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Abstract  

Mobile robots can cover a large range of 

real world missions such as environment 

surveillance, delivery, search and rescue missions. 

Such missions require different levels of self-

navigation in order to react to the dynamic 

environment changes. However, most of the 

navigation methods rely on static obstacle map, and 

don’t have the ability of autonomous learning. In this 

paper, we propose an end-to-end approach using 

deep reinforcement learning for the navigation of 

mobile robots in an unknown environment. Based on 

dueling network architectures for deep reinforcement 

learning (Dueling DQN) and deep reinforcement 

learning with double Q learning (Double DQN), a 

dueling architecture based double deep Q network 

(D3QN) is adapted in this paper. Simulation results 

on the Gazebo framework show the feasibility of the 

proposed method. The robot can complete navigation 

tasks safely in an unpredicted dynamic environment 

and becomes a truly intelligent system with strong 

self-learning and adaptive abilities. 
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I. INTRODUCTION 

Autonomous mobile robots are becoming 

increasingly prevalent in everyday life. Although 

robots have seen wide spread industrial application 

since the 1970’s, robots are starting to see 

applications in other less controlled and complex 

domains such as delivery, the home, medical, 

military, entertainment, and dangerous environments 

that humans cannot enter. Extension into these new 

domains presents a wealth of new challenges. 

In recent years, deep reinforcement learning (DRL) 

[1] has become one of the most concerned directions 

in the field of artificial intelligence. It combines the 

perception of deep learning (DL) with the 

decisionmaking ability of reinforcement learning (RL) 

and directly controls the behavior of agents through 

high-dimensional perceptual input learning. It 

provides a new idea for solving robot navigation 

problems. Among them, DL, as an important research 

hotspot in the field of machine learning, has achieved 

remarkable success in the fields of image analysis, 

speech recognition, natural language processing, and 

video classification. The basic idea of DL is to 

combine low-level features and form abstract, easily 

distinguishable high-level representations through 

multilayered network structures and nonlinear 

transformations to discover distributed feature 

representations of data [2]. Therefore, the DL method 

focuses on the perception and expression of things. 

RL, as another research hotspot in the field of 

machine learning, has been widely used in industrial 

manufacturing, simulation, robot control, 

optimization and scheduling, and game gaming. The 

basic idea of RL is to learn the optimal policy for 

accomplishing the goal by maximizing the 

cumulative reward value that the agent obtains from 

the environment [3]. Therefore, the RL approach is 

more focused on learning strategies to solve problems. 

With the rapid development of human society, in 

more and more complex real-world task tasks, it is 

necessary to use DL to automatically learn the 

abstract representation of large-scale input data and 

use this characterization as a self incentive RL to 

optimize problem-solving policy. As a result, 

Google’s artificial intelligence research team 

DeepMind innovatively combines the sensible DL 

with the decision-making RL to form a new research 

hotspot in the field of artificial intelligence, namely 

deep reinforcement learning. Since then, in many 

challenging areas, the DeepMind team has 

constructed and implemented human expert-level 

agents. These agents build and learn their own 

knowledge directly from the original input signal, 

without any manual coding and domain knowledge. 

At present, DRL technology has been widely used in 

games [4], robot control [5], machine vision [6], [7], 

and other fields. In the field of navigation, some 

interesting and novel articles have appeared one after 

another. Gupta et al. proposed a neural architecture 

for navigation in a novel environment [8]. Zhu et al. 

proposed an actor-critic model and an AI2-THOR 

framework to improve generalization performance 

and an environment with high-quality 3-D scenes and 

physics engines [9]. In terms of an autonomous robot, 

some papers have been published in [10]-[12] shown 

that the Q learning network is trained by sampling 

minibatches of experiences from buffer uniformly at 

random. However, applying particularly 

reinforcement learning in robot setting suffers from 
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many challenges since the high dimensionality and 

continuous states and actions of the robot [13]. In a 

simulation, creating an accurate model robot and its 

environment are challenging and often require a lot 

of sufficient data samples. To address these dilemmas, 

the operation of learning of robots is simulated and 

designed in Gazebo since its compatibility with the 

complex structure of the robot. More than that, 

Gazebo enables to construct of a virtual environment 

[14], which is imperative in the process of 

scrutinizing reinforcement learning algorithms. 

Beside, one of major problems in mobile robot 

navigation is that how the robot can find a collision 

free path from its starting point. With reinforcement 

learning algorithms integrated in Gazebo, several 

methods have been proposed to deal with obstacle 

avoidances [15]-[17]. 

The rest of the paper is organized as follows. The 

second section introduces the proposed model, deep 

reinforcement learning based navigation. The 

experimental results will be given in the third section. 

Finally, the fourth section is the conclusions of this 

paper. 

II. IMPLEMENTION OF DRL NAVIGATION 

A. Deep Q-Learning  

We adopt the deep Q-learning to train the 

planner. We formalize this task as a Markov Decision 

Process (MDP), where the robot interacts with the 

environment through a sequence of observations, 

actions and reward signals. For each time step t, the 

robot perceives a state st and needs to select a 

possible action at according to a policy π, where the π 

is the probability of selecting an action a to be 

performed for a given state s. Once the action has 

been executed, a positive or a negative value, which 

may not be delivered immediately, will be provided 

as a reward rt for the robot by the environment 

together with the next state st+1. During learning, the 

robot’s aim is to find a policy that collects the highest 

reward possible over the long run. Given a policy π, 

the action-value (Q-value) of a state-action pair (s, a), 

which indicates the expected total discounted reward 

when executing actions following policy π from state 

s, is defined as follows: 
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Where the expectation is with respect to the transition 

distribution under policy π and rt is the reward for 

action a = at under the policy π in the state s = st. γ is 

the discount rate determining future action’s 

influence (0 < γ < 1). The Q-value function can be 

computed using the Bellman equation 
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The optimal π∗ corresponds to taking the best action 

in any state s and the optimal Q-value function Q* 

can be obtained as follows: 
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Where 'a represents the possible actions in the future 

state st+1. 

The basic idea behind many RL algorithms 

is to estimate the Q-value by iteratively updating 

based on the Bellman equation. Traditional methods 

usually calculate the Q-value function directly over a 

large state, which has low efficiency and lacks 

generality. Recent successes of RL in many 

applications rely on the technique of combing deep 

neural network and RL, where neural networks are 

used to estimate the Q-value function. This is the 

main idea behind DQN [18]. For a neural network 

that works as a function approximator for the Q-

function, its parameters are updated as follows: 
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Where θi are parameters of the network at iteration i 

and α is the learning rate. 

 

B.  Double Q-Learning 

 As shown in Equation (3), the objective of 

the Q-learning is to bring the current value of Q(s, a) 

to the target value of  m ax ', a '
'

Q
r Q s

t a
   . 

During the learning process, the Q-function Q(s, a; θ) 

that evaluates the future approximated action values 

is also used to select the action. This can sometimes 

overestimate the action values, resulting in 

overoptimistic value estimations and slow learning 

speed. To solve this problem, Van Hasselt et al, [19] 

proposed the Double DQN (D-DQN) that uses two 

sets of weights θ and 


, where the online network 

(Q(s, a; θ)) is used to select the action and the target 

network (Q(s, a; 


)) is used to evaluate the action 

values. The implementation only requires a minor 

change to the DQN algorithm. Recall that the target 

in the DQN is calculated as: 
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The target in D-DQN can be written as follows: 
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Where θ is a set of parameters for the online network 

and 


 is another set of parameters for the target 

network. During learning, θ are updated at every 

training step while 


 are fixed over a short period 

and then copied from the weights θ. D-DQN has been 

found to learn better policies than DQN on Atari 

games [19]. 

 

C.  Dueling Q-Learning 

 The Q-value Q(s, a) corresponds to how 

good it is to take a certain action given a certain state, 

which implicitly contains two elements: the value of 
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being at the state and the advantage of taking the 

action at that state. For a state with multiple action 

choices, DQN usually aims to estimate the Q-value of 

each state-action pair. However, sometimes it is 

unnecessary to calculate the value of each action, 

considering that for states where their actions do not 

affect the environment in any relevant way. With the 

aim to explicitly separate the state value and the 

action advantage, Wang et al, [20] proposed the 

dueling network architecture. In this architecture, two 

streams of networks are used to separately estimate 

the state value function V(s) and the associated 

advantage function A(s, a), which are then combined 

together to estimate the action-value function Q(s; a). 

The Q-value can be constructed as the sum of V(s) 

and A(s, a) 

               Q(s, a) = A(s, a) + V(s)                  

(7) 

It has been demonstrated that, compared with DQN 

and D-DQN, the dueling DQN can lead to faster 

learning speed and better performance in a number of 

tasks [20]. 

 

D.  Implementation of D3QN 

 RL requires huge amounts of data and time 

for obtaining appropriate behaviors. For the 

avoidance behavior learning, actions that collide with 

obstacles need to be iterated, which is not possible 

for a robot in the real world. A feasible solution is to 

implement the training in a simulator and then 

transfer the learning results to the real robot. 

However, this is a challenging task considering the 

huge difference between the structural simulation 

environment and the highly complicated real-world 

environment, especially for vision-based learning. In 

this work, the planner is trained based on the laser 

scan data. Compared with visual images, laser scans 

are relatively low-dimensional and the difference 

between the simulation and the real world is smaller. 

It is possible to enable an easier transfer from 

simulation to reality. 

 In this paper, we adopt the D3QN model [20] 

that combines the double and dueling techniques to 

train the planner to perform obstacle avoidance. The 

architecture is shown in Figure 1. and corresponding 

implementation details of each layer are summarized 

in Table 1. The input is a 36-dimensional vector 

consisting of 36 laser range findings which are 

sampled from the raw laser range findings between -

180
0 

and 180
0
 in a fixed angle distribution of 5 

degrees. After the input layer, a fully connected layer 

of 100 nodes is shared by the value network and the 

advantage network which both consist of 2 fully 

connected layers and calculate the value and 

advantage, respectively. The value network has 1 

output and the advantage network has 5 outputs 

referring to the number of valid actions. The outputs 

of these two networks are finally combined to 

compute the Q-values of the state-action pairs. 

 
Figure 1: Deep double Q network (D3QN) network 

structure 

 

TABLE 1: Implementation details of the deep double Q 

network (D3QN) for obstacle avoidance 

 

Layer Name 
Number of  

Neurons 

Activation 

Type 

Input 36 - 

Shared FC 100 ReLU 

FC1 for value 60 ReLU 

FC1 for 

advantage 
60 ReLU 

FC2 for value 1 Linear 

FC2 for 

advantage 
5 Linear 

Output 5 - 

III. EXPERIMENTAL RESULTS 

A.  Training in Simulation  

The training procedure of the planner was 

implemented in a virtual environment simulated by 

Gazebo [14]. Figure 2 and 3 shows an overview of 

the simulation environment which contains a number 

of obstacles of different shapes and sizes; White is a 

moving obstacle in each group, black is a TurtleBot 

simulation mobile robot, blue is the laser range of the 

mobile robot, and red square is the target point of a 

training. 

 

 
 

Figure 2: Navigation in simple environment 
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Figure 3: Navigation in complex environment 

 

We adopted the D3QN model to train the 

planner and related training settings of this learning 

task are shown as follows: 

 

a) Action space 

In this navigation task, the robot is 

instructed to move forward with a constant step 

length (0.3 m) and the actions are defined to control 

the robot’s angular velocity in a discretized format. It 

includes 5 actions: Turning left by 60
0
, turning left by 

30
0
, moving forward, turning right by 30

0
, turning 

right by 60
0
.  

 

b) Observations and Target 

 The state of the robot is represented by 36 

sampled laser range findings from the raw laser scan. 

During navigation, the robot’s objective is to learn 

the action policy that enables the robot to bypass the 

objects placed in the environment. Since the robot 

moves with a constant linear velocity, the learning 

task basically requires the robot to change its angular 

velocity based on the relative spatial positions 

between itself and the objects. 

 

c) Reward Function 

 The objective of the agent is reflected in the 

design of the reward function. For the problem of 

autonomous mobile robot navigation, the reward 

function should reward the agent for moving the 

robot toward and reaching the target location, and 

penalize it for moving away from the target and 

colliding with obstacles. To achieve this, the 

following reward function was designed: 
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If the distance dr-t between the robot and the 

target is less than 0.5 meters, the agent receives a 

reward of 1. A collision is considered if robot detects 

an object closer than 5 cm, and the agent receives a 

reward of -1. At all other time steps, the agent 

receives a reward of vcos(θ), where v is the linear 

velocity of the robot, θ is the heading to the target. 

The reward function was modified to not only 

encourage the robot to not crash, but also move in the 

direction θ toward the target location. 

 
Figure 4: The mobile robot environment with a target 

and an obstacle 

During training, a series of processes from 

action selection to learning were iterated. In every 

episode, the robot was initialized at a random 

position with a random orientation in the simulator, 

which was guaranteed to be collision-free with 

objects. The robot navigated through the simulator 

episodes by episodes, during which the parameters of 

the neural network were updated based on the 

interactions with the simulator. To train the network, 

we used the Adam optimizer [21] with a learning rate 

of 0.0001. The action selection policy was based on 

ɛ-greedy with ɛ annealed linearly from 1 to 0.1 over 

the duration of the training. An experience memory 

of size 50000 was built to store experiences and mini-

batches of 8 were used to randomly retrieve 

experiences from the experience memory for learning 

and updating the neural network parameters. During 

experiments, we found adding noise to the training 

data could make the trained models transferable 

better from simulation to reality. For this aim, the 

laser scans for training in the simulator were 

corrupted with noise randomly sampled from a 

normal distribution with parameters mean = 0, std = 

0.1. 

B. Simulation results 

Figure 5 presents the learning result in the 

Gazebo simulator. As we can see, the average reward 

of the robot in each episode keeps increasing as the 

training continues. The robot learned environments 

knowledge through interacting with the environment. 

Eventually, the robot could navigate to the 

destination quickly and autonomously in both simple 

and complex environment without any collision with 

obstacles. The experiments validate the effectiveness 

of our model. 
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Figure 5: Training average reward results 

IV. CONCLUSIONS 

In this paper, we presents a reinforcement-

learning based methodology for the autonomous 

navigation in dynamic and unknown environments by 

using RPLidar as the input data. The simulation results 

in the Gazebo environment demonstrate the ability of 

mobile robots to navigate to desired target locations in 

simple and complex environments. The practical 

model for the mobile robot will be constructed and the 

reinforcement learning network will be implemented 

in the robot’s navigation task in the real environments 

for the future work. 

ACKNOWLEDGMENT  

This study was supported by Thai Nguyen 

University of Technology; http://www.tnut.edu.vn/. 

REFERENCES  

[1] Li Y, “Deep reinforcement learning”, In: ICASSP 2018—

2018 IEEE international conference on acoustics, speech and 

signal processing (ICASSP), Calgary, AB, Canada, 15–20, 
April 2018.  

[2] Sun ZJ, Xue L, Xu YM, et al, “Overview of deep learning”, 

Appl Res Comput 2012, 12, pp. 2806–2810. 
[3] Sutton RS and Barto AG, “Reinforcement learning: an 

introduction”, IEEE Transactions on Neural Networks, 2005. 

[4] Hosu I-A and Rebedea T, “Playing Atari games with deep 
reinforcement learning and human checkpoint replay”, 2016. 

ArXiv, abs/1607.05077. 

[5]  Lillicrap TP, Hunt JJ, Pritzel A, et al, “Continuous control 
with deep reinforcement learning”, Comput Sci 2015, 8(6): 

A187. 

[6] Caicedo JC and Lazebnik S, “Active object localization with 
deep reinforcement learning”, In: Proceedings of the IEEE 

international conference on computer vision, Santiago, Chile, 
2015, pp. 2488–2496. 

[7] Meganathan RR, Kasi AA, and Jagannath S, “Computer 

vision based novel steering angle calculation for autonomous 

vehicles”, In: IEEE international conference on robotic 

computing, Laguna Hills, CA, USA, 31 January–2 February, 
2018. 

[8] Gupta S, Tolani V, Davidson J, et al, “Cognitive mapping 

and planning for visual navigation”, In: 2017 IEEE 
Conference on Computer Vision and Pattern Recognition 

(CVPR), Honolulu, HI, 2017, pp. 7272–7281. 

[9] Zhu Y, Mottaghi R, Kolve E, et al, “Target-driven visual 
navigation in indoor scenes using deep reinforcement 

learning”, In: 2017 IEEE international conference on 

robotics and automation (ICRA), Stockholm, 16–21 March 
2016, pp. 3357–3364. 

[10] S. Amarjyoti, “Deep reinforcement learning for robotic 

manipulation-the state of the art”, Bull. Transilv. Univ. 
Braşov, vol. 10, no. 2, 2017. 

[11] A. V. Bernstein, E. Burnaev, and O. Kachan, “Reinforcement 

learning for computer vision and robot navigation”, in Proc. 
International Conference on Machine Learning and Data 

Mining in Pattern Recognition, 2018, pp. 258-272: Springer. 

[12] V. Matt and N. Aran, “Deep reinforcement learning 
approach to autonomous driving”, ed: arXiv, 2017. 

[13] X. Da and J. Grizzle, “Combining trajectory optimization, 

supervised machine learning, and model structure for 
mitigating the curse of dimensionality in the control of 

bipedal robots”, Int. J. Rob. Res., vol. 38, no. 9, pp. 1063–

1097, 2019. 
[14] I. Zamora, N. G. Lopez, V. M. Vilches, and A. H. Cordero, 

“Extending the openai gym for robotics: A toolkit for 

reinforcement learning using ros and gazebo”, arXiv preprint 
arXiv:1608.05742, 2016. 

[15] H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard, 

“Socially compliant mobile robot navigation via inverse 

reinforcement learning”, The International Journal of 

Robotics Research, vol. 35, no. 11, pp. 1289-1307, 2016. 

[16] L. Tai and M. Liu, “A robot exploration strategy based on 
qlearning network”, in Proc. 2016 IEEE International 

Conference on Real-time Computing and Robotics (RCAR), 
2016, pp. 57-62. 

[17] L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep 

reinforcement learning: Continuous control of mobile robots 
for mapless navigation”, in Proc. 2017 IEEE/RSJ 

International Conference on Intelligent Robots and Systems 

(IROS), 2017, pp. 31-36. 
[18] Mnih. V, Kavukcuoglu. K, Silver. D, Rusu. A.A, Veness. J, 

Bellemare. M.G, Graves. A, Riedmiller. M, 

file:///C:/Users/hp/Downloads/www.internationaljournalssrg.org


SSRG International Journal of Electrical and Electronics Engineering (SSRG-IJEEE) – Volume 7 Issue 8 – Aug 2020 

 

ISSN: 2348 – 8379                           www.internationaljournalssrg.org                         Page 20  

Fidjeland. A.K, Ostrovski. G, et al, “Human-level control 

through deep reinforcement learning”, Nature 2015, pp. 

518-529. 

[19] Van Hasselt. H, Guez. A, Silver. D, “Deep Reinforcement 

Learning with Double Q-Learning”, AAAI: Phoenix, AZ, 
USA, 2016; Volume 2, p. 5. 

[20] Wang. Z, Schaul. T, Hessel. M, Van Hasselt. H, Lanctot. M, 

De Freitas. N, “Dueling network architectures for deep 
reinforcement learning” arXiv 2015 arXiv:1511.06581. 

Avaliable online: https://arxiv.org/pdf/1511. 06581.pdf 

(accessed on 12 September 2018). 

[21] Diederik P, Kingma and Jimmy Ba, “Adam: A method for 

stochastic optimization”, CoRR, abs/1412.6980, 2015. 

[22] Dr.V.V.Narendra Kumar, T.Satish Kumar, "Smarter 
Artificial Intelligence with Deep Learning" SSRG 

International Journal of Computer Science and Engineering  

Vol-5,Iss-6,2018. 
 

 

file:///C:/Users/hp/Downloads/www.internationaljournalssrg.org
https://arxiv.org/pdf/1511

