach is seen
as more favorable. A practical implementation is shown and
simulated verifying the design efficacy.

Index Terms—linear quadratic regulator (LQR), estimator,
loop transfer recovery (LTR), model order reduction, dc-to-dc
converter

I. INTRODUCTION

The design of compensators or controllers for dc-to-dc
power converters may be undertaken from a classical control
or modern control perspective [1], [9]. The mathematical
system description used in a classical control framework is
the transfer function. Whereas modern control uses the time
domain description of state equations. The predominant clas-
sical control design paradigm is that of loop shaping; whereas
under modern control it is pole placement. Under a full state
feedback control law, and for a fully controllable system, poles
may be placed in any desired locations in the s-plane. Prevalent
under the modern control framework is the use of optimization
formulations whereby pole locations are not decided directly
but rather a cost function is minimized. One such example
is the linear quadratic regulator (LQR) formulation where a
quadratic cost function involving the system state and inputs
is minimized. This formulation inherently results in the ability
to penalize state and/or input variations. Further advantages
of optimal control are guaranteed performance specifications
such as stability margins under LQR control. Thus we see

that modern control designs have advantages over traditional
classical control methods.

In this paper, we use the modern control framework to
design controllers for the C1 dc-to-dc converter which is
discussed in the next section. Specifically, an LQR design is
undertaken and then followed up by full order and reduced
order estimator designs, which obviates the need for state
measurements. However, both these estimator designs need to
be undertaken using a loop transfer recovery (LTR) approach
in order to recover the desirable loop properties of the LQR
design. Finally, the important issue of compensator implemen-
tation needs to be addressed. This then directs attention to the
order of the compensator transfer function and in particular
its minimization while maintaining good performance. This
is subsequently achieved using a method which removes the
states with the lowest energy contribution to overall model
behavior.

An outline for the paper is as follows. In the next section the
C1 dc-to-dc converter is introduced and a state space model is
developed. In Section III an LQR design is given. A full order
estimator (FOE) design using LTR, referred to as FOE/LTR,
is undertaken in Section IV. The subsequent compensator
comprising the LQR control law and the FOE/LTR is next
order reduced in Section V to obtain the minimal order com-
pensator transfer function. Sections VI and VII, tackle the case
of the reduced order estimator, i.e. ROE/LTR, and the final
compensator transfer function, as one might expect, is found
to be of lower order than that obtained from the FOE/LTR
design. Implementation of the reduced ROE/LTR compensator
is presented in Section VIII and simulation results are given
which verify the design.

II. THE C1 DC-TO-DC CONVERTER

The power processing system used in our study is the
dc-to-dc switching power converter shown in Figure 1. This
converter is one of many that was derived in [2] and [3] and is
named the C1 converter due to its position in a classification
matrix of converters. Further discussion of this converter has
been provided in [4] and [5]. In our study the converter will
be used to regulate a 10 volt DC input down to 5 volts across
a load represented by resistor R, which has a value of 5 ohms.
The values of the inductors and capacitors are as follows:
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L1 = 300µF, L2 = 680µF , C1 = 10µF and C2 = 10µF .
The converter operates at a nominal switching frequency of
100 kHz. As a performance measure we will examine the
effect of input voltage disturbances on the output voltage. A
10% step (i.e. 1 V) in the input voltage will be used. Figure
2 shows the open loop response of the system as obtained
using the PECS simulation software [6], [7]. Clearly seen is
the high degree of ringing and the dc output voltage offset
from the desired 5 volts that the closed loop system is tasked
to eliminate.

Fig. 1. The C1 dc-to-dc converter

Fig. 2. Output of the C1 converter due to a unit step changes of input voltage
from 10 volts to 11 volts back top 10 volts.

Modern control design methodology requires a minimal
state space representation of the converter. This is obtained
using the state space averaging method [8], [9] to yield a small
signal model. Since the system switches between two switched
states, we model each switched state individually then create
a model based upon the weighted averages of the two states.
The state space model for the converter is then be represented
by the small signal average:

ẋ = Ax+Bvg +Bdd

y = Cx+ Evg + Edd

where x, vg, d and y represent the state, input voltage, duty
ratio and output voltage, respectively. The state is given

by the inductor currents and capacitor voltages, i.e. x =
[v2, v1, i2, i1]T .

Each switched state is represented with the standard space
model equations. For the first switched state where the
switches, Q and P, shown in Figure 1, are in their ON and
OFF states, respectively, the state matrices are:

A1 =


−1
RC2

0 −1
C2

1
C2

0 0 1
C1

0
1
L2

−1
L2

0 0
−1
L1

0 0 0


B1 =

[
0 0 0 1

L1

]T
C1 =

[
1 0 0 0

]
E1 = 0

For the second switched state, where switches Q and P
are now in their OFF and ON states, respectively, the state
matrices are:

A2 =


−1
RC2

0 −1
C2

1
C2

0 0 0 1
C1

1
L2

0 0 0
−1
L1

−1
L1

0 0


B2 =

[
0 0 0 1

L1

]T
C2 =

[
1 0 0 0

]
E2 = 0

For the C1 converter the steady state average output/input
DC voltage relationship is given by V

Vg
= D, where D

represents the steady state duty ratio. For our system we
require an output voltage of 5 Volts with a nominal input of 10
Volts, therefore the steady state duty ratio is D = 0.5. With the
known duty ratio, we can write a state space averaged model
with the following relationships.

D′ = 1 −D

A = DA1 +D′A2

B = DB1 +D′B2

C = DC1 +D′C2

E = DE1 +D′E2

Please note that we use E in this section to denote the
feed-forward matrix. In other sections we will use the more
standard name D when we do not need to distinguish it from
the duty ratio term.

The steady state values for the state and input are denoted
by X and Vg , respectively. These are used in the final set of
matrices:

X = −A−1BVg
Bd = (A1 −A2)X + (B1 −B2)Vg

Ed = (C1 − C2)X + (E1 − E2)Vg

This completes the open loop model for the system.
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III. LINEAR QUADRATIC REGULATOR

We wish to design a compensator that achieves precise
regulation of the system output voltage while eliminating
steady state error. The linear quadratic regulator (LQR) com-
pensator is a full state feedback compensator. It will feedback
a weighted sum of state values to the plant control input d, so
that:

d = −kTa xa

xa is the augmented vector consisting of the plant’s state
variables and single new state, xi, which is the output of an
integrator added to the compensator in order to achieve zero
steady state error to a step input. This integrator takes an input
that is the difference between the desired output yd and the
actual output, y. Therefore:

xa =

[
x
xi

]
where

xi =

∫ t

0

(yd − y) dτ

and ka = [k ki] is a vector of gains which is chosen to
move the poles of the overall system to desired locations.
However, rather than directly deciding where to place poles,
we supply cost penalty matrices Q and R used as part of the
LQR formulation, as discussed next. R is a positive definite
matrix that places relative penalty on fluctuation on the control
input. Q is a positive semi-definite matrix that places relative
penalty on fluctuation in the plant’s states. Together, the Q
and R matrices are used in minimizing the cost function:

J =
1

2

∫ ∞
0

(
xTQx+ uTRu

)
dt

where u denotes the input, in general, which in our case is the
duty ratio, d.

The Simulink diagram shown in Figure 3 implements the
closed loop system where we have the ability to measure the
plant state variables and feed them back via the k vector.

From our system matrices we see that C1 = C2 = C and
E1 = E2 = 0 which results in the output equation having the
form

y = Cx

Together with the previous plant state equations and given
that the desired output is constant, which implies that yd = 0,
results in the following small signal model of the system:

ẋa =

[
A 0
−C 0

]
xa +

[
B
0

]
vg +

[
Bd

0

]
d

The design of the controller gains ka is found by using the
Matlab lqr function together with the matrices of this model
and the Q and R penalty matrices, which are discussed next.

Fig. 3. LQR Compensator in Simulink.

Through trial and error we arrived at the following values
for the penalty matrices:

Q =


1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 100000


R = 1

This resulted in:

ka =
[
0.5886 −0.0162 − 1.6179 1.6141 −316.2278

]
The above ka values move the poles of the regulated system
to −46142 ± 48931, −863.59 ± j9912 and −315 in the s
plane. As expected, all the poles are in the left side of the s
plane, indicating a stable system. This ka value was used in
the Simulink model of Figure 3 and the response to a unit
step disturbance input was obtained and is shown in Figure 4.
Clearly the disturbance is greatly rejected by this closed loop
system as seen by the output producing a maximum deviation
of only 70 mV compared to the 700 mV deviation seen in
Figure 2.

This completes the LQR portion of the controller design.

IV. LOOP TRANSFER RECOVERY OF COMPENSATOR WITH
FULL ORDER ESTIMATOR

As mentioned in the previous section, we do not wish to
directly measure the state variables. Therefore we will use a
full order esitmator with loop transfer recovery (LTR) derived
compensator, hereafter referred to as a FOE/LTR compensator.
The FOE/LTR compensator reuses the ka values found in the
previous section but derives an estimate of the state variables.
The estimator is described by the following state equation:

˙̂x = Ax̂+Bdd+ L(y − Cx̂)

where x̂ is the estimate of state variables x, and as before,
d is the control input defined as −kax̂a and y is the plant
output. The estimator gain vector L is chosen to move the
poles of the estimator to the desired location. (Note that, as
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Fig. 4. LQR compensator response to unit step input.

a matter of convenience, the disturbance input is not fed into
the estimator. The consequence of this is discussed later).

By using a compensator with an integrator full order esti-
mator, we can describe the system in state space as:

ẋ = Ax−Bdkx̂−Bdkixi +Bvg

ẋi = −Cx

˙̂x = LCx−Bdkixi + (A−Bdk − LC)x̂

y = Cx

The LQR procedure can be used to design for an optimal
value of L resulting in the optimal estimator, which is also
known as the Kalman filter. The resulting combination of
optimal estimator with the optimal regulator is known as
a Linear Quadratic Gaussian (LQG) design. Unfortunately,
the combination of the two is not generally optimal. The
LQG compensator does not have guaranteed stability mar-
gins [10], unlike the case for LQR design which uses state
measurements. To overcome these lmlitations the Loop Trans-
fer Recovery (LTR) design methodology was proposed [11],
which seeks to replicate the optimal characteristics of an LQR
compensator with full state feedback. Loop transfer recovery
is an iterative procedure where we increase the weights in the
cost function. We use the weights:

R = 1

Q = q2BdB
T
d

and increase the value of scalar q until we have adequately
recovered the loop transfer function of the full state feedback
LQR compensator.

For the various Q and R values, we use the Matlab function
lqe. Similiar to the function lqr, lqe finds the vector L as
defined by:

L = ΣCTR−1

where Σ is the solution to the Algebraic Ricatti Equation
(ARE):

0 = AΣ + ΣAT +Q− ΣCTR−1CΣ

The loop we are recovering is the loop formed by discon-
necting the controller output from the input of the plant. For
this approach, we compared a few different values of q. Larger
q values produce results closer to the LQR results. This can
be seen in the Bode diagram in Figure 5 for the various values
of q chosen.

Fig. 5. Bode diagram of open loop system with full order estimator
undergoing LTR.

q Phase Margin Bandwidth
Full State Feedback 70 14320
1 51 7427
100 62 13269
10000 69 14212
1000000 70 14309

TABLE I
STABILITY MARGINS FOR FOE/LTR SYSTEM AT VARIOUS q VALUES

Table I lists the phase margin (in degrees) and unity gain
crossover frequency (in Hertz) of the FOE/LTR system as q
increases. It can be seen that greater values of q come closer
to recovering the stability margins of the original full state
feedback LQR system. However, even lower q values yield
viable stability margins. For our design, we settled on q = 106

which produced an L of:

L =
[
9.49 · 107 −1.00 · 1011 −1.47 · 1010 3.03 · 1010

]
which places estimator poles at −4.7439 · 107± j4.7439 · 107

and −866.34 ± j9912.6.
To examine the efficacy of this design we implemented

the Simulink model shown in Figure 6. The Simulink model
includes the plant model, the integral regulator (whose gains
were derived in the prior LQR section), a full order estimator
and an external disturbance input. Using the L just derived the
output resulting by applying a unit step disturbance input is
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Fig. 6. Compensator with full order estimator in Simulink.

shown in Figure 7. Also shown for comparison in this figure
is the response of the LQR design with measured states of
the previous section. Clearly seen is the very close agreement
between the two responses. Note, for simplicity, in Figure 6
the disturbance input is not fed into the estimator. Nevertheless
the performance is good. More will be said about this later.

For a controller to be viable in this system, the duty ratio
needs to be within the following limits 0 < D + d < 1.
Therefore, as further examination of the response of the system
given the step input disturbance, we also looked at the control
effort required, that is, the change in the control input that is
needed to effect control. This is shown in Figure 8 for both
the FOE/LTR and the previous section LQR with measured
states design. Again we see very close agreement between the
two responses and also verify that the duty ratio limits are not
violated.

Fig. 7. Simulink results of response to unit step input for FOE/LTR system.
Also shown is the response for the LQR with measured state design.

Fig. 8. Simulink results of control effort in response to unit step input for
FOE/LTR system. Also shown is the response for the LQR with measured
state design.

V. MODEL REDUCTION

The FOE/LTR compensator consists of an integrator and an
estimator that replicates all four states of the plant. Therefore
the compensator is fifth order. To simplify practical implemen-
tation we next consider reducing the order of the compensator.

To achieve model reduction, we chose to use the balred
function in Matlab. Given our original transfer function, the
balred function will attempt to produce a transfer function that
yields similar results with less states. This is accomplished by
removing states with the smallest Hankel singular values, then
modifying the existing states to preserve the original DC gain
[13].

To use Matlab’s balred function, we must identify the
transfer function of our compensator. To do so, we first create
a state space representation of the compensator spanning the
input located at the plant’s output and the compensator’s output
which is fed back into the plant’s input. The state space matrix
quadruple was found to be:

Acomp =

[
A−Bdk − LC −Bdki

0 0

]
Bcomp =

[
L −1

]T
Ccomp =

[
k ki

]
Dcomp = 0

We can use Matlab’s tf function to generate the transfer
function of the compensator. We use the chosen value of q =
106 in the following.

Figure 9 displays the Bode plot of the original transfer
function against the Bode plots of the reduced order transfer
functions. It can be seen that the ability to reduce the transfer
function states breaks down at the second order. This point
is further reinforced when we look at the stability margins
for the reduced order models. Table II shows that the phase
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margin significantly decreases for a transfer function of the
second order, going from 70◦ for the third order compensator
to only 17◦ for the second order compensator.

Fig. 9. Model Reduction of compensator

States Phase Margin Bandwidth
Unreduced 70 14309
4 71 14378
3 70 14312
2 17 10490
1 17 10490

TABLE II
STABILITY MARGINS FOR MODEL REDUCED LTR COMPENSATOR.

The transfer function, GFOE(s), of the chosen third order
compensator is as follows:

GFOE(s) =
136 ·

(
1 + s

5.503 · 104

) (
1 + s

347

)
s

(
1 + 2.1063 · 10−8s+

(
s

6.7142 · 107

)2)
For validation, we constructed a Simulink model to run

the reduced order transfer function. The implementation is
shown in Figure 10. As before, we used the disturbance input
of a unit step. The results for different order reductions are
shown in Figure 11. We show results for compensators of
orders 3, 4 and the non-reduced compensator of order 5. As
expected, compensator transfer functions of orders 2 and 1
did not simulate well and are therefore not included in Figure
11. Of particular interest is the response of the third order
compensator, which is seen to be practically identical to the
original full order transfer function response.

VI. LOOP TRANSFER RECOVERY OF COMPENSATOR WITH
REDUCED ORDER ESTIMATOR

In an effort to further try and reduce the order of the
compensator we will now pursue a different tack in the
subsequent sections.

Fig. 10. Simulink system to examine reduced order compensator responses.

Fig. 11. Model reduction response to unit step input

The previous version of our compensator sought to model
each and every state within the plant model. However, in our
model the plant output is determined by the vector:

C =
[
1 0 0 0

]
Thus for our system, the output of the plant is equivalent to
the first state of the plant. In the previous section, we used
the full order estimator to estimate the first state (as well
as the others). However, since this state variable represents
the output, which is already being measured we can use a
reduced order estimator to estimate only the remaining three
unmeasured states.

For visualization, the compensator with reduced order esti-
mator was modeled in Simulink. The model is shown in Figure
12.

The full order compensator originally used A, B and D
gains to reproduce the states. The reduced order estimator
uses modified gain blocks which are found with the following
relationships:

D = A22 − LA12

F = DL+A21 − LA11

G = Bd2 − LBd1

where A and B are partitioned with measured states in the
first row and column and unmeasured states in the second and
higher rows and columns. Matrices A11, A12, A21 and A22
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Fig. 12. Simulink diagram of compensator with reduced order estimator.

are the partitioned matrices from matrix A and Bd1 and Bd2

are the partitions from vector Bd.
To include the new reduced order estimator in our compen-

sator, we must split the state feedback vector k. Similar to how
we divided the coefficients of the state space representation,
we split k into km and ku. The gain km is applied to states
measured directly from the output and the gain ku is applied
to state estimates produced by the reduced order estimator.
The gains themselves are not changed.

As previously done, to design L we apply the LTR pro-
cedure iterating through different values of parameter q. The
following q values were used:

q =
[
10−7 10−6 10−5

]
More specifically, to find the L value for our reduced

order compensator, we followed the technique developed by
Madiwale and Williams [12]. Consider a minimum phase
system with process noise ω with no measurement noise:

ẋ = Ax+Bu+Wω

y = xm

Because process noise characteristics are unknown, we
manipulate W and the corresponding noise spectral density
V . We partition them as we partitioned A and B in our
design of the reduced order estimator. In a similar fashion
to how matrices Q and R were manipulated in the previous
LTR section, we modify V with respect to q by the following
pattern:

V11 = W1V1W
′
1 + q2Bd1V2B

′
d1

V12 = W1V1W
′
2 + q2Bd1V2B

′
d2

V22 = W2V1W
′
2 + q2Bd2V2B

′
d2

Then with:
Ā = A22 − V ′12V

−1
11 A12

V̄ = V22 − V ′12V
−1
11 V12

where V11 is nonsingular, the following ARE is solved for Q:

ĀQ+QĀ′ −QA′12V
−1
11 A12Q+ V̄

The filter gain L is then determined from Q by the relation-
ship:

L = (QA′12 + V ′12)V −111

We used the following values for V1, V2, W1 and W2:

W1 =
[
10−4 0 0

]
W2 =

10−5 0 0
0 10−5 0
0 0 10−5



V1 =

10−4 0 0
0 10−4 0
0 0 10−4


V2 = 10−5

Using the values of q stated above, we obtain Bode plots
for the different loop gains. These are shown in Figure 13.
It can be seen that we are able to recover much of the loop
transfer function of the LQR compensator. If we compare it to
Figure 5 it can be seen that the transfer function even tracks
the target feedback loop further into the high frequencies than
the FOE/LTR compensator. However, this is not inherently
desirable as a greater rate of rolloff at higher frequencies
improves noise performance.

As seen in Table III, for the three different values of q
we were able to obtain approximately the same values of
phase margin and unity gain bandwidth, thus the choice of
q is arbitrary for this range of values.

For our design we choose q = 10−6, which produces the
following L value:

L =
[
−3162.1 −465.0 958.3

]T
q Phase Margin Bandwidth
Full State Feedback 70 14320
1.00E-07 68 13946
1.00E-06 70 14285
1.00E-05 70 14321

TABLE III
STABILITY MARGINS FOR LTR WITH ROE.

To examine the performance of the ROE/LTR compensator,
we implemented the Simulink model of Figure 12 to simulate
the closed loop system. As before, we used a unit step
disturbance input to the system. The results can be seen in
Figure 14. Once again, we see that the results are entirely
adequate as the reduced order response deviates little from
that of the full order.
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Fig. 13. Bode diagram of open loop system with reduced order estimator
undergoing LTR.

Fig. 14. Simulink results of response to unit step input for the ROE/LTR
system.

VII. MODEL REDUCTION OF COMPENSATOR WITH
REDUCED ORDER ESTIMATOR.

Now that we have reduced the states in the original com-
pensator by replacing the full order estimator with a reduced
order estimator, we pursue even further possible reduction.
In the following we used q = 10−5, and therefore used its
transfer function as our starting point for model reduction.

The compensator with FOE is dominated by a conjugate pair
of poles. However the compensator with ROE is dominated by
a single real pole. Since the system is dominated by a single
pole rather than a pair, we suspect that it is possible to reduce
the ROE/LTR compensator more so than we were able with
the FOE/LTR compensator.

We once again used Matlab’s balred function to achieve
order reduction. As before, we start by deriving the transfer
function of the compensator. To do so we again find a state

Fig. 15. Model reduction of the ROE/LTR compensator.

Order Phase Margin Bandwidth
Unreduced 70 14321
3 70 14520
2 71 14312
1 17 10496

TABLE IV
STABILITY MARGINS FOR MODEL REDUCTION OF THE ROE/LTR

COMPENSATOR.

space representation of the compensator. The state space
matrix quadruple is given by:

Acomp =

[
D −Gku −Gki

0 0

]
Bcomp =

[
F −GkuL−Gkm −1

]T
Ccomp =

[
ku ki

]
Dcomp = kuL+ km

This state space representation is converted to a transfer
function using Matlab’s tf function. The resulting transfer
function is used in balred.

As can be seen in Figure 15, the transfer function reduc-
tions of orders 2 and 3, closely match the original transfer
function. Order reduction to one is seen as unacceptable. This
observation is confirmed by the phase margin and unity gain
bandwidth results shown in Table IV. The phase margin is
an optimum 70◦ until the compensator is reduced to a single
state. The transfer function, GROE(s), of our final, second
order compensator is as follows:

GROE(s) =
316 ·

(
s

54825 + 1
) (

s
349 + 1

)
s
(

s
1.424 · 108 + 1

)
In order to double check the performance of our compen-

sator with reduced order estimator, we reused the Simulink
model shown in Figure 10. Once again, the input was a unit
step. The output response results are shown in Figure 16. It

vts-1
Text Box
SSRG International Journal of Electrical and Electronics Engineering ( SSRG - IJEEE ) - Volume 7 Issue 6  - June  2020


vts-1
Text Box
ISSN: 2348  - 8379                                      www.internationaljournalssrg.org                                     Page 8




is of interest that even when we reduce the compensator to
first order, the response still takes the desired shape however
with a higher overshoot. Nevertheless, as mentioned above,
the first order compensator is unsatisfactory given its reduced
phase margin shown in Table IV.

Fig. 16. Simulink response to model reduction of the ROE/LTR compensator.

VIII. IMPLEMENTATION IN CIRCUIT SIMULATION

By reducing the order of the estimator, we were able to
produce a transfer function for our compensator that is second
order which can be implemented practically with a single op-
amp circuit as shown in Figure 17.

Fig. 17. Second order compensator practical implementation.

The transfer function is given by:

Gc(s) = −ωo

s

(1 + s/ωz1)(1 + s/ωz2)

(1 + s/ωp)

With a known value for C3, we may derive values for the
other components of the compensator:

R2 =
1

ωpC3

C2 =
1

ωz1R2

R1 =
1

ωoC2

C1 =
1

ωz2R1

Arbitrarily setting C3 to 10 pF, we arrive at the following
preferred values:

R2 = 680 Ω

C2 = 27 nF

R1 = 120 kΩ

C1 = 22 nF

The compensated system is shown, as a PECS schematic,
in Figure 18. Note that, apart from the C1 converter and the
just designed second order filter, a pulse width modulator
element, output voltage divider (using two 100 Ω resistors)
and a voltage reference (using a 2.5 V dc source) has been
added to complete the system.

Fig. 18. The C1 converter PECS schematic featuring the final compensator
design.

Using the PECS simulator, we examined the disturbance
rejection of the closed loop system. An input disturbance is
achieved by stepping the input voltage from 10 V to 11 V
back to 10 V . The resulting output is shown in Figure 19.
As expected, the output waveform mimics that obtained from
prior Simulink simulations. Note that there is some slight
ringing in the waveform, that was also present in the Simulink
obtained responses. As noted previously, for simplicity in
our prior modelling, the input disturbance was not made
available to the estimator. This results in the slight ringing
appearing. If desired, one is able to dampen this oscillation
by placing a series connection of an 82 µF capacitor and
8.2 Ω resistor, across capacitor C1. The response with these
damping components added is shown in Figure 20.
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Fig. 19. Output of the C1 converter featuring the final second order
compensator design obtained from the PECS simulation. The input disturbance
is achieved by stepping the input voltage from 10 V to 11 V back to 10 V .

Fig. 20. Output of the C1 converter with damping components added. As
before, the input disturbance is achieved by stepping the input voltage from
10 V to 11 V back to 10 V .

IX. CONCLUSIONS

Two related compensator design procedures in the modern
control theory domain have been undertaken. The system to
be controlled was a fourth order dc-to-dc switching power
converter. In the first common part of each procedure, a vector
of feedback gains was derived by which full state feedback
can be effected. A linear quadratic regulator (LQR) design
approach was used. In the next step, a full order estimator
with added integral feedback was designed using a loop
transfer transfer (LTR) procedure to maintain good loop gain
properties. The controller gains together with estimator and
integral control comprise a compensator. The transfer function
of this compensator was next order reduced to a level where
good performance was still maintained. Order reduction is
undertaken by eliminating states whose corresponding Hankel
singular values were relatively small. The whole procedure
resulted in the initial fifth order compensator being reduced to
one of order three.

The alternative compensator design procedure, starts with
the LQR design, which is the same design as before. Since
the output of the system which represents one of the system
states is a measured quantity, in the next step a reduced

order estimator, which estimates the remaining states only,
is designed using an appropriate LTR procedure for reduced
order estimators. The transfer function of the compensator ob-
tained using the LQR gains and reduced order estimator with
integral control has order four. This transfer function was next
order reduced which resulted in a second order compensator.
This compensator was subsequently implemented in a circuit
simulator which confirmed good input disturbance rejection
performance of the closed loop system.

This paper has demonstrated that to obtain a minimal order
compensator it is best to start with a reduced order estimator
followed by order reduction. This compensator subsequently
reduces implementation demands without an accompanying
loss of performance.
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