
SSRG International Journal of Electrical and Electronics Engineering (SSRG - IJEEE) - Volume 7 Issue 7 – July 2020

ISSN: 2348 – 8379 www.internationaljournalssrg.org Page 20

An Innovative PID Controller in Conjunction

with DC Electric Motor for Control of Hybrid

Electric Vehicle

M Majid Hussain
1
, Zulfiqar A Memon

2
, M Akmal Chaudhary

2
, M Siddique

3

1
Faculty of Computing, Engineering and Science, University of South Wales, Treforest, Cardiff, United Kingdom

2
Department of Electrical and Computer Engineering, Ajman University, Ajman, United Arab Emirates

3
Department of Electrical Engineering, NFC IET, Multan, Pakistan

Abstract - This paper introduces a hybrid vehicle

concept, development and implementation using both

an electric motor and a petrol engine to increase

efficiency and reduce carbon footprint. Initially, a

prototype of a hybrid electric vehicle (HEV) is designed

and the output values are measured, before a control

system is developed and implemented to control the

speed of the DC motor using an innovative

microcontroller as the vehicle's electronic control unit

(ECU), along with a proportional integral derivative

(PID) controller using speed as an input. The prototype

made integrated voltage, current, speed and torque

sensors for feedback consequential in a closed loop

control system, which successfully resulted in matching

the speed input of a user-controlled pedal sensor. A

user interface was developed to demonstrate the driver

of the vehicle about significant variables such as the

revolutions per minute (RPM) of the motor, the speed of

the vehicle together with the current being drawn, and

the voltage applied to the motor with overall power. A

digital interface with pulse width modulation (PWM)

capabilities was used to transmit a preset DC voltage to

the speed controller for the output of a variable voltage

from the Arduino. The results show that innovative PID

controller algorithm can enhance the execution of

electric motor speed at various set-points of Kp, Ki, Kd,

to attain a reliable and stable speed. User interface

delivers considerably better communication between

the Arduino and PID controller for constraints of

maximum and stable speed and operational safety.

Keywords - PID Controller, DC Motor, User interface,

Speed control, Carbon emission.

I. INTRODUCTION

In recent years, it has been seen that the non-

renewable energy sources have been diminishing day

by day, due to this the cost of power sources i.e. fuel for

running the vehicles has been increasing enormously.

The hybrid vehicle operating system is a combination

of two or more power sources for internal operation.

Typically, a combination of an internal combustion

engine (ICE) and an electric motor (EM) is used in the

hybrid electric vehicles (HEVs). A HEV configuration

is multifaceted with many different components and

each component demands specific modelling and

design which is a difficult task, because one

component's parameters can devastate the power level

of the others. The effects of insufficient power may

make the vehicle unnecessarily costly or inefficient [1,

2]. In emission-free and environment friendly urban

areas, HEVs are a key factor in traffic development

and, therefore, reductionof carbon footprint. The main

requirement for traction motors used in HEVs is to

produce torques of propulsion over a wide range of

speeds. Two main electric motor types, the permanent

magnet motor (PMM), and the induction motor (IM),

are widely used for HEVs.

DC motors are efficient, presenting high reliability

and easy maintenance. The DC motors have higher

starting torque, quick starting, stopping, reversing, and

variable speeds with input voltage. The DC motors are

easier and cheaper to control than AC motors and the

easiness to control results in smooth acceleration and

efficient battery usage [3-5]. Although brushed DC

motor suffers from the brush maintenance, and yet the

foregoing mentioned advantages make the DC motor to

be a perfect candidate for use in electric vehicles.

Electric motor and its control technology is one of

the main components of hybrid electric vehicle, and

largely affects vehicle’s power performance, fuel

economy, and emission. Problems related to the energy

crisis and substantial carbon emissions have become

extremely severe, and the ideal solution appears to be

the electric vehicles (EVs). The alternative choice is the

HEV, as batteries have too low energy density and

issues with charging and discharging. One core

component of the HEV is an electric motor and

different types of DC electric motor were used in

HEVs, including the brushless DC motor, which has the

advantages of light weight and high efficiency [6, 7].

High power density, high starting torque, high

efficiency, robustness, good reliability and wide range

of speed control are important aspects of electric motors

file:///C:/Users/mhussa201/Downloads/www.internationaljournalssrg.org

SSRG International Journal of Electrical and Electronics Engineering (SSRG - IJEEE) - Volume 7 Issue 7 – July 2020

ISSN: 2348 – 8379 www.internationaljournalssrg.org Page 21

used in HEVs [8-10]. Use of electric motors has

become very important in everyday life especially in

conveyors, air conditioning, etc. Technically, for its

drive, the HEV comprises of four main parts: the

control system and motor, the driving system, as the

energy storage and the body, of which the motor and

the drive system decide the overall characteristics of the

EVs. For starters - fast start and stop, variable speed,

large load and high power - main performance

requirements must be considered when designing EVs.

The speed control of DC motors already employs

various methods, one of which is proportional integral

derivative (PID) [11-12]. PID is simple in design and

has advantages in every framework. For application in a

HEV, PID controller is mentioned in the literature [13].

Set point tracking and disturbance rejection are the

key goals of both classical and modern control system

engineering, where feedback as well as feedforward can

be used to achieve the set point tracking design goals

and disruption rejection. However, using feedback

control only to achieve these goals may in some

circumstances lead to an interaction between the

demands of the design, for example the multi-objective

design problem mentioned in [14]. Commonly, energy-

efficient control drives for electric motors face

perturbations of load torque due to unmodeled

dynamics of the attached equipment. Hence the

efficient and reliable control of electric motors using a

minimum number of sensors is a demanding, important

and appropriate research subject and its solutions admit

a broad range of practical applications in engineering

products and development of systems. On the other

hand, recent ground-breaking developments dealing

with active disruptive rejection control (ADRC) were

introduced. In the ADRC method the controller

estimates and compensates for unknown conditions and

disturbances in real time.

The main aim of this paper is to design and develop

an innovative PID controller, hybrid vehicle prototype,

then simulate it, and analyze the effect of incorporated

voltage, current, speed and torque of DC electric motor.

In addition, a new prototype to control DC motor speed

using a PID controller of HEV is developed. The

anticipated HEV prototype is assembled with a simple

design procedure and low-cost available equipment.

The design of the PID controller is subsequently

introduced to tune the PID controller’s three

parameters, Kp, Ki and Kd, based on proving the

functionality of the proposed algorithm from a set of

simulations. The foremost function of the PID

controller is to keep a constant speed of the vehicle

regardless of the torque demand and disturbances in the

system. For better communication between different

components of HEVs, a Bluetooth based user interface

is developed to show the driver of the vehicle key

variables such as the revolutions per minute (RPM) of

the electric motor, the speed of the vehicle in miles per

hour (MPH) for the current being drawn along with the

voltage being applied to the motor in relation to overall

power.

II. DESIGN AND DEVELOPMENT

The design of the electrical/electronic prototype

began with a block diagram of the system which is

developed in stages and initially tested as each stage of

the development progressed. The software flow chart is

then designed and followed throughout the design and

implementation of the system.

From this the development of the prototype was

done in stages following the order below:

 Testing of the DC motor and speed controller

 Setting up the hardware and ensuring

functionality

 Developing the throttle input

 Addition of the microcontroller and PWM

control

 Design and implementation of the speed

feedback device

 Introduction of the PID control system

 Developing voltage and current monitoring

 User interface for the system

A. Block diagram of overall system

Figure 1 shows a simplified block diagram of the

first prototype of the electrical/electronic system of the

hybrid electric vehicle design and implementation. So

far, a flow chart has been developed for the software

programme. This can be seen in Fig. 2, whereas Fig.3 is

a graphical concept test diagram. The system starts by

testing the initial parameters of the device, such as

motor voltage, battery voltage, and motor current and

speed. If all of these parameters are within range, the

liquid crystal display (LCD) is initialized and modified

to ensure the motor is safe to run. Afterwards the

ignition switch is tested along with the direction

switches. The PID control is applied when the system is

ready to operate using the pedal sensor as the input (set

point) and the pulse width modulation (PWM) signal as

the output using the shaft's speed as the feedback. Once

the PID function has been applied, the software code

goes back, reading the current and voltages before the

LCD screen updates. Upon updating the LCD screen,

the hardware switches are integrated, and the PID

control is again implemented. It performed well to

prove the idea-but the programme code is further

streamlined for when a separate microcontroller

operates the LCD screen successfully. Also, Figure 5

displays a schematic of the current motor prototype

operated by electric and electronic PID.

www.internationaljournalssrg.org

SSRG International Journal of Electrical and Electronics Engineering (SSRG - IJEEE) - Volume 7 Issue 7 – July 2020

ISSN: 2348 – 8379 www.internationaljournalssrg.org Page 22

Fig 1: Block diagram of electrical/electronic system of

HEV

Fig. 2: Flow chart for prototype design concept

Fig. 3: Schematics of current electrical and electronic PID

controlled motor prototype

B. Initial Testing of DC Motor

The electric motor obtained was manufactured

by Lynch Motors in Honiton, UK and LEM 170, which

was a 48 V, 5.54 kW motor, rated at 3264 RPM and

16.2 N-m of torque. The motor was tested to determine

if it is working with a bench power supply. The motor

no-load current is found to be around 6 A, and it

operates at a varying supply voltage of up to 30 VDC.

In the service manual, if the motor had not been used in

more than two years, it was suggested to let the motor

run for half an hour with less than 30% maximum

current. Hence it was left running for half an hour

during the engine test. The obtained DC electric motor

was running at variable speeds and was working as

planned. Figure 4 demonstrates the DC motor

experimental set-up and test. It is found that the current

drawn was between 6-7 Amps, after the motor

accelerated to the final speed allowed by the voltage.

The voltage is set at different levels during the testing,

and the speed of the shaft is determined using a digital

tachometer by adding a reflective strip to the shaft.

The test results can be seen in Fig. 5, showing a

graph of the motor vs. the voltage applied to the motor.

The speed rose proportionally to the voltage applied,

which is expected from this DC motor, and the final

speed found to be 3320 RPM, faster than the specified

in the datasheet. It is because there was no load present

on the machine.

Fig. 4: Testing of the DC motor using a bench power

supply

file:///C:/Users/mhussa201/Downloads/www.internationaljournalssrg.org

SSRG International Journal of Electrical and Electronics Engineering (SSRG - IJEEE) - Volume 7 Issue 7 – July 2020

ISSN: 2348 – 8379 www.internationaljournalssrg.org Page 23

Fig. 5: Applied voltage vs RPM of the shaft

The main issue with this motor was the size, the

rated current is 140 A and can peak to 400 A according

to the datasheet. If batteries can be obtained that can

handle the peak current and rated current, then this

motor can be utilized for the vehicle. This motor would

be ideal due to the high torque and traction capabilities

and would give the vehicle high performance and

acceleration. The speed of the motor will need to be

limited with a suitable gear ratio and if possible, the

controller will be set with a suitable current controlling

setting. The motor was found to be fully operational

and the speed of the motor was found to be 67.34 RPM

per volt which roughly matches what is stated in the

datasheet at 68 RPM per volt applied (68 RPM/V).

C. Testing of Brushed DC Controller

A 400 brushed DC controller with a high-power

safety with digital and analogue input/output (I/O) was

developed, evaluated and tested for motor control in

various applications. This controller can be operated by

a potential power supply from a divider, hall sensor, or

0-5 V variable. Figure 6 displays the controller. It was

designed as an input for initial testing with the power

supply and a prototype throttle. This is to ensure that

the motor and controller were operating together before

any new hardware and software wasinstalled. The

devices were wired up according to the standards and

setup with simple ON/OFF, forward and reverse

switches. All other safety features like seat detection,

brake lights, engine braking etc., were short circuited to

the negative terminal to deactivate them for initial

bench testing. The controller was set up with the power

supply and a motorbike hand throttle as an input for

initial testing. The setup can be seen in Fig.7, and a

simplified schematic of the connections made is shown

in Fig.8.The test of the controller is carried out by using

double pole double throw (DPDT) switching method.

The forward and reverse switches wired in a way that

only one signal can ever be applied at any one time by

using double pole double throw (DPDT) switches to

ensure the fast speed (FS1) signal was applied at the

same time. On second attempt the controller gave a

steady green light indicating the device is ‘healthy’

upon a forward or reverse signal being applied to the

motor and the motor spun in the required direction

according to the input given by the throttle sensor. The

controller and the motor worked and provided a solid

base to build the rest of the prototype. The voltage

going into pin 10 for the throttle signal was measured to

know what limits are needed to control the full speed

range of the motor. The signal applied was found

between 0 – 4 V, where 0 V resulted no rotation of the

motor and 4 V had the motor rotating at full speed. The

speed of the shaft is also measured to find the full speed

of the motor in both forward and reverse directions. The

speed of motor in reverse is limited to 60% of the full

speed in default configuration. The top speed of the

system was found to be 3100 RPM in forward and 1780

RPM in reverse with 48 V being used as the supply

voltage. This was measured with the digital tachometer.

From this, a microcontroller was used to control the

throttle signal and all the digital and analogue I/O of the

controller. Due to this, extra monitoring and sensing

was added to increase the safety of the system and

develop a feedback control loop for the DC motor using

PID control.

Fig. 6: 4PQM controller

Fig. 7: 4QPM controller and LEM 170 DC Motor testing

0

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40 50

S
p

ee
d

 (
R

P
M

)

Voltage (V)

www.internationaljournalssrg.org

SSRG International Journal of Electrical and Electronics Engineering (SSRG - IJEEE) - Volume 7 Issue 7 – July 2020

ISSN: 2348 – 8379 www.internationaljournalssrg.org Page 24

Fig. 8: Simplified schematics of wiring

D. Throttle Development for Electric Motor

The first step in implementing the brushless DC

motor controller's microcontroller input was to procure

a foot pedal and test a microcontroller to read its output.

The selected microcontroller was an Arduino Nano, and

the chosen foot pedal was a typical pedal used on

electric motorcycles. The device runs on a 5 V input

and produces a 1 V to 4.2 V output signal, depending

on how much the pedal is pressed. To help identify I/O

pins and communication protocols, a basic Arduino

Nano was used. The foot pedal was connected to a 5V

supply, and the output was connected to a multimeter to

ensure the output voltage was within the range of the

analogue reading capabilities of the Arduino. The

Arduino can read up to 5 VDC and it is found that the

reading ranged from 0.9 V to 4.3 V while checking the

foot pedal which is slightly different from the definition

of the device. This commodity does not have a

datasheet, so it was manually checked. The output was

found to be within the range of analogue reading

capabilities of the Arduino. However, using one of the

digital inputs, the foot pedal was connected to the

Arduino and an analogue read function was used to

read the pedal sensor voltage output. In the analogue

ports the Arduino uses a 10-bit analogue to a digital

converter (ADC). Using equation 1, the full analogue

input set (5V) can be transformed to 1024 divisions,

otherwise known as ticks or divisions:

 2
n
 = Maximum deviation (1)

where n = the number of bits of the ADC

From this, the number of ticks can be determined

and inserted into Arduino software for the minimum

and maximum outputs of the pedal sensor. If 5 V is

equal to 1024 ticks, then 184 ticks are represented by

0.9 V and 881 ticks are equal to 4.3 V. For reading the

pedal sensor, a simple code was inserted into the

Arduino, written in the structured text to read the

analogue input which is a programming language based

on C++. This is expressed in code listing 1.

Code listing 1: Arduino code for initial reading throttle

value

int Throttle = A0; \\ Defines throttle analogue pin
intPedalSensor; \\ Variable to store throttle reading
void setup (){

Serial.begin(9600); \\ Setup initialising serial monitor}
void loop (){ \\ Loop program
PedalSensor=analogRead(throttle); \\ Reads input & assigns to

variable
Serial.println(PedalSensor) \\ Prints the value to serial Monitor

This software reads the analogue input

continuously and displays the value on the Arduino's

IDE serial display. Once the programme has been

updated and checked, the pedal sensor range has been

found to vary from 185 ticks to 882 ticks similar to the

previously measured values. The calculated values were

found to be slightly unstable and fluctuated by ±10

ticks on the serial display. In order to increase the

efficiency of the analogue read function, the program's

"analogue read" line has been replaced with a function

that takes an average of 10 readings instead. The code

for the latest read sensor feature is listed in code listing

2.

Code listing 2: Updated code for Arduino reading the

throttle input

voidReadSensor(){
int readings [10];// Readings from the input
intreadIndex=0; // Current reading

int total =0; // the running total
 total = total - readings[readIndex]; // Read from the sensor:

 readings[readIndex]=analogRead(throttle); // New value to an index
 total = total + readings[readIndex];// Adds to the total
readIndex=readIndex+1; // next position in the array

if(readIndex>=10){
readIndex=0; // Resets array after }

This feature generates an array and will read the

analogue input 10 times before updating and restarting

the array. This takes an average of readings before

updating the list and assigns it to the new variable Pedal

Sensor. This code produced more consistent results and

it was found that the number of ticks fluctuated

between ±2 rather than ±10, a fluctuation of ±2 ticks

results in an average fluctuation of 0.01V which is an

appropriate pedal sensor error. The next move was to

map the tension reading of the pedal sensor to a value

of 0-4V to replicate the input of the hand throttle on the

DC motor controller.

E. Microcontroller Design for Input Control

file:///C:/Users/mhussa201/Downloads/www.internationaljournalssrg.org

SSRG International Journal of Electrical and Electronics Engineering (SSRG - IJEEE) - Volume 7 Issue 7 – July 2020

ISSN: 2348 – 8379 www.internationaljournalssrg.org Page 25

A digital interface with PWM capabilities must be

used to output a variable voltage from the Arduino to

provide a preset DC voltage to the speed controller.

While testing the speed controller it was found that

inputs from 0 to 4 V are needed to vary the motor from

no speed to full speed. The Arduino has the capacity to

output 5 V from any of its digital outputs and PWM can

be used to adjust this voltage within the range of 0 to 5

V. The Arduino's digital to analog converter (DAC) is

an 8-bit DAC resulting in 256 equation divisions. When

using the PWM output, the Arduino has a range of 0 to

255 ticks as it starts from 0 and not 1. It means that

writing 255 to the digital output will provide 5 V while

writing 0 will provide 0 V. Thus, in order to provide a

maximum output of 4 V, the digital output must be

reduced to 204 ticks which will produce a maximum

voltage of 4 V. This means that the input of the pedal

sensor, which was found to be 185 to 882 ticks, must be

mapped to 0 to 204 ticks while writing to the PWM

output. To do this, a map was used to simplify the

involving mathematics and save memory for CPU

processing. Virtual output was allocated as the input of

the throttle electric velocity control (ESC) and the pedal

sensor was mapped using this pin to provide a 0 to 4V

output. In this paper the velocity output is measured by

a tachometer and fed back via an ADC. It is important

to note that the tachometer converts the velocity to a

voltage; that voltage is then used as input in the

negative terminal. The positive terminal is connected to

a reference voltage. For this the latest loop code can be

found in code listing 3.

Code listing 3: Arduino code for mapping throttle

reading to the PWM pin

void loop (){

ReadSensor (); \\ Reads average pedal sensor reading
Serial.println(PedalSensor); \\ Prints Pedal Sensor
Reading

ThrottleOut=map (PedalSensor,180,880,0,200);\\ Maps Pedal value
if(ThrottleOut>0){

analogWrite (3,ThrottleOut);\\ Writes PWM value to digital output }}

This was plugged into the Arduino and the PWM

output was connected with a multimeter, the voltage

was calculated while the pedal was pressed to ensure

that the voltage output was within range for the ESC.

As the pedal was pressed it was noticed that the

Arduino's output was within the range of 0 to 4V and

was working as expected. The Arduino's PWM output

was then wired to pin 10 and the ESC's negative

connected to replace the hand throttle for checking the

Arduino as an input throttle. The Arduino was powered

up using the PC, and the power supply was used to

control the DC motor equipment. The machine was

tested both in forward and in reverse when calculating

Arduino's throttle input. The system ran all right and

ran at full speed in both forward and reverse and

repeated the previous test's use of the hand throttle. The

speed was again found to be 3100 RPM in forward and

1780 RPM in reverse using the optical tachometer using

48 V as the supply voltage. The Arduino circuitry

added for the speed controller can be found in Fig.9 in a

simple schematic. The next step is to establish a

feedback on speeds so that the PID controller has a

reference point.
Fig. 9: Simplified schematics of system with foot pedal and

Arduino

F. Development of Speed Encoder System with Hall

Sensor

A speed feedback system is required in order to

develop a PID controller for the DC motor. For this a

hall sensor and magnets were used in order to develop

an incremental encoder. The magnets were placed onto

a circular disk that was attached to the motor shaft; 8

magnets were used at equal distance to provide 8 pulses

per revolution. The disk was attached to the motor shaft

and the hall sensor module attached to a stationary mast

within sensing distance of the encoder disc. The hall

sensor module was powered up with 5 V and the output

was connected to a multimeter to ensure that the system

was working correctly. The shaft was spun manually

and when a magnet was in sensing distance of the hall

sensor the indicating LED lit up and the multimeter

read 4.9 VDC. This indicated that the encoder sensor

was working correctly and gave a HIGH output

whenever one of the magnets was sensed. Figure 10

shows the implementation of the encoder disc and hall

sensor on the motor when it detected one of the

magnets.

www.internationaljournalssrg.org

SSRG International Journal of Electrical and Electronics Engineering (SSRG - IJEEE) - Volume 7 Issue 7 – July 2020

ISSN: 2348 – 8379 www.internationaljournalssrg.org Page 26

Fig. 10: Encoder system while magnet was being detected

When the physical side of the encoder was

confirmed to be working, the hall sensor was connected

to the Arduino. The hall sensor was powered off the 5V

rail from the Arduino and the output was connected to

digital input 2, which has a hardware interrupt feature

incorporated into it, which can be used to detect the

amount of rising edges given by the hall sensor in a

given amount of time. Once the encoder was connected,

a series of functions were developed to detect the

number of pulses within a given time frame to deduce

the RPM of the shaft. The code relating to the encoder

feedback can be seen in code listing 4. This starts a

timer and counts the amount of pulses given by the hall

sensor until the timer is stopped. The amount of pulses

is multiplied by 240 to calculate the theoretical amount

of pulses in a minute at that speed and then divided by 8

as that is the number of pulses in one revolution. This

code was added to the previous coding with initializing

the new variables in the setup function. The system was

then run using the Arduino as a throttle input while

monitoring the speed by a digital tachometer and

monitoring the speed given by the Arduino from the

encoder. To perform comparison for accuracy, the

speed was held constant with the pedal sensor while the

readings were taken off both the tachometer and the

Arduino. Figure 11 shows the results and it is clearly

seen that the RPM measured from the encoder by the

Arduino and by the tachometer were found to be within

a reasonable range of each other with a maximum error

of 3% at lower speeds.

Fig. 11: The Arduino RPM vs actual rpm

The error decreased as the speed of the motor was

increased until there was an error of less the 0.5%. This

is within an acceptable range to start developing a PID

control using speed as the feedback signal. To output a

variable voltage from the Arduino a digital output is

used with PWM capabilities in order to provide a

variable DC voltage to the speed controller. When the

speed controller was tested it was found that an input of

0-4V is required to vary the motor from no speed to full

speed.

Code listing 4: Arduino code for deducting the

speed from the encoder

#include <TimerOne.h>
voiddocount() // counts from the speed sensor
{

counter++;} // increase +1 the counter value
voidtimerIsr(){

 Timer1.detachInterrupt (); // Stops the timer
 RPM =(counter*30);// RPM= counter x 240 (for minute) ÷ by 8

(pulses)
Serial.print(RPM); // Prints RPM to serial
monitor

 counter=0; // reset counter to zero
 Timer1.attachInterrupt (timerIsr);}//enable the timer

voidReadEnc(){
 Timer1.initialize (250000); // set timer for 0.25sec
attachInterrupt(0,docount, RISING);// increase counter when pin goes

High
 Timer1.attachInterrupt (timerIsr); // enable the timer}

G. Development of PID Control for DC Motor

The PID control built in this system used the pedal

sensor as the set point and the input taken from the

velocity sensor while the output is the PWM level sent

to the ESC. Instead of using the shaft's RPM as the

velocity sensor data, miles per hour (MPH) was used to

control the device by the vehicle's final velocity after

considering the gear ratio. To do this, the shaft speed in

RPM has to be converted to MPH by taking into

consideration the driving wheel diameter and gear ratio

to calculate the vehicle speed. A gear ratio of 1:5 was

used to create the PID power, and 18-inch diameter

wheels, as these are the intended attributes used in the

file:///C:/Users/mhussa201/Downloads/www.internationaljournalssrg.org

SSRG International Journal of Electrical and Electronics Engineering (SSRG - IJEEE) - Volume 7 Issue 7 – July 2020

ISSN: 2348 – 8379 www.internationaljournalssrg.org Page 27

mechanical construction. When the vehicle was

assembled with real gearing ratio and wheel diameter,

this was fine-tuned in software. Using the above series

and measured circumference, the circumference of an

18-inch diameter wheel was determined to be 1,4363

meters. For the motor, the following formula was

proven to turn the motor shaft's maximum RPM into

MPH.

𝑀𝑃𝐻𝑚𝑎𝑥 = 3264 𝑅𝑃𝑀
÷ 5 𝑥 60𝑚𝑖𝑛𝑥 1.4363𝑚𝑒𝑡𝑟𝑒
÷ 1609.3𝑚𝑒𝑡𝑟𝑒

𝑀𝑃𝐻𝑚𝑎𝑥 = 34.96 𝑀𝑃𝐻 ∴ 1 𝑀𝑃𝐻 =
𝑅𝑃𝑀

93.36

From this, it was assumed that the vehicle should

run at 1 MPH at 93.36 RPM. In the programme, this

equation can be used to measure the speed of the

vehicle at any given time. This latest reading of MPH

has been used as feedback to the PID system. Instead of

being connected directly to the Arduino PWM output,

the pedal sensor was mapped to a limit of 30 MPH and

this new measured value was used as the controller's set

point. It ensures that a relative ideal MPH can be

measured and used as the set point, since the pedal is

pressed from nothing to absolutely press. The PWM

output of the Arduino has now been set as the output of

the PID controller. It changed the control system from

an open loop system to a closed loop system which

could attempt to reach the speed set by the pedal sensor

by adjusting the PWM output accordingly. With the

proportional constant (Kp) set to 1 and the integral and

derivative constants (Ki and Kd) set to 0 ready for the

Ziegler Nicholas tuning method to be used, this was

implemented in Arduino coding. The code listed in

code listing 5 was uploaded into the Arduino and tested

with only the Kp set to 1. To test the system the pedal

sensor was removed through software and the set point

was set to 15MPH to have a stable set point. The Kp

value was increased in increments until the motor speed

was oscillating just below the set point. The final Kp

value that was found to be optimal with a constant of

12. Using the Ziegler Nicholas method, the Ku value

was taken to be 12 and the Tu value was calculated in

software to be 1.5 seconds between oscillations. These

values were entered into the PID controller and the

system was re-run with a set point of 15 MPH.

Code listing 5: Initial PID coding used in the

Arduino

#include <PID_v1.h> \\ Includes the PID library

double Input, Output, Setpoint; \\ Variables for PID
elements
doubleKp=1, Ki=0,Kd=0; \\ Variables forKp, Ki &Kd

PID PID1(&Input,&Output,&Setpoint,Kp, Ki,Kd, DIRECT); \\PID
configuration

voidRunPID(){ \\ Function to run the PID
loop

 MPH = RPM /93.36; \\ Converts the RPM into MPH
 Input = MPH; \\ Sets MPH as PID input
 Setpoint =map (Tavg,175,870,0,30); \\ Maps throttle to 0-

30MPH,
Sets PID setpoint

 PID1.SetOutputLimits(0,200);\\ Sets the PWM limits of the PID output
 PID1.SetMode(AUTOMATIC);\\ PID configuration

 PID1.Compute(); \\ Computes the PID
Function
analogWrite (ESCPin, Output); \\ Attached PID output to

the PWM pin for ESC}

Figure 12 shows the plot of the set point and

actual motor speed for the various PID constants. In

Fig. 13 to Fig. 15 the red signal represents the set point

and the blue signal represents the speed in MPH that is

read from the speed sensor, these figures also show the

various plots with trials of various PID constants at

various set points. The PID controller was found to be

within reasonable tolerance and the actual speed was

within ±1 MPH of the setpoint. Next the stationary

setpoint was removed from the program and the pedal

sensor was used as a variable input and the actual speed

and set points were plotted again while the pedal sensor

was varied. The system was found to respond quickly

and reach the set point at every time. The PID constants

can be tuned further to improve the response time and

system stability, however this shall be done at the end

of the development in order to consider the delay time

that was added due to extra software and hardware

developments. Also, no load was placed on the motor

during this tuning process which may alter the final PID

constants required when implemented into a vehicle.

Fig. 12: Actual speed vs set-point from Arduino IDE

(Kp=7.3, Ki=16.13 &Kd=0.804)

Kp=10, Ki=0 &Kd=0 Kp=12, Ki=0 &Kd=0 Kp=7.2, Ki=16.13 &Kd=0.804

www.internationaljournalssrg.org

SSRG International Journal of Electrical and Electronics Engineering (SSRG - IJEEE) - Volume 7 Issue 7 – July 2020

ISSN: 2348 – 8379 www.internationaljournalssrg.org Page 28

Fig. 13: Plot of actual speed vs set-point from Arduino

IDE (Kp=6 Ki=10, Kd=0.6)

Fig. 14: Plot of actual speed vs set-point from Arduino

IDE (Kp= 6, Ki=9, Kd=0.4)

Fig. 15: Plot of actual speed vs set-point from Arduino

IDE (Kp=5.5, Ki=9 &Kd= 0.4)

H. Voltage and Current Measurement

The voltage and current needed to be monitored in

order to know the power going into the motor at any

given time. The voltage sensor needed to monitor from

the motor which could result in a positive or negative

voltage depending on weather the motor is running in

forward or reverse. The Arduino can only monitor a

positive voltage therefore the negative voltage cannot

be monitored in the traditional way. There are two ways

in which this can be achieved easily, either:

 Develop a voltage divider for the motor where the

output is tied to 2.5 V so that the positive voltage

ranges between 2.5 V and 5 V and the negative

voltage ranges between 0 V and 2.5V.

 Use of blocking diodes in order to block the

negative voltage and convert it into a positive

voltage almost like a rectifier system.

In this research work, the motor voltage and PWM

signal used to run the electric speed controller to

determine the voltage and RPM of electric motor. It

was found that the level of PWM being applied to the

ESC is directly proportional to the voltage being

applied to the motor at no load conditions. Table 1

shows the results of this experimental work and fig. 16

shows a graph relating the PWM ADC value from the

microcontroller to the motor voltage.

TABLE 1

 Experimental results (PWM vs motor voltage testing)

PWM

Voltage

Arduino

PWM

Motor

Voltage

PWM to

Motor

Voltage Ratio

0.08 4 1.17 3.487179487

0.73 37 10.8 3.447222222

1.2 61 17.1 3.578947368

1.4 71 20.5 3.482926829

1.65 84 24.3 3.462962963

1.95 99 28.7 3.465156794

2.16 110 31.6 3.486075949

2.51 128 36.9 3.469105691

2.84 145 41.1 3.524087591

3.12 159 45.8 3.474235808

3.3 168 47.3 3.558139535

3.35 171 47.8 3.574267782

Kp=7.2, Ki=12 &Kd=0.804 Kp=7.2, Ki=10 &Kd=0.80 Kp=7.2, Ki=10 &Kd=0.6

Kp=5.5, Ki=9&Kd=0.4

Kp=6, Ki=10 &Kd=0.6 Kp=6, Ki=9 &Kd=0.4

Kp=7.2, Ki=12 &Kd=0.804 Kp=7.2, Ki=10 &Kd=0.804 Kp=6, Ki=10 &Kd=0.6

file:///C:/Users/mhussa201/Downloads/www.internationaljournalssrg.org

SSRG International Journal of Electrical and Electronics Engineering (SSRG - IJEEE) - Volume 7 Issue 7 – July 2020

ISSN: 2348 – 8379 www.internationaljournalssrg.org Page 29

3.5 179 47.8 3.734309623

It was found that the motor voltage was about 3.5

times less compared to the raw Arduino PWM (ticks)

value being applied. Also, the maximum voltage

applied to the motor (48.7 V) was applied when the raw

PWM value reached 171 ticks. This was programmed

into the Arduino by mapping the output PWM to the

motor voltage by using the ratio of 3.5. This will be

upgraded to a fully functional sensor in the final

prototype before implementing the system into a

vehicle. The current sensor was incorporated in order to

measure the current flowing into the motor when

running normally and the current flowing into the

battery in regenerator mode. The current sensor used

was a LEM CKSR 50NP which had a supply voltage of

5Vdc and an output of voltage between 0.325 V and

4.625 V with 2.5 V as the 0-reference point. The

theoretical sensitivity of the current sensor was 12.5mV

per amp. The voltage supply of the current sensor was

connected to the Arduino’s 5V rail and the output was

connected to one of the Arduino’s analogue reference

pins. With 2.5 V being the 0 amps reference point that

means that the full ADC value of 1024 relating to 5 V

would be divided by 2 to give the raw value of 512

ticks. The sensitivity of 12.5 mV/A will refer to 2.56

ticks per amp, which can be programmed into the

software to be able to deduct the current flowing to or

from the motor.

Fig. 16: PWM raw value vs the motor voltage

Once the current sensor was connected to the

Arduino, the program was increased to incorporate the

reading of the analogue pin and calculating the current

from the raw ADC value (ticks). The program code

used to calculate the current can be seen in code listing

6.This was uploaded on a separate Arduino and used on

a charging and discharging test for a battery module in

The Centre for Automotive and Power Systems

Engineering (CAPSE) building in the University of

South Wales. The current was varied from 0 A to 120 A

in steps of 5 A every 10 seconds, the current was

measured by the battery test equipment and compared

with the current on the Arduino.

The results for the positive current test can be seen

in Figure 17(a). The results for the negative current test

can be seen in Figure 17(b). The MCV – EV/HEV

battery cell tester used to test the current can perform

life cycle tests and automotive battery testing up to 300

A, more can be put in series for up to 2700 A battery

testing. The MCV allows for voltage, temperature,

current, capacity and pressure monitoring alongside

constant current and constant resistance discharging.

Fig. 17a: Current from the sensor vs actual current

Fig. 17b: Current from the sensor vs actual current

Code listing 6Arduino function for current

reading

voidReadCurrent(){
int readings[10]; // Readings from the

analogue input
intreadIndex=0; // the index
of the current reading

int total =0; // the
running total

 total = total - readings[readIndex]; // Read from the sensor:
 readings[readIndex]=analogRead(A11); // Log new value
 total = total + readings[readIndex]; // Add reading to total

readIndex=readIndex+1; // Increment array position
if(readIndex>=10){

readIndex=0; } // Resets array after 10
readings

www.internationaljournalssrg.org

SSRG International Journal of Electrical and Electronics Engineering (SSRG - IJEEE) - Volume 7 Issue 7 – July 2020

ISSN: 2348 – 8379 www.internationaljournalssrg.org Page 30

Amps_ADC= total /10; // Takes the average of the readings
 Amps =(Amps_ADC-512)/2.56 // Converts ADC value into

amps

}

I. Development of User Interface

A user interface has been developed to inform the

driver about the main variables of the motor, such as

the motor's RPM, the vehicle speed in MPH and the

current being drawn and the voltage applied to the

motor alongside the total power. An Arduino 3.5-inch

TFT touchscreen, a comprehensive colour screen

intended to develop a vehicle user interface, has been

used for this purpose. The screen was compatible with

Arduino Nano, Uno, and Mega and came with a CD to

follow with lots of examples and instructions in order to

learn how to use it and how to run it. This allowed to

build a user interface separately on an Arduino Nano

and the screen can be seen in fig. 18.

Following the pinout diagrams seen in Figure 14,

the device was linked to the Arduino Nano. The

examples on the CD were transferred to the Arduino,

and each was studied separately in order to understand

how to modify the code for this research needs. This

subsequently allowed to develop a user interface that

displayed two different screens, which could be

combined with a momentary button. On a monitor, the

first screen showed the vehicle speed in MPH, and the

RPM on a vertical bar graph. The second screen

showed the motor power and current drawn, as well as

the voltage of the battery. These are represented in

fig.19.
Fig. 18: Arduino 3.5" TFT touch screen used for the user

interface (Back and Front)

The developed user interface to inform the driver

about the main variables of the engine, such as the

motor's RPM, the vehicle speed in MPH, the current

being drawn, and the voltage applied to the motor along

with the total power is shown in fig. 20.

Fig. 19: Arduino screen pinout for Arduino Mega.

Fig. 20: User interface developed for speed, battery

voltage and current

J. Bluetooth System for User Interface

Communication

A Bluetooth system was developed as shown in

figure 21 to send data between the user interface and

the main microcontroller controlling the ESC. Fig. 21

shows a simple diagram of the Bluetooth system

developed using two Bluetooth modules (HC05 and

HC06).

K. Design of Series Hybrid Electric Vehicle

A design was developed for two simple types of

series hybrid powertrains to be incorporated into the

vehicles system. The first design incorporated a battery

source and an AC generator in parallel. The AC

generator would be selected to be able to run the

vehicle at slower cruising speeds with limited current

capabilities in case the batteries were completely

depleted. In normal operation the motor would be run

off the power from the battery and the generator would

be started automatically when the batteries reach a

certain level of state of charge (SOC). The batteries

would be charged off the generator or supply the motor

with the excess current required via the batteries. Figure

22 shows a block diagram of the first series hybrid

system being considered.

The second designed series hybrid system

incorporates two sets of 48 V batteries where only one

will ever be used at one time. In this system one battery

pack will be used to run the vehicle while the other is

on standby. If the battery on standby requires charging,

then the generator will start and charge the battery

through the rectifier and charging circuit. This system is

preferable to the first system by being theoretically

better than the first system as there will always be a

charge battery pack. Figure 23 shows the block diagram

for this system and again the contactor resembles a

suitable power device to switch in the two batteries or

the charging circuit. In both systems the microcontroller

will decide when to switch in the generators, batteries

file:///C:/Users/mhussa201/Downloads/www.internationaljournalssrg.org

SSRG International Journal of Electrical and Electronics Engineering (SSRG - IJEEE) - Volume 7 Issue 7 – July 2020

ISSN: 2348 – 8379 www.internationaljournalssrg.org Page 31

and charging circuits. Also, in both systems the

generator can be used to charge the vehicle’s batteries

while the vehicle is not being used.

Fig. 21: Schematics of Bluetooth connected LCD screen &

opto-isolated relays for digital IO

Fig. 22: First design of the series hybrid system

Fig. 23: Second design of the series hybrid system

L. Frame and Mechanical System Development

An off-road go-kart frame is used. To date, the

frame has been slightly modified to include a live rear

axle, and a suspension back and front. This frame is

large enough to support one person and weighs 50 kg

before any on-frame construction. Figure 24 displays

the work done so far on the go-kart frame, before and

after images.
Fig. 24: Prototype before and after modification

III. TESTING AND RESULTS OF THE DESIGNED

PROTOTYPE

A full installation of prototype rig is shown in fig.

25. The first stage of development of the rig was to take

the engine and mount it onto a sturdy right-angle frame,

which was attached to a base plate, and the base plate

was attached to the rest of the circuitry. The hall sensor

and the magnetic disc were connected to the motor

shaft, ensuring the hall sensor and magnets were within

a reasonable distance, and the hall sensor was facing the

south side of the magnets. With an aluminium block

used as a temporary heatsink, the speed controller was

added to the system. With four holes drilled in and

tapped to M6, the aluminium block was cut to size to

allow the electronic speed controller to tighten it down.

A coating of heatsink paste was added to the heatsink

before this was finished to facilitate the thermal flow of

any excess heat. Instead, as stated in the manual, the

ESC was tightened to the aluminium bleak on the rig

with a torque of 6 nm. The ESC's digital I/O was

attached next to the ESC, and all cables were made as

short as possible. The path switches were mounted, and

the ignition switch was changed to a key switch for the

final vehicle to be integrated. The machine integrated a

DC to DC converter to provide 12 V from the battery

system to the Arduino. The Arduino Mega was

mounted on the base of the rig and all connections were

made for the ESC, foot pedal, hall sensor, and current

sensors. The screen was mounted on a wooden base and

then mounted onto the rig. This was wired to the

Arduino and all the wiring was checked to ensure that

everything was properly connected, and there was no

chance of damaging any of the first power-up

equipment. Four lead acid batteries were placed on the

trolley's bottom shelf and attached to the ESC. There

was an opto-electronic operated relay circuit that could

handle the voltage and current of a generator or petrol

engine's electrical start circuit depending on the design.

This allowed full power control to the IC engine's

electrical start circuitry while being electrically

isolated from the microcontroller in any case of

high potential difference. This was tested with a

small DC motor, replicating the starter motor–a

high digital output from the microcontroller is

www.internationaljournalssrg.org

SSRG International Journal of Electrical and Electronics Engineering (SSRG - IJEEE) - Volume 7 Issue 7 – July 2020

ISSN: 2348 – 8379 www.internationaljournalssrg.org Page 32

required to activate the relays. They worked extremely

well and will be used to track any digital signals needed

to control the ESC, such as forward, reverse, start, and

reset.

The testing of separate parts of the prototype was

conducted as they were being developed and

implemented into the system. The system was

developed in stages in order to make sure that

everything was working before adding the next stage of

the design. Once the prototype was in the finishing

stages of completion, a general overview test was

completed on each design stage to ensure everything

was working as intended. The test procedure included

the following steps:

 Powering up the system and ensuring that no

voltage was being applied to the motor at start up

and the controller powered up into a healthy state

 Switching direction between forward and reverse

while engaging the key-switch and ensure no

voltage was applied to motor when foot pedal was

not engaged

 Apply foot pedal in forward and measure PWM

and motor voltage to ensure UI is within ±2V of

actual voltage

 Measure current with current clamp and ensure

within ±1A of UI value

 Ensure speed is constant and steady when foot

pedal kept in a certain position

 Measure RPM and make sure within ±50 RPM of

UI value

 Power motor to full speed and ensure does not pass

30MPH

 Disengage direction switch and ensure ESC

regens into battery

 Ensure ESC not engaged when both forward

and reverse selected

 Repeat steps 3 to 10 in reverse

 Ensure the ESC stays in a healthy state

throughout the testing and after direction

switches disengaged

 While ESC disengaged ensure foot pedal does

not run motor

 Apply both forward and reverse switches and

ensure the ESC goes into a neutral state and

foot pedal does not engage the motor 30MPH
Fig. 25: Full installation of the first prototype rig

The test procedure was completed three times to

ensure that the systems was operating in a safe manner,

the system was repeatable, and everything worked as

intended. The PID constants were altered slightly

through the testing procedure as to optimize it further.

The system was found to be operating as expected and

the ESC powered up in a healthy state and stayed in a

healthy state until the key switch was disengaged. The

forward and reverse switches operated as intended and

the motor was disengaged while no direction switches

were selected or when both switches were selected.

When the direction switches were disengaged the motor

successfully regenerated power into the battery and was

found to apply a maximum of 8 Amps back into the

battery in no load conditions and the motor was

decelerating from full speed. When the motor was set to

full speed using the foot pedal it was found to overshoot

for a very short duration to 31 MPH before settling at

30 MPH for the full duration while the foot pedal was

fully pressed. This was acceptable for the prototype

system being presented, however, the PID constants

will need to be re-tuned when the system is

incorporated into a small vehicle and the motor is

actually loaded under various conditions. The motor

RPM deduced from the encoder system was found to be

within 24 RPM of the measured RPM from the non-

contact tachometer. The RPM was also found to be

directly proportional to the voltage applied to the motor

in no load conditions. Fig. 26 shows the results for the

first conducted, the results for the Arduino RPM and

tachometer show a similar error to the initial testing of

the encoder system in the development stage. The

maximum error between the Arduino RPM and the

actual RPM was found to be 3.45% at 140 RPM and

went down to below 1% after 550 RPM. The speed

constant was calculated by using the Arduino RPM and

voltage applied to the motor. The average speed

constant was found to be 67.38 RPM per volt, the

datasheet of the motor claims that the motor has a speed

constant of 68 RPM per volt. The speed constant from

the tests was found to be very similar to the speed

file:///C:/Users/mhussa201/Downloads/www.internationaljournalssrg.org

SSRG International Journal of Electrical and Electronics Engineering (SSRG - IJEEE) - Volume 7 Issue 7 – July 2020

ISSN: 2348 – 8379 www.internationaljournalssrg.org Page 33

constant stated in the datasheet. Figure 26 shows a

graph comparing the applied motor voltage and the

RPM measured from the encoder using the Arduino and

the overall RPM error found.
Fig. 26: Arduino RPM vs motor voltage including RPM

error

The PWM from the Arduino was measured

throughout the testing and compared with the motor

voltage. It was found that an average of 14.46 volts was

applied to the motor for every 1 volt of PWM from the

Arduino for the linear part of the results. Again, the

relationship was found to be directly proportional until

the Arduino was supplying 3.35 volts to the ESC where

no more voltage was applied to the motor if the PWM

duty cycle was increased. The motor voltage was

measured and compared to the calculated value used in

the user interface.
The voltage measurement for the Arduino needs to

be updated to an actual monitoring system. However, in

the meantime the calculated motor voltage was found to

be within 1 percent of the measured value. The current

was measured with a clamp meter when the motor

speed had settled and stopped accelerating/

decelerating. The average current drawn at no load

conditions was found to be within 6-7 Amps when

measured with a current clamp throughout the testing

procedure. During acceleration the current was found to

go up to 21 amps when the pedal is fully pressed from

when the motor is at rest. The Arduino derived current

was found to be higher than the measured current with

an error ranging between 11% and 18% at the lower

end of the current reading. This is suspected to be due

to the current range being on the low end of the

measuring range of current sensors. The motor was

found to be oscillating slightly when the system reached

a steady state which indicates that the PID constants

need re-tuning for the extra software coding added into

the Arduino due to the addition of the LCD screen.

When the communication process between two

microcontrollers has been fully developed then the

efficiency of the PID programming code will increase.

The first prototype of the electrical system to be

developed into a hybrid system was found to be

operational and working well. The PID control of the

motor was found to be satisfactory for now but will

need re-tuning with further development of the

prototype.

IV. CONCLUSIONS

In this research, an innovative PID controller,

control of DC electric motor and Bluetooth system for

user interface communication have been successfully

designed, analysed, simulated, built and tested on a test

rig. The worked carried out reflects the DC electric

motor configuration and experimental testing to control

the velocity for HEVs. The simulation results show that

the PID control algorithm can improve the performance

of DC electric motor speed at different set-points, Kp,

Ki, Kd, in order to achieve reliable and stable speed.

Also, the design and implementation of innovative

controller shows that how PID based controller,

controlling the voltage and current of DC electric motor

to improves the performance of hybrid electric vehicle.

In addition, the current and voltage optimization

techniques and control algorithms have also been

included to improve the efficiency of DC electric

motor. It has also been established from results that

without appropriate PID controller the output voltage

cannot be controlled, and it will give a instability in

output voltage in term of error signal, however

appropriately designed PID controller hybrid electric

vehicle can be operated with improved torque and

power. It also shows clearly that the user interface

provides better connectivity between the Arduino

parameters and the PID controller for optimal and

stable speed and operational protection. The

results of the implementation and testing showed that

the proposed prototype and controller is efficient and

accurate for HEVs. All results have clearly shown that

by using such technologies as presented in this paper

will besupportive to automotive industry towards

hybrid electric vehicles.

V. REFERENCES

[1] F. Badin, J. Scordia, and R. Trigui, “Hybrid electric vehicles
energy consumption decrease according to drive train

architecture, energy management and vehicle use,” IET

Hybrid Veh. Conf. pp. 213-223, 2006.
[2] M. Hussain, A. R. Mustafa, M. A. Chaudhary, and A. Razaq,

“Design and implementation of hybrid vehicle using control of

DC electric motor,” 54th International Universities Power
Engineering Conference (UPEC). 2019.

[3] G.Pipeleers, B. Demeulenaere, and J. Swevers,“Optimal linear

controller design for periodic inputs,” International Journal of
Control. pp. 1044 – 1053, 2010.

[4] B. C. Francisco, F. C. Antonio, V. G. Antonio, and R. C. J.

Cesar, “Output feedback control for robust tracking of

position trajectories for DC electric motors,” Power Syst. Res.
pp.183–189, 2014.

[5] F. A. Sulaiman, Y. P. Panos, and A. G. Ulsoy, “Combined
robust design and robust control of an electric DC motor,”

IEEE/ASME Transactions mechatronics. pp. 574-582, 2011.

[6] C. C. Chan, and K. T. Chau, “An overview of power
electronics in electric vehicles,”IEEE Trans. on Industrial

Electronics. vol. 44, pp. 3-13, 1997.

[7] Z. Q. Zhu, and D. Howe, “Electrical machines and drives for
electric, hybrid, and fuel cell vehicles,” IEEE Proceedings, vol.

95, pp. 746 – 765, 2007.

[8] B. Z. Guo, an D. L. Zaho, “On convergence of the nonlinear
active disturbance rejection control for MIMO systems,”SIAM

Journal on Control and Optimization. pp. 1727-1757, 2013.

[9] P. Pillay, an Dr. Krishnan, “Modeling, simulation, and
analysis of permanent-magnet motor drives, Part I: The

permanent-magnet synchronous motor drive,” IEEE Trans. on

Industry Applications, vol. 25, pp. 265-273,1989.
[10] P. Pillay, and R. Krishnan, “Modeling simulation, and

analysis of permanent-magnet motor drives, Part 11: The

www.internationaljournalssrg.org
https://ieeexplore.ieee.org/author/37274256200
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=41
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=41
https://ieeexplore.ieee.org/author/37271282500
https://search-proquest-com.ergo.southwales.ac.uk/pubidlinkhandler/sng/pubtitle/SIAM+Journal+on+Control+and+Optimization/$N/666312/PagePdf/1335066971/fulltextPDF/A95515D9318C48CFPQ/1?accountid=15324
https://search-proquest-com.ergo.southwales.ac.uk/pubidlinkhandler/sng/pubtitle/SIAM+Journal+on+Control+and+Optimization/$N/666312/PagePdf/1335066971/fulltextPDF/A95515D9318C48CFPQ/1?accountid=15324

SSRG International Journal of Electrical and Electronics Engineering (SSRG - IJEEE) - Volume 7 Issue 7 – July 2020

ISSN: 2348 – 8379 www.internationaljournalssrg.org Page 34

brushless DC motor drive,” IEEE Trans. on Industry

Applications, vol. 25, pp. 274-279, 1989.
[11] R. Shanmugasundram, M. Zakariah, and N. Yadainah,

“Implementation and performance analysis of digital

controllers for brushless DC motor drives,”IEEE/ASME
Trans. on Mechatronics, vol. 19, pp. 213-224, 2014.

[12] G. Brahim, N. Abdelfatah, and A. Othmane, “An Efficiency

PI Speed Controller for Future Electric Vehicle in Several
Topology,”Procedia Technology,pp.501-508, 2016.

[13] A. K Yadav, P. Gaur, S. K. Jha, J. R. P. Gupta, and A. P.

Mittal, “Optimal speed control of hybrid electric vehicles,”
Journal of Power Electronics,vol. 11, pp. 393-400, 2011.

[14] A. K. Yadav, and P. Gaur, “An optimized and improved STF-

PID speed control of throttle controlled HEV,” The Arabian

Journal for Science and Engineering, vol. 41, pp. 3749-3760,

2016.
[15] K. C. Prajapati, R. R. Patel, and R. Sagar, “Hybrid vehicle:

A study on technology,” International Journal of Engineering

Research & Technology,” vol. 3, pp. 1076-1082, 2014.
[16] H. C. Chih, “Adaptive Fuzzy Control Strategy for a Single-

Wheel Transportation Vehicle,” IEEE Access. pp. 3272- 3283,

2019.
[17] T. Daisuke, A. Takashi, and M. Shigeyuki, “An analytical

method of EV velocity profile determination from the power

consumption of electric vehicles,” September 3-5, 2008.
[18] Manga Sravani, K.Padma Priya "Antiwindup Design for Fuzzy

PID Controlled DC Motor under Nonlinearities and Load

Variations" International Journal of Engineering Trends and
Technology 61.2 (2018)

file:///C:/Users/mhussa201/Downloads/www.internationaljournalssrg.org
https://www.sciencedirect.com/science/article/pii/S2212017316001109#!
https://ieeexplore-ieee-org.ergo.southwales.ac.uk/document/4677742/
https://ieeexplore-ieee-org.ergo.southwales.ac.uk/document/4677742/
https://ieeexplore-ieee-org.ergo.southwales.ac.uk/document/4677742/

