
SSRG International Journal of Electrical and Electronics Engineering Volume 8 Issue 1, 32-36, January 2021
ISSN: 2348 – 8379 / https://doi.org/10.14445/23488379/IJEEE-V8I1P106 © 2021 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Building Environmental Awareness System for

Mobile Robot Operating in Indoor Environment on

ROS Platform
Nguyen Duc Dien1, Nguyen Duc Duong2, Vu Anh Nam3, Tran Thi Huong4

1,3,4University of Economics - Technology for Industries, Viet Nam
2Viet Nam National University of Agriculture

Received Date: 15 December 2020

Revised Date: 16 January 2021
Accepted Date: 28 January 2021

Abstract - The paper presents a navigation system for

robots operating in indoor environments, with three basic

functions of positioning, mapping and planning the path to

a robot in indoors with high flexibility and fast movement

speed. Specifically, the robot's positioning data is
extracted from an IPS indoor positioning system using

high-frequency ultrasonic technology. A small error is

very suitable for use in the indoor environment. Map

creation and analysis function developed based on open-

source ROS software devices, combined with a 360-degree

scanning LIDAR depth sensor to produce a 2D map with

high accuracy of cm. compared with the actual

environment. Finally, the popular route searching

algorithms currently used are based on the analyzed map

data and robot positioning data.

Keywords — Robot Operating System (ROS), Rviz,

Navigation, Simultaneous Localization and Mapping

(SLAM).

I. INTRODUCTION

Technological advances in the robotics sector have

contributed to many industrial and social sectors in recent

times. Today, many robotic systems applications can be

found in factory automation, surveillance systems, quality

control systems, AGVs (automatic vehicle navigation),

disaster protection, support medical, etc. More and more

robot applications aim to improve our daily lives, and

robots are now being caught more often than ever before
performing various tasks [1]. The SLAM problem arises in

navigating mobile robots through unspecified

environments without maps [2-5]. Techniques using

robotic probabilities have been studied to suggest SLAM

problem-solving techniques [6] and [7]. When the ROS

operating system came into existence, robotic systems'

construction using SLAM techniques for mapping and

positioning was more and more popular, as shown in [8]

and [9]. For many such applications, the robot's automatic

mobility is a must-have issue. Mobile autonomous robots

can perform tasks in a structured or unstructured
environment without constant human guidance. Fully

automatic mobile robot capable of: Collect information

about the environment; Working for a long time without

human intervention; Movement in whole or in part in its

operating environment without human assistance; Avoid

situations that are harmful to people, property, or yourself,

unless it's part of design specifications. Automated mobile

robots can also learn or acquire new abilities such as

adapting strategies to complete their tasks or adapting to
changing surroundings [10-13]. For any self-propelled

moving machine, its ability to navigate within its operating

environment is crucial. The ability to avoid dangerous

situations such as collisions and unsafe conditions comes

first (temperature, radiation, exposure to weather, etc.) [14].

Navigating a robot means that the robot can locate itself in

its frame of reference and then plan its path to a number of

target locations. To navigate in its environment, a robot or

any other mobile device requires a map of the environment

and the ability to analyze that map. Navigation can be

defined as combining three basic functions: Self-
positioning; Construction and analysis of maps; Plan your

way. Some robot navigation and navigation systems use

simultaneous mapping and positioning techniques to create

3D versions of their surroundings. Positioning for the robot

denotes the robot's ability to set its position and orientation

in the frame of reference. Path planning is an extension of

positioning in that it requires determining the robot's

current position and the target's position, both of which

need to be in a reference or coordinate system. . Map

construction can be in the form of a metric map or any

symbols describing locations in the robot frame of

reference. The block diagram of the navigation system for
the mobile robot is shown in Fig. 1.

Location map builder

Real environment

Road planning

awareness

Global map

Information

extraction

Sensor

Execution of

the plan

Actions

Model local

map

environment

Path

Raw data Feel
Motion

control

Fig. 1 Navigation system block diagram for mobile

robot

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/

Nguyen Duc Dien et al. / IJEEE, 8(1), 32-36, 2021

33

II. NAVIGATION AND NAVIGATION SYSTEM FOR

ROBOT

A. Robot Operating System
The ROS (Robot Operating System) is a flexible

platform for programming software for robot systems. It

includes tools and libraries that simplify the construction

of complex robot systems by combining robot platforms.

More than that, ROS is built to facilitate the convenient

development and combination of the robot software. It

provides the modes of operation of a system operating,

including connecting to hardware, controlling low-end

equipment, and performing tasks within a unified robot

system. It also provides tools and libraries to build, write,

and function on multiple computers.
ROS has enabled users to establish an environment that

can collaborate on software development for robots

globally. Using researched and developed APIs for robots

will help shorten the research and application process, and

this is also the ultimate goal of ROS.

Fig. 2 The program structure of ROS

According to each task, the communication structure of

ROS is developed through nodes, and the nodes are

packaged in different packages. Communication between

nodes in the form of topics, messages, and services is

illustrated in Fig. 2.

B. Develop a Map of the Environment
The room map was built using Lidar sensors to scan and

store the integrated map on the Turtlebot robot that moves

the entire area in the room. TurtleBot is a ROS standard

platform robot. There are 3 versions of the TurtleBot line.

TurtleBot1 was developed by Tully (Platform Manager at

Open Robotics) and Melonee (CEO of Fetch Robotics)

from Willow Garage based research on iRobot's Roomba,

Create, to implement ROS. It was developed in 2010 and

sold since 2011. In 2012, TurtleBot2 was developed by

Yujin Robot based on a research robot, iClebo Kobuki. In
2017, TurtleBot3 was developed with features that added

the missing functionality of its predecessor and its users'

needs. TurtleBot3 uses ROBOTIS DYNAMIXEL

intelligent actuator to drive [15].

TurtleBot3's core technologies are SLAM and

Navigation, making it suitable for service robots for homes.

TurtleBot can run SLAM (simultaneous positioning and

mapping) algorithms to build a map and move around the

room independently. Fig. 3 shows the Turtlebot robot with

a 3600 scanning Lidar laser sensor for SLAM and

Navigation purposes.

Fig. 3 Pictures of the actual TurtleBot robot

To build 2D maps, TurtleBot is a commonly used option

today; the output of the SLAM package installed on

TurtleBot will be a 2-dimensional image map, the type of

map commonly used also to copper ROS. Fig. 4 shows an

example of the map TurtleBot scanned. The map is very

basic construction, making our analysis easier. As in the

image shown, the white area is the area where the robot
can freely move, the black area is the area occupied by

obstacles such as (walls, tables, chairs, cabinets), which

are fixed objects where The robot cannot move, and finally,

the gray part is an area that has not been explored by the

robot. This map, modified when created, will be used to

navigate the robot.

Fig. 4 Room map constructed by robot TurtleBot

TurtleBot robot can implement SLAM software

packages using different algorithms based on ROS such as

G mapping, Cartographer, hector, karto, but the most

common use is G mapping. With 3600 scan laser sensor

data, TurtleBot can create a map and position itself in that

map. For the G mapping algorithm, the robot uses the Rao-

Blackwellized Particle Filter to find the coordinates close
to the robot's actual position on the map. Fig. 5 shows the

Particle Filter algorithm flowchart for the process of both

locating and updating the map to the database. This

approach uses particle filters where each particle carries an

individual map of its environment. The particles, after

being co-ordinated from the sensor data, will be assigned a

certain weight. After the re-sampling, the higher weighted

particles will be retained. The lower weight particles will

be except that the particle with the greatest weight will be

designated as the robot's current position. This process

continues every time data is returned from the sensor, the
robot locates itself and updates the map to the database at

the end of the process.

Nguyen Duc Dien et al. / IJEEE, 8(1), 32-36, 2021

34

Fig. 5 SLAM algorithm flowchart of the robot using

Particle Filter

Fig. 6 shows the particle sampling process when the

robot is in the mapping process; as shown in the figure, the

particles that are red arrows after the there-sampling

process tend to converge to the robot's position in the real

world. In fact, in this case, the longer the robot rotates in

place, the more the particles will converge, thereby giving

the most accurate coordinates.

Fig. 6 Robot is in the process of creating a map using a

particle filter

C. Indoor Navigation System for Robots

IPS is used to get robot coordinates to determine

locations in small or medium-sized places where GPS and

other satellite technologies are inaccurate or completely

defective, such as inside multi-story buildings and

courtyards. Bay, lane, garage, and underground locations.

However, the IPS doesn't always give the correct signal,

especially if too many people interfere with the

transmission. Moreover, not only the IPS but sometimes

the sensor itself is also inaccurate, and there is a lot of

endogenous noise. To make the Robot smarter and move

stably, stable and reliable coordinate data is required. The

most reasonable way is to add additional sensors such as
an Accelerometer, rotation angle sensor, and wheel

encoder to combine the sensor data to produce a new

coordinate data. , more stable, more reliable. To solve

these problems, the Kalman filter is considered. On the

other hand, if the robot has enough sensors combined with

IPS for the Kalman filter, it will sense everything around

very quickly and accurately. Filtration is a very popular

method in embedded engineering and systems, especially

in Robots. A good filtering algorithm can reduce noise

from the signals while retaining user data. [16] The

Kalman filter is one of the popular filters used for signal

processing.

The Extended Kalman Filter (EKF) is a mathematical
tool that can estimate variables of various processes for

nonlinear systems. It works by linearizing the nonlinear

state dynamics and measurement models. It is widely used

in robotics engineering, popular in navigation, navigation,

and control applications. This type of filter works very

well in practice, and that is why it is often deployed in

embedded control systems and because robots need to

estimate the process variables accurately. The Extended

Kalman filter is a smarter way to integrate measurement

data into an estimate by realizing that the measurements

are noisy and should sometimes be ignored or only slightly

affect the estimate. Thai. It smooths out the effect of noise
in the estimated state variables by combining more

information from more reliable data from unreliable data.

The user can tell the extended Kalman filter how much

noise in the system, and it calculates a position estimate

taking into account the noise.

The Extended Kalman Filter algorithm is still the most

basic and popular solution for discrete and low-precision

signals such as GPS, IPS,...Robot systems for the Kalman

algorithm require IPS, encoding wheel, IMU. We used to

embed EKF in the Central Processing Unit on the robot.

The input data is a 2D data format that includes:
Coordinates from IPS (MarvelMind Beacon Indoor

Position System), Velocity from Wheel Encoder, Revs and

Angular Velocity as measured with a gyro sensor

Gyroscope, Accelerometer measured by sensor

Accelerometer, 2 sensors are integrated into one 6DOF -

Sensor is called IMU-MPU6050. The EKF algorithm is

divided into 3 parts: Initialization and linearization,

Prediction, and Update. Assume that the robot has x y

coordinates from the IPS, linear velocity Vx vy from the

Wheel Encoder, linear acceleration ax ay yaw vyaw,

orientation, and angular velocity IMU. Our goal is to

predict, update, and process 2D coordinates for the robot.

D. Plan a Path for the Robot

Route or plan the robot's path from current location to

target location using Dijkstra's shortest path detection

algorithm as in navigation system using IPS. From the

location coordinates of the robot specified on the

Costmap2D map, the routing program creates a path from

the current position to the target location. Dijkstra

algorithm is used to find the shortest path to the target
position.

 Calling the node we are starting is called the initial

node. Call the distance of node Y the distance from

the original node to Y. The Dijkstra algorithm will

assign some initial distance values and will try to

improve them step by step.

 Mark all buttons that are not used. Creates a set of

all unapproved nodes called the unapproved set.

 Assign all nodes an expected distance value: set it to

0 for our original node and infinity for all other

nodes. Set the original node to the current node.

Nguyen Duc Dien et al. / IJEEE, 8(1), 32-36, 2021

35

 For the current node, consider all of its non-visited

neighbors and calculate their expected distance

across the current node. Compare the newly

calculated expected distance with the currently

assigned value, and specify a smaller value.
 When we have examined all of the current node's

unaccessed neighbors, mark the current node as

accessed and delete it from the un-accessed set. An

accessed node will never be checked again.

 If the destination node has been marked as visited

(when planning a route between two specific nodes)

or if the minimum expected distance between nodes

in an unreachable set is infinity (when planning

complete transmission plan; occurs when there is no

connection between the original node and the

remaining un-accessed nodes), then stops. The

algorithm has ended.
 If not, select the unexpected button marked with the

minimum expected distance, set it as the new

"current node," and go back to step 3.

When planning a route, there is no need to wait until the

destination node is "accessed" as above: the algorithm can

stop when the destination node has the smallest expected

distance among all the nodes " Unvisited "(and thus can be

selected as the next" current "). The algorithm flowchart is

described below.

Dijsktra route-finding algorithm

function dijkstra(G, S)
for each vertex V in G

 distance[V] ← infinite

 previous[V] ← NULL

 if V != S, add V to Priority Queue Q

distance[S] ← 0

 while Q is not empty

 U ← Extract MIN from Q

 for each unvisited neighbor V of U

tempDistance ← distance[U] + edge_weight(U, V)

if tempDistance < distance[V]

 distance[V] ← tempDistance

 previous[V] ← U

return distance[], previous[]

III. POSITIONING AND NAVIGATION SYSTEM

FOR AUTONOMOUS ROBOTS IN AN INDOOR

ENVIRONMENT
The software system overview shown in Fig. 7

below is the proposed navigation and navigation system

model.

Fig. 7 General system diagram

The robot uses an open-source operating system ROS as

the foundation for its processing and communication flows.

The central processor is considered the robot's brain, which

receives all sensor data, including laser data from the

camera button, coordinate data from the IPS system, and
rotation angle data from the MPU angle sensor. The

central processor receives the user's request about the

target position the robot needs to reach, then sends the

request with the map data, robot's current coordinates, and

destination coordinates to the set node. Create the path and

get the array of coordinates of the robot's path point on the

map. From the path point coordinate array, the central

processor proposes a control algorithm to the motor

actuator button, controls the robot to follow the set path,

and approaches the destination.

Fig. 8 Robot navigation results on Rviz

IV. CONCLUSION

Navigation and navigation system for Robot using IPS
indoor positioning system has been proposed, developed,

and surveyed. Experimental results show that the operating

system is stable in an indoor environment with an area of

about 20 m2. The system also shows the advantages of

processing speed that increase the flexibility of the robot's

movement, and at the same time, it also overcomes the

disadvantages of popular systems in the world that SLAM

uses Lidar sensors. The positioning and navigation system

for robots used in the indoor environment is an open

module that can be expanded and integrated for various

applications, especially for indoor tour-guide robots.

ACKNOWLEDGMENT

This study was supported by the University of

Economics - Technology for Industries, Viet Nam;

http://www.uneti.edu.vn/.

REFERENCES

[1] Chen, Z., Birchfield, S.T.,Qualitative Vision-Based Mobile Robot

Navigation, In Proc. IEEE International Conference on Robotics

and Automation (ICRA), Orlando, Florida (May 2006).

[2] R. L. e. a. Guimarães,ROS navigation: Concepts and tutorial",

Springer, Cham, (2016) 121-160.

[3] A. a. P. A. Pajaziti,SLAM–map building and navigation via ROS,

International Journal of Intelligent Systems and Applications in

Engineering, 2(4)(2014) 71-75.

[4] Z. e. a. An, "Development of Mobile Robot SLAM Based on

ROS," International Journal of Mechanical Engineering and

Robotics Research, (2016) 47-51.

[5] R. K. e. a. Megalingam,ROS based autonomous indoor navigation

simulation using SLAM algorithm, Int. J. Pure Appl. Math, (2018)

199-205.

Nguyen Duc Dien et al. / IJEEE, 8(1), 32-36, 2021

36

[6] F. e. a. Albers,Online Trajectory Optimization and Navigation in

Dynamic Environments in ROS, Robot Operating System (ROS).

Springer, Cham, (2019), p241-274.

[7] S. Thrun.,Probabilistic Robotics, Communications of the ACM,

(2002) 52-57.

[8] R. e. a. Giubilato.,An evaluation of ROS-compatible stereo visual

SLAM methods on an Nvidia Jetson TX2, Measurement, (2019)

161-170.

[9] R. N. a. M. K. B. Darmanin.,Autonomous Exploration and

Mapping using a Mobile Robot Running ROS, ICINCO, (2016).

[10] Chatterjee, A., Rakshit, A., & Singh, N. N.,Mobile Robot

Navigation., Studies in Computational Intelligence, (2013) 1–20.

[11] Roan Van Hoa, L. K. Lai, Le Thi Hoan.,Mobile Robot Navigation

Using Deep Reinforcement Learning in Unknown Environments.,

SSRG International Journal of Electrical and Electronics

Engineering (SSRG-IJEEE), 7(8)(2020) 15-20.

[12] Pham Ngoc Sam, Tran Duc Chuyen.,Research and Designing a

Positioning System, Timeline Chemical Mapping for Multi-

Direction Mobile Robot., SSRG International Journal of

Electronics and Communication Engineering, 7(11)(2020) 7-12.

[13] Roan Van Hoa, Dinh Thi Hang, Tran Quoc Dat, Tran Dong, Tran

Thi Huong,Autonomous Navigation for Mobile Robots Based on

Reinforcement Learning., SSRG International Journal of

Electronics and Communication Engineering, 8(1) (2021) 1-5.

[14] https://en.wikipedia.org/wiki/Robot navigation.

[15] Dijkstra's Algorithm, Gass, Saul; Fu, Michael. Gass, Saul I; Fu,

Michael C., (2013).

[16] https://emanual.robotis.com/docs/en/platform/turtlebot3/ove view/.

