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Abstract - Induction motor fault identification prior to the 

occurrence of total shut-down is critical for industries. The 

identification of faults based on condition monitoring 

techniques and the use of machine learning has enormous 

potential. Machine learning's power may be harnessed and 

properly applied for motor defect detection. To avoid losses, 

the issue, particularly in induction motors, must be repaired 
at the appropriate time. Machine learning algorithm 

applications in the sphere of defect detection give a 

dependable and effective preventative maintenance solution. 

In this paper, an algorithm-based machine learning 

approach is developed to learn features from the frequency 

distribution of vibration signals with the goal of 

characterizing the working status of induction motors such 

as current, voltage, and temperature, and it is also updated 

in the IoT-based application. It combines feature extraction 

and classification tasks to enable automated and intelligent 

problem diagnosis.  
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I. INTRODUCTION 

Induction motors are the most thoroughly used electrical 

motors because of their ease of construction, sturdiness, and 

low cost. Induction motors are used in more than 90% of 

industries, mostly as electrical drives due to their ability to be 

configured for a broad variety of power ratings. Despite their 

flexibility and robustness, they are prone to numerous 

catastrophic failures. Identifying and correcting these flaws 

early on is critical since they may lead to significant 
production and financial losses. Pre-fault identification and 

isolation of healthy components also minimize fault 

development and failure of other more critical components. 

Because industries require a huge number of motors.  As a 

result, several attempts at automated maintenance have been 

attempted. Previously, conditional monitoring of electrical 

machinery was used, and electromechanical relays were used 

to do this. However, because of the mechanical elements 

involved, these relays are sluggish to operate and cause 
significant power losses [6]. As a result, they cannot be 

employed in important applications that need fast reaction 

times. Solid-state relays, which require extremely little 

power and are relatively quick, eventually superseded 

electromechanical relays. With the introduction of 

microprocessors, attempts were made to conditionally 

monitor machines by downloading pre-written programs into 

the microprocessor chips. However, because they cannot 

address catastrophic failures, the aforementioned solutions 

cannot ensure optimum safety and dependability. With the 

advent of machine learning, the computer revolution caught 
the attention of scientists, who began to consider how these 

approaches could be used to monitor and safeguard 

machines. To intelligently monitor and manage the defined 

system tasks, machine learning models assume the position 

of humans [4]. Artificial neural networks are highly useful in 

this area since they can manage large amounts of data, have a 

short reaction time, and can successfully handle non-linearity 

(which is an inherent aspect of electromechanical systems 

most of the time). The goal of this study is to avoid fault 

progression and preserve critical components of the power 

system by utilizing an artificial neural network to identify 

electrical faults in three-phase induction motors early. We 
handled seven types of induction motor electrical issues.  
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Fig. 1 Types of faults in induction motor 

 

II. ARTIFICIAL NEURAL NETWORK (ANN) 

ANN is thought to be a replica of the human brain, 

comprised of a network of linked nodes known as neurons. 

The most common type of ANN is composed of three layers, 

each of which has a number of processing nodes. Figure 1 

depicts the fundamental structure of an ANN, which consists 

of neurons, connection weights, and biases. The neuron is 

represented here by circular nodes, and the connection 

weights are represented by arrows linking distinct nodes 

between the input, hidden, and output layers. The most 

widely used multi-layered feed-forward ANN that uses the 

backpropagation technique for training is FFBPNN. When 
the number of hidden layer neurons is increased, the ANN 

performs best with backpropagation learning. ANN is 

thought to be a replica of the human brain, comprised of a 

network of linked nodes known as neurons. The most 

common type of ANN is composed of three layers, each of 

which has a number of processing nodes. Figure 1 depicts the 

fundamental structure of an ANN, which consists of neurons, 

connection weights, and biases. The neuron is represented 

here by circular nodes, and the connection weights are 

represented by arrows linking distinct nodes between the 

input, hidden, and output layers. The most widely used 
multi-layered feed-forward ANN that uses the 

backpropagation technique for training is FFBPNN. When 

the number of hidden layer neurons is increased, the ANN 

performs best with backpropagation learning. In the case of 

conjugate gradient-based training techniques, the search is 

conducted in conjugate directions, which typically results in 

faster convergence than the steepest descent path. The step 

size for conjugate gradient algorithms is changed for each 

iteration. In this case, the search is carried out in the 

conjugate gradient direction in order to find the step size for 

which the performance function is minimized for a given 

search path. Trains cg is a backpropagation training 

technique that uses the Scaled Conjugate Gradient (SCG) 
algorithm to update network weights and biases. Moller [21] 

proposed it to avoid time-consuming line searches by 

combining the model-trust region method (used in trainlm) 

with a scaled conjugate gradient approach. The trainlm 

method is the fastest for training networks of modest size. 

Despite requiring more memory than other training 

algorithms, trainlm is the most generally suggested and 

utilized training technique for improving classification 

accuracy. It is based on the Levenberg-Marquardt (LM) 

backpropagation algorithm, which is regarded as one of the 

quickest backpropagation algorithms for neural network 
training.  
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Fig. 2 Structure of Machine Learning algorithm 

 
Fig. 3 General Structure of ANN vased Induction motor  

 

III. EXPERIMENTAL SETUP AND DATA 

COLLECTION 
Experimentation is carried out utilizing a machine fault 

simulator, as shown in Figure 3, to assess the suggested 

technique for defect diagnostics of induction motors. It 

replicates six various operating circumstances for motors, 

and vibration signals corresponding to different functioning 

states are monitored. Table 1 lists the descriptions of the 

various operation situations. These vibration signals are 
utilized to put the DBN-based fault diagnostic system 

through its paces. These vibration signals are separated into 

training and testing datasets, which are then randomized 

before being employed in the DBN model. A three-phase, 

four-pole, 0.5-hp inverter was used in the experiment. The 

experimental setup included a three-phase, four-pole, 0.5-hp 

induction motor connected to the mechanical load through a 

belt pulley system. A Direct-On-Line (D-O-L) starter was 

used to link the motor terminals to a three-phase power 

supply. The experimental setup for data collecting and 

condition monitoring of a three-phase induction motor is 
shown in Fig. 3.  
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Fig. 4 Experimental setup for fault detection of induction motor 

 

IV. RESULTS AND DISCUSSION 

The image above depicts induction motor fault prediction in action. The vibration and temperature monitoring system for 

the induction motor. If the temperature and vibration values are abnormal, the induction motor will trip automatically, and the 
load will not be harmed. The current transformer, potential transformer, accelerometer sensor, and temperature sensor values 

are updated on the Cayenne dashboard. All of the parameters' values have been changed on the Cayenne homepage.  

 The current transformer, potential transformer, accelerometer sensor, and temperature sensor values are updated on 

the Cayenne dashboard.  

 In addition, we will make every effort to reduce the time delay.  

 In the future, we will strive to improve performance and dependability.  
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Fig. 5 Current Transformer output 

 

 
Fig. 6 Potential Transformer output 

 
Fig. 7 Accelerometer sensor output 
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Fig. 8 Temperature Sensor output 

 

V. CONCLUSION 

Because induction motors are used in crucial industrial 

processes, effectively detecting different electrical or 

mechanical problems in induction motors is critical to 

avoiding production downtime and substantial financial 

losses. This study proposes, develops, and validates a 

machine learning-based fault diagnostic approach for single- 
and multi-fault induction motors using experimental data. 

The performance of several fault-tolerant single-phase 

induction drives has been re-examined in this work, taking 

into consideration the influence of both current and voltage 

constraints post-fault equations for a single-phase induction 

motor with two active phases are derived from first 

principles, and it is demonstrated that the post-fault phase 

voltage need is a function of the healthy phase voltages and 

the stator branch voltage of the faulty phase.  
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