
SSRG International Journal of Electrical and Electronics Engineering (SSRG-IJEEE) – Volume 7 Issue 8 – Aug 2020

ISSN: 2348 – 8379 www.internationaljournalssrg.org Page 15

Mobile Robot Navigation Using Deep

Reinforcement Learning in Unknown

Environments
Roan Van Hoa

#1
, L. K. Lai

*2
, Le Thi Hoan

#3

*
Thai Nguyen University of Technology, Viet Nam,

#
University of Economics – Technology Industry, Viet Nam

Abstract

Mobile robots can cover a large range of

real world missions such as environment

surveillance, delivery, search and rescue missions.

Such missions require different levels of self-

navigation in order to react to the dynamic

environment changes. However, most of the

navigation methods rely on static obstacle map, and

don’t have the ability of autonomous learning. In this

paper, we propose an end-to-end approach using

deep reinforcement learning for the navigation of

mobile robots in an unknown environment. Based on

dueling network architectures for deep reinforcement

learning (Dueling DQN) and deep reinforcement

learning with double Q learning (Double DQN), a

dueling architecture based double deep Q network

(D3QN) is adapted in this paper. Simulation results

on the Gazebo framework show the feasibility of the

proposed method. The robot can complete navigation

tasks safely in an unpredicted dynamic environment

and becomes a truly intelligent system with strong

self-learning and adaptive abilities.

Keywords — Autonomous navigation, Deep

reinforcement learning, Artificial Intelligence,

Mobile Robots.

I. INTRODUCTION

Autonomous mobile robots are becoming

increasingly prevalent in everyday life. Although

robots have seen wide spread industrial application

since the 1970’s, robots are starting to see

applications in other less controlled and complex

domains such as delivery, the home, medical,

military, entertainment, and dangerous environments

that humans cannot enter. Extension into these new

domains presents a wealth of new challenges.

In recent years, deep reinforcement learning (DRL)

[1] has become one of the most concerned directions

in the field of artificial intelligence. It combines the

perception of deep learning (DL) with the

decisionmaking ability of reinforcement learning (RL)

and directly controls the behavior of agents through

high-dimensional perceptual input learning. It

provides a new idea for solving robot navigation

problems. Among them, DL, as an important research

hotspot in the field of machine learning, has achieved

remarkable success in the fields of image analysis,

speech recognition, natural language processing, and

video classification. The basic idea of DL is to

combine low-level features and form abstract, easily

distinguishable high-level representations through

multilayered network structures and nonlinear

transformations to discover distributed feature

representations of data [2]. Therefore, the DL method

focuses on the perception and expression of things.

RL, as another research hotspot in the field of

machine learning, has been widely used in industrial

manufacturing, simulation, robot control,

optimization and scheduling, and game gaming. The

basic idea of RL is to learn the optimal policy for

accomplishing the goal by maximizing the

cumulative reward value that the agent obtains from

the environment [3]. Therefore, the RL approach is

more focused on learning strategies to solve problems.

With the rapid development of human society, in

more and more complex real-world task tasks, it is

necessary to use DL to automatically learn the

abstract representation of large-scale input data and

use this characterization as a self incentive RL to

optimize problem-solving policy. As a result,

Google’s artificial intelligence research team

DeepMind innovatively combines the sensible DL

with the decision-making RL to form a new research

hotspot in the field of artificial intelligence, namely

deep reinforcement learning. Since then, in many

challenging areas, the DeepMind team has

constructed and implemented human expert-level

agents. These agents build and learn their own

knowledge directly from the original input signal,

without any manual coding and domain knowledge.

At present, DRL technology has been widely used in

games [4], robot control [5], machine vision [6], [7],

and other fields. In the field of navigation, some

interesting and novel articles have appeared one after

another. Gupta et al. proposed a neural architecture

for navigation in a novel environment [8]. Zhu et al.

proposed an actor-critic model and an AI2-THOR

framework to improve generalization performance

and an environment with high-quality 3-D scenes and

physics engines [9]. In terms of an autonomous robot,

some papers have been published in [10]-[12] shown

that the Q learning network is trained by sampling

minibatches of experiences from buffer uniformly at

random. However, applying particularly

reinforcement learning in robot setting suffers from

file:///C:/Users/hp/Downloads/www.internationaljournalssrg.org

SSRG International Journal of Electrical and Electronics Engineering (SSRG-IJEEE) – Volume 7 Issue 8 – Aug 2020

ISSN: 2348 – 8379 www.internationaljournalssrg.org Page 16

many challenges since the high dimensionality and

continuous states and actions of the robot [13]. In a

simulation, creating an accurate model robot and its

environment are challenging and often require a lot

of sufficient data samples. To address these dilemmas,

the operation of learning of robots is simulated and

designed in Gazebo since its compatibility with the

complex structure of the robot. More than that,

Gazebo enables to construct of a virtual environment

[14], which is imperative in the process of

scrutinizing reinforcement learning algorithms.

Beside, one of major problems in mobile robot

navigation is that how the robot can find a collision

free path from its starting point. With reinforcement

learning algorithms integrated in Gazebo, several

methods have been proposed to deal with obstacle

avoidances [15]-[17].

The rest of the paper is organized as follows. The

second section introduces the proposed model, deep

reinforcement learning based navigation. The

experimental results will be given in the third section.

Finally, the fourth section is the conclusions of this

paper.

II. IMPLEMENTION OF DRL NAVIGATION

A. Deep Q-Learning

We adopt the deep Q-learning to train the

planner. We formalize this task as a Markov Decision

Process (MDP), where the robot interacts with the

environment through a sequence of observations,

actions and reward signals. For each time step t, the

robot perceives a state st and needs to select a

possible action at according to a policy π, where the π

is the probability of selecting an action a to be

performed for a given state s. Once the action has

been executed, a positive or a negative value, which

may not be delivered immediately, will be provided

as a reward rt for the robot by the environment

together with the next state st+1. During learning, the

robot’s aim is to find a policy that collects the highest

reward possible over the long run. Given a policy π,

the action-value (Q-value) of a state-action pair (s, a),

which indicates the expected total discounted reward

when executing actions following policy π from state

s, is defined as follows:

0 0

0

, | , ,

t

t

t

Q s a r s s a a

 (1)

Where the expectation is with respect to the transition

distribution under policy π and rt is the reward for

action a = at under the policy π in the state s = st. γ is

the discount rate determining future action’s

influence (0 < γ < 1). The Q-value function can be

computed using the Bellman equation

1 1

, , ,

 t t t t t

Q s a r Q s a

 (2)

The optimal π∗ corresponds to taking the best action

in any state s and the optimal Q-value function Q*

can be obtained as follows:

*

1

*

'

, m ax , ' (3)
t t

a

Q s a r Q s a

Where 'a represents the possible actions in the future

state st+1.

The basic idea behind many RL algorithms

is to estimate the Q-value by iteratively updating

based on the Bellman equation. Traditional methods

usually calculate the Q-value function directly over a

large state, which has low efficiency and lacks

generality. Recent successes of RL in many

applications rely on the technique of combing deep

neural network and RL, where neural networks are

used to estimate the Q-value function. This is the

main idea behind DQN [18]. For a neural network

that works as a function approximator for the Q-

function, its parameters are updated as follows:

1

'

m a x ', ', , , , , (4)
i

i i i i i
a

r Q s a Q s a Q s a

Where θi are parameters of the network at iteration i

and α is the learning rate.

B. Double Q-Learning

 As shown in Equation (3), the objective of

the Q-learning is to bring the current value of Q(s, a)

to the target value of m ax ', a '
'

Q
r Q s

t a
 .

During the learning process, the Q-function Q(s, a; θ)

that evaluates the future approximated action values

is also used to select the action. This can sometimes

overestimate the action values, resulting in

overoptimistic value estimations and slow learning

speed. To solve this problem, Van Hasselt et al, [19]

proposed the Double DQN (D-DQN) that uses two

sets of weights θ and

, where the online network

(Q(s, a; θ)) is used to select the action and the target

network (Q(s, a;

)) is used to evaluate the action

values. The implementation only requires a minor

change to the DQN algorithm. Recall that the target

in the DQN is calculated as:

' '

m a x ', a rg m a x ', ', , (5)
D Q N

t
a a

r Q s Q s a

The target in D-DQN can be written as follows:

' '

m a x ', a rg m a x ', ', , (6)
D D Q N

t
a a

r Q s Q s a

Where θ is a set of parameters for the online network

and

 is another set of parameters for the target

network. During learning, θ are updated at every

training step while

 are fixed over a short period

and then copied from the weights θ. D-DQN has been

found to learn better policies than DQN on Atari

games [19].

C. Dueling Q-Learning

 The Q-value Q(s, a) corresponds to how

good it is to take a certain action given a certain state,

which implicitly contains two elements: the value of

file:///C:/Users/hp/Downloads/www.internationaljournalssrg.org

SSRG International Journal of Electrical and Electronics Engineering (SSRG-IJEEE) – Volume 7 Issue 8 – Aug 2020

ISSN: 2348 – 8379 www.internationaljournalssrg.org Page 17

being at the state and the advantage of taking the

action at that state. For a state with multiple action

choices, DQN usually aims to estimate the Q-value of

each state-action pair. However, sometimes it is

unnecessary to calculate the value of each action,

considering that for states where their actions do not

affect the environment in any relevant way. With the

aim to explicitly separate the state value and the

action advantage, Wang et al, [20] proposed the

dueling network architecture. In this architecture, two

streams of networks are used to separately estimate

the state value function V(s) and the associated

advantage function A(s, a), which are then combined

together to estimate the action-value function Q(s; a).

The Q-value can be constructed as the sum of V(s)

and A(s, a)

 Q(s, a) = A(s, a) + V(s)

(7)

It has been demonstrated that, compared with DQN

and D-DQN, the dueling DQN can lead to faster

learning speed and better performance in a number of

tasks [20].

D. Implementation of D3QN

 RL requires huge amounts of data and time

for obtaining appropriate behaviors. For the

avoidance behavior learning, actions that collide with

obstacles need to be iterated, which is not possible

for a robot in the real world. A feasible solution is to

implement the training in a simulator and then

transfer the learning results to the real robot.

However, this is a challenging task considering the

huge difference between the structural simulation

environment and the highly complicated real-world

environment, especially for vision-based learning. In

this work, the planner is trained based on the laser

scan data. Compared with visual images, laser scans

are relatively low-dimensional and the difference

between the simulation and the real world is smaller.

It is possible to enable an easier transfer from

simulation to reality.

 In this paper, we adopt the D3QN model [20]

that combines the double and dueling techniques to

train the planner to perform obstacle avoidance. The

architecture is shown in Figure 1. and corresponding

implementation details of each layer are summarized

in Table 1. The input is a 36-dimensional vector

consisting of 36 laser range findings which are

sampled from the raw laser range findings between -

180
0

and 180
0
 in a fixed angle distribution of 5

degrees. After the input layer, a fully connected layer

of 100 nodes is shared by the value network and the

advantage network which both consist of 2 fully

connected layers and calculate the value and

advantage, respectively. The value network has 1

output and the advantage network has 5 outputs

referring to the number of valid actions. The outputs

of these two networks are finally combined to

compute the Q-values of the state-action pairs.

Figure 1: Deep double Q network (D3QN) network

structure

TABLE 1: Implementation details of the deep double Q

network (D3QN) for obstacle avoidance

Layer Name
Number of

Neurons

Activation

Type

Input 36 -

Shared FC 100 ReLU

FC1 for value 60 ReLU

FC1 for

advantage
60 ReLU

FC2 for value 1 Linear

FC2 for

advantage
5 Linear

Output 5 -

III. EXPERIMENTAL RESULTS

A. Training in Simulation

The training procedure of the planner was

implemented in a virtual environment simulated by

Gazebo [14]. Figure 2 and 3 shows an overview of

the simulation environment which contains a number

of obstacles of different shapes and sizes; White is a

moving obstacle in each group, black is a TurtleBot

simulation mobile robot, blue is the laser range of the

mobile robot, and red square is the target point of a

training.

Figure 2: Navigation in simple environment

file:///C:/Users/hp/Downloads/www.internationaljournalssrg.org

SSRG International Journal of Electrical and Electronics Engineering (SSRG-IJEEE) – Volume 7 Issue 8 – Aug 2020

ISSN: 2348 – 8379 www.internationaljournalssrg.org Page 18

Figure 3: Navigation in complex environment

We adopted the D3QN model to train the

planner and related training settings of this learning

task are shown as follows:

a) Action space

In this navigation task, the robot is

instructed to move forward with a constant step

length (0.3 m) and the actions are defined to control

the robot’s angular velocity in a discretized format. It

includes 5 actions: Turning left by 60
0
, turning left by

30
0
, moving forward, turning right by 30

0
, turning

right by 60
0
.

b) Observations and Target

 The state of the robot is represented by 36

sampled laser range findings from the raw laser scan.

During navigation, the robot’s objective is to learn

the action policy that enables the robot to bypass the

objects placed in the environment. Since the robot

moves with a constant linear velocity, the learning

task basically requires the robot to change its angular

velocity based on the relative spatial positions

between itself and the objects.

c) Reward Function

 The objective of the agent is reflected in the

design of the reward function. For the problem of

autonomous mobile robot navigation, the reward

function should reward the agent for moving the

robot toward and reaching the target location, and

penalize it for moving away from the target and

colliding with obstacles. To achieve this, the

following reward function was designed:

1 0 .5

1

c o s

(8)

d
r t

c o ll is io n

v o th e r w is e

r

If the distance dr-t between the robot and the

target is less than 0.5 meters, the agent receives a

reward of 1. A collision is considered if robot detects

an object closer than 5 cm, and the agent receives a

reward of -1. At all other time steps, the agent

receives a reward of vcos(θ), where v is the linear

velocity of the robot, θ is the heading to the target.

The reward function was modified to not only

encourage the robot to not crash, but also move in the

direction θ toward the target location.

Figure 4: The mobile robot environment with a target

and an obstacle

During training, a series of processes from

action selection to learning were iterated. In every

episode, the robot was initialized at a random

position with a random orientation in the simulator,

which was guaranteed to be collision-free with

objects. The robot navigated through the simulator

episodes by episodes, during which the parameters of

the neural network were updated based on the

interactions with the simulator. To train the network,

we used the Adam optimizer [21] with a learning rate

of 0.0001. The action selection policy was based on

ɛ-greedy with ɛ annealed linearly from 1 to 0.1 over

the duration of the training. An experience memory

of size 50000 was built to store experiences and mini-

batches of 8 were used to randomly retrieve

experiences from the experience memory for learning

and updating the neural network parameters. During

experiments, we found adding noise to the training

data could make the trained models transferable

better from simulation to reality. For this aim, the

laser scans for training in the simulator were

corrupted with noise randomly sampled from a

normal distribution with parameters mean = 0, std =

0.1.

B. Simulation results

Figure 5 presents the learning result in the

Gazebo simulator. As we can see, the average reward

of the robot in each episode keeps increasing as the

training continues. The robot learned environments

knowledge through interacting with the environment.

Eventually, the robot could navigate to the

destination quickly and autonomously in both simple

and complex environment without any collision with

obstacles. The experiments validate the effectiveness

of our model.

file:///C:/Users/hp/Downloads/www.internationaljournalssrg.org

SSRG International Journal of Electrical and Electronics Engineering (SSRG-IJEEE) – Volume 7 Issue 8 – Aug 2020

ISSN: 2348 – 8379 www.internationaljournalssrg.org Page 19

Figure 5: Training average reward results

IV. CONCLUSIONS

In this paper, we presents a reinforcement-

learning based methodology for the autonomous

navigation in dynamic and unknown environments by

using RPLidar as the input data. The simulation results

in the Gazebo environment demonstrate the ability of

mobile robots to navigate to desired target locations in

simple and complex environments. The practical

model for the mobile robot will be constructed and the

reinforcement learning network will be implemented

in the robot’s navigation task in the real environments

for the future work.

ACKNOWLEDGMENT

This study was supported by Thai Nguyen

University of Technology; http://www.tnut.edu.vn/.

REFERENCES

[1] Li Y, “Deep reinforcement learning”, In: ICASSP 2018—

2018 IEEE international conference on acoustics, speech and

signal processing (ICASSP), Calgary, AB, Canada, 15–20,
April 2018.

[2] Sun ZJ, Xue L, Xu YM, et al, “Overview of deep learning”,

Appl Res Comput 2012, 12, pp. 2806–2810.
[3] Sutton RS and Barto AG, “Reinforcement learning: an

introduction”, IEEE Transactions on Neural Networks, 2005.

[4] Hosu I-A and Rebedea T, “Playing Atari games with deep
reinforcement learning and human checkpoint replay”, 2016.

ArXiv, abs/1607.05077.

[5] Lillicrap TP, Hunt JJ, Pritzel A, et al, “Continuous control
with deep reinforcement learning”, Comput Sci 2015, 8(6):

A187.

[6] Caicedo JC and Lazebnik S, “Active object localization with
deep reinforcement learning”, In: Proceedings of the IEEE

international conference on computer vision, Santiago, Chile,
2015, pp. 2488–2496.

[7] Meganathan RR, Kasi AA, and Jagannath S, “Computer

vision based novel steering angle calculation for autonomous

vehicles”, In: IEEE international conference on robotic

computing, Laguna Hills, CA, USA, 31 January–2 February,
2018.

[8] Gupta S, Tolani V, Davidson J, et al, “Cognitive mapping

and planning for visual navigation”, In: 2017 IEEE
Conference on Computer Vision and Pattern Recognition

(CVPR), Honolulu, HI, 2017, pp. 7272–7281.

[9] Zhu Y, Mottaghi R, Kolve E, et al, “Target-driven visual
navigation in indoor scenes using deep reinforcement

learning”, In: 2017 IEEE international conference on

robotics and automation (ICRA), Stockholm, 16–21 March
2016, pp. 3357–3364.

[10] S. Amarjyoti, “Deep reinforcement learning for robotic

manipulation-the state of the art”, Bull. Transilv. Univ.
Braşov, vol. 10, no. 2, 2017.

[11] A. V. Bernstein, E. Burnaev, and O. Kachan, “Reinforcement

learning for computer vision and robot navigation”, in Proc.
International Conference on Machine Learning and Data

Mining in Pattern Recognition, 2018, pp. 258-272: Springer.

[12] V. Matt and N. Aran, “Deep reinforcement learning
approach to autonomous driving”, ed: arXiv, 2017.

[13] X. Da and J. Grizzle, “Combining trajectory optimization,

supervised machine learning, and model structure for
mitigating the curse of dimensionality in the control of

bipedal robots”, Int. J. Rob. Res., vol. 38, no. 9, pp. 1063–

1097, 2019.
[14] I. Zamora, N. G. Lopez, V. M. Vilches, and A. H. Cordero,

“Extending the openai gym for robotics: A toolkit for

reinforcement learning using ros and gazebo”, arXiv preprint
arXiv:1608.05742, 2016.

[15] H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard,

“Socially compliant mobile robot navigation via inverse

reinforcement learning”, The International Journal of

Robotics Research, vol. 35, no. 11, pp. 1289-1307, 2016.

[16] L. Tai and M. Liu, “A robot exploration strategy based on
qlearning network”, in Proc. 2016 IEEE International

Conference on Real-time Computing and Robotics (RCAR),
2016, pp. 57-62.

[17] L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep

reinforcement learning: Continuous control of mobile robots
for mapless navigation”, in Proc. 2017 IEEE/RSJ

International Conference on Intelligent Robots and Systems

(IROS), 2017, pp. 31-36.
[18] Mnih. V, Kavukcuoglu. K, Silver. D, Rusu. A.A, Veness. J,

Bellemare. M.G, Graves. A, Riedmiller. M,

file:///C:/Users/hp/Downloads/www.internationaljournalssrg.org

SSRG International Journal of Electrical and Electronics Engineering (SSRG-IJEEE) – Volume 7 Issue 8 – Aug 2020

ISSN: 2348 – 8379 www.internationaljournalssrg.org Page 20

Fidjeland. A.K, Ostrovski. G, et al, “Human-level control

through deep reinforcement learning”, Nature 2015, pp.

518-529.

[19] Van Hasselt. H, Guez. A, Silver. D, “Deep Reinforcement

Learning with Double Q-Learning”, AAAI: Phoenix, AZ,
USA, 2016; Volume 2, p. 5.

[20] Wang. Z, Schaul. T, Hessel. M, Van Hasselt. H, Lanctot. M,

De Freitas. N, “Dueling network architectures for deep
reinforcement learning” arXiv 2015 arXiv:1511.06581.

Avaliable online: https://arxiv.org/pdf/1511. 06581.pdf

(accessed on 12 September 2018).

[21] Diederik P, Kingma and Jimmy Ba, “Adam: A method for

stochastic optimization”, CoRR, abs/1412.6980, 2015.

[22] Dr.V.V.Narendra Kumar, T.Satish Kumar, "Smarter
Artificial Intelligence with Deep Learning" SSRG

International Journal of Computer Science and Engineering

Vol-5,Iss-6,2018.

file:///C:/Users/hp/Downloads/www.internationaljournalssrg.org
https://arxiv.org/pdf/1511

