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Abstract - This article presents the construction of an 

intelligent automatic navigation system for mobile robots in 

a flat environment with defined and unknown obstacles. The 

studies using programming tools are the operating system 

for mobile robots (Robot Operating System - ROS). From 

updated information on maps, operating environment, robot 

control position, and obstacles (Simultaneous Localization 
and Mapping (SLAM)) to calculate the motion trajectory of 

the mobile robot. The navigation system calculates the 

global and local trajectory for the robot based on the 

application of SARSA algorithm. The results of simulation 

studies in the Gazebo environment and the experimental run 

on the real Turtlebot3 mobile robot showed the practical 

efficiency of automatic navigation for this mobile robot. 

Keywords - Artificial intelligence, Mobile robot, Robotic, 

Reinforcement learning,  SARSA algorithm.  

I. INTRODUCTION 

The term robotics and robot control are nowadays 

becoming common and are step by step closely linked to 

people's daily lives such as service robots (robot vacuuming, 

cleaning the house, cooking, preparing, etc.), industrial 

robots (robots in production lines), medical robots, robots in 

the military field, etc. Robot engineering is a multi-

disciplinary field including mechanics, electricity, 

electronics, and automatic control and information 

technology. Each field, when researched, plays an important 

role in the process of researching, designing, and 

manufacturing robots [1] - [5]. The action environment to 
control a robot is often represented as a finite state (Markop 

Decision Process - MDP), and the reinforcement learning 

algorithms for this context have much to do with the 

Dynamic planning techniques. The transition probabilities 

and the gain probabilities in MDP are often random but 

static during the course of the robot control problem. Unlike 

supervised learning, in reinforcement learning, there are no 

correct input/output pairs, and near-optimal actions are not 

explicitly assessed as true or false. Furthermore, online 

performance is of interest here, which involves finding a 

balance between discovery (unmapped territory) and 
exploitation (existing knowledge). There are two commonly 

used methods to solve decision problems: searching in 

strategic space and searching in the space of value functions, 

also known as "strategic iteration" and "value iteration". . 

These two methods are characteristic reinforcement learning 

algorithms. Besides, in recent studies, scientists propose a 

combined method between the two above methods, which is 

the Actor-Critic learning method [3, 7, 10, 13, 16]. 

Previously,  we worked on traditional  Controllers like 

PID, Fuzzy  PD,  PD+I, PI, LQR, and many more classic 

controllers [1, 2, 14, 21, 22 ].  The biggest problem with 

those methods is that they need to be tuned manually.  So,  it 

will cause many errors, the system works inaccurately, 

making the quality of the controller not high. Therefore, it 

will cause many errors, the system works inaccurately, 
making the quality of the controller not high. The working 

system is not optimal, not good. Many times optimum 

values aren’t achieved at all. The biggest benefit of 

reinforcement learning algorithms as controllers is that the 

model tunes itself to reach the optimum values such as Q-

learning algorithm, Deep Q-Network algorithm, DDPG 

algorithm, SARSA (State Action Reward State Action) 

algorithm, etc. The SARSA algorithm is an algorithm that 

finds the optimal cumulative value for an action, which is 

very similar to the Q-learning algorithm. The obvious 

difference between them is that Q-learning belongs to an off-
policy algorithm group while the SARSA algorithm belongs 

to an on-policy group [3, 8, 11]. 

With the SARSA algorithm, learning is done by a number 

of agents that only choose random actions to explore the 

environment in the first moves. Then selected actions in the 

next steps are all in compliance with the agreed policy. By 
the way, the learning agents will learn longer than other 

algorithms. However, it will be safer, better learning quality. 

For mobile robots, the automatic navigation in fixed and 

mobile obstacle environments, the use of the SARSA 

algorithm is appropriate, bringing many benefits in the 

intelligent control process for the robot [9, 24, 26].  

II. THE CONTROL MODEL FOR MOBILE ROBOT  

A robot is a complex mechanical system with many 

masses and many degrees of freedom. Each degree of 

freedom performs a movement and is controlled by an 

electric drive system. Furthermore, the robot is a controlled 

http://www.internationaljournalssrg.org/
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Nguyen Thi Thu Huong / IJEEE, 8(4), 19-24, 2021 
 

20 

object containing many interrelated motors. To build the 

control system model for a robot, we consider a mobile 

robot, as shown in Figure 1. Two coordinate frames can be 

used to describe the movement of a mobile robot. One is the 

global coordinate frame (X, Y) defined in the world, and the 
other is the local coordinate frame (Vl and Vr) defined on 

the mobile robot. The angle between the two coordinate 

frames is denoted by θ. The robot's motion will be defined 

for the navigation stack. As the overall coordinate is chosen 

in Figure 1, it is clear that the robot's velocity contains three 

components: the linear velocity along the OX axis and the 

angular speed along the OY axis. 

0

Fig. 1 The path planning motion model of mobile robots 

The path planning task explored in this study relies on a 

two-wheeled mobile robot and a semi-front for arbitrary 

movement. This mobile robot can control the speed of its 

two rudders to achieve arbitrary motion trajectories such as 

linear motion, spin, or circle. Figure 1 shows the robot's 

posture at adjacent intervals. Based on the established 

kinetic model, this mobile robot can travel on a flat path and 

can avoid fixed and moving obstacles moving [1, 3, 9]. 

The world coordinate system pose of the mobile robot at 

time t is set to Wt = [xt, yt , θt ]T  if the world coordinate pose 

of the mobile robot at a time with (t + Δt) is 

,
T

x yt t t tt t
W     

the distance between the left and 

right driving wheels is L, the speeds of the left and right 
driving wheels are vl and vr, and the robot linear speed and 

angular speed are respectively v and ω, the speed v of the 

mobile robot in the ideal motion state is:  

2

l r
v v

v


    (1) 

The angular velocity of the robot is: 

l r
v v

L



    (2) 

The instantaneous curvature radius R is: 

v
R


     (3) 

As shown in Figure 1, θ1 = θ2 = θ, after Δt, the heading 

angle of the robot changes as follows: 

t t t
       (4) 

The motion from position Wt = [xt , yt , θt ]T to 
t t

W 


 

, ,
T

x yt t t t t t      can be regarded as a circular arc with 

radius R. If the arc is used to approximate the actual 

trajectory of  the mobile robot, the geometric relationship 

should be: 
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 (5) 

Combining the above equations, the motion equation of 

the differential mobile robot can be obtained as: 

, 0

2

L

2
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 (6) 

The goal is to teach omnidirectional mobile robots to 

follow a control program based on recognition and data 

processing through identification devices such as smart 

cameras; Intelligent sensors, and control algorithms so that 

the robot follows certain trajectories in the space and 

working environment in accordance with parameters 

e 0,
x,k

 e 0, e 0
y,k θ,k

  , with k is constant. Then the 

mobile robot will perform awareness in the working 

environment to make the automatic navigation smoothly 

(avoiding fixed obstacles and moving obstacles) perfectly to 

the destination [4, 6, 7, 20, 23, 26]. 

III. RESEARCH AND APPLICATION OF SARSA 

ALGORITHM FOR MOBILE ROBOT 

The reinforcement learning method with the SARSA 

algorithm is developed to serve the intelligent calculation of 

science and technology in general and, in particular, 

cybernetics (automatic robot control). Where “action value 

equals present value plus the sum of optimal future values.” 

With SARSA algorithm on-policy group in particular and 
reinforcement learning in general, everything is divided into 

“State – st” and “Action – at” with time denoted by a series 

of time steps. (t = 0, 1, 2, .vv ...). For a continuous work 

environment such as controlling a mobile robot, the first 

thing to do is to quantify the state space to get an update 

 , ,...1 2S S S Sm  and quantize the action space to set 
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 , ,...1 2A a a an , and the result is the medium generates 

reward ( , )r r s a Rt t  , for better understanding, we have 

an interactive learning environment diagram as shown in 

figure 2, [3, 9, 19]. 

Agent

Robot operating 

environment

State 

St

Reward

 rt

Action

at

 

Fig. 2 The robot learning environment interactive 

diagram 

The SARSA algorithm is an on-policy algorithm for 

Learning. The major difference between SARSA and Q-

Learning is that the maximum reward for the next state is not 

necessarily used for updating the Q-values. Instead, a new 

action, and therefore reward, is selected using the same 

policy that determined the original action. The name SARSA 

actually comes from the fact that the updates are done 

( , , , ', ')Q s a r s a ,  where: s, a is the original state and action, r 

is the reward observed in the following state, and s', a' are the 

new state-action pair. The Q-value update rule is defined by:  

  ) : ( + (s ,a )- (
1 t+1 t+1

( , , ) , )[ ]Q Q Q
t t t t t t t

Q s a s a r s a


     (7) 

It is straightforward to design an on-policy control 

algorithm based on the SARSA prediction method.  

 

As in all on-policy methods, we continually estimate Qπ 

for the behavior policy π, and at the same time change π 

toward greediness with respect to Qπ. The general algorithm 
is given as: as you can see, there are two action selection 

steps needed for determining the next state-action pair along 

with the first. The parameters α and γ have the same meaning 

as they do in Q-Learning.  

 

Suppose {f1, ..., fn} are numerical features of the state and 

the action. Thus, fi(s, a) provides the value for the i-th feature 

for state s and action a. These features are typically binary, 

with domain [0, 1], but they can also be other numerical 

features. These features will be used to represent the Q-
function. 

) ( (
0 1 1

( , , ) ... , )f f
n n

Q s a s a s a 


     (8) 

For some tuple of weights, ω = [ω0, ω1, ..., ωn] . Assume 

that there is an extra feature f0 whose value is always 1 so 

that ω0 does not have to be a special case. An experience in 

SARSA of the form {s, a, r, s', a'} (the agent was in state s, 

did action a, and received reward r and ended up in state s,' in 

which it decided to do action a' provides the new estimate of  

( ', ')r Q s a to update Q(s, a). This experience can be used 

as a data point for linear regression.  

Let ( ', ') ( , )r Q s a Q s a     Weight ωi is updated by:  

 ( , )f
i i i

s a      (9) 

Similarly, we can use linear function approximation on the 
Q-learning algorithm. The transition is of the form {s, a, r, 

s'}, and the difference.  

'
( ', ') ( , )

a
s a s ar maxQ Q    

 
 (10) 

The update rules for Q-values and weights are: 

;( , ) ( , )

( , )f
i i i

s a s a

s a

Q Q 

 





 




  (11) 

This update can then be incorporated into SARSA, giving 

the algorithm: 

 

In robotics, it’s often usually to use linear or non-linear 

feature representations to handle the large-scale state-action 

spaces. At that time, the SARSA algorithm implements 

action agents for intelligent automatic navigation for mobile 
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robots to perform trajectories to avoid dynamic as well as 

static obstacles during the movement of the mobile robot. 

The robot also calculates the shortest trajectory for the robot 

to move to the destination with the fastest path [2, 3, 9]. 

VI. RESEARCH RESULTS AND 

COMMENTS 

With the algorithm researched and proposed in the 

second and third parts as above, we conduct research on the 

robot Turtlebot3 mobile robot with a structure including a 

two-wheeled robot to control the two sides and a 

multidirectional wheel in the section. The robot's head, the 

control circuit using a Raspberry Pi 3 embedded computer, 

has a control signal receiver unit from Jetson TX2, an Astra 

smart camera, and an intelligent sensor that then transmits 

commands to a smart microcontroller, etc. To record images 

from the environment as well as to measure the distance 

between omnidirectional mobile robots and unknown 
obstacles, mobile robots equipped with Rplidar 3D are 

placed on top to scan 360 degrees from values to 

obstructions, the robot's surrounding perceptual environment. 

 

Fig. 3 Schematic diagram of 3D LiDAR terrain 

detection 

When terrain reconstruction is performed in 3D space, the 

undulating ground and obstacles can be detected by 3D 

LiDAR. As shown in Figure 3, the irregular square is a block 

of undulating ground divided in a grid, The laser cast from a 

3D LiDAR can detect all positions on the undulating ground, 

and all height information is updated to the variables of the 

node. As shown in the square on the right, the height of the 

top surface (maxHeight) of the square is the value of the 

node, and the height of the bottom surface (minHeight) is the 
value of the node.  

In this section, some simulations are performed based on a 

powerful and environmental simulation engine in Gazebo. 
As shown in figure 4 shows the map built on Gazebo is a 

map created with strict walls, and a mobile robot can be 

controlled to move around fixed obstacles or obstacles. 

Mobile. This issue, in order to give the robot context for 

robot movements, is used to build action maps when the 

robot is active. Dark blue dotted lines show the robot's path 

when avoiding obstacles created by smart tree sensor, smart 

camera, and updated robot's current position (mobile robot is 

denoted by blue tree leaves) using geometric dimensions. 

This is a visual tool that can provide live updates of maps 

generated from the SLAM algorithm to control the robot. 

Furthermore, the omnidirectional mobile robot's trajectory in 

the map can also navigate automatically, and in this 

environment, obstacles can always be created, as shown in 
figure 4 for the robot to move. 

 

Fig. 4 Build visual maps and robot simulation models in 

Gazebo 

An environment contains a robot (green) with a depth 

camera and randomly placed obstacles (white and brown) in 

Gazebo, as figure 4. The point cloud data generated by the 

depth camera with 125 degrees as figure 5, and point cloud 

data generated by the depth camera with 130 degrees as 

figure 6. Here is primarily a visualization tool that can 

provide live updates of maps generated from the SLAM and 

SARSA augmented learning algorithms. Furthermore, the 

robot's trajectory in the map can also be displayed in the real-

world environment where the training and teaching, and 
identification process so that the robot knows during obstacle 

avoidance in a smart and perfect way. 

 

Fig. 5 The point cloud data is generated by the depth 

camera at an angle of 125 degrees 
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Fig. 6 The point cloud data is generated by the depth 

camera at an angle of 130 degrees 

In addition, we can build a grid map system created from 

point cloud data to observe and identify obstacles, helping 

the robot to move optimally during the control process. 

 

Fig. 7 Turtlebot3 relocalization and navigation in a 

square environment 

In figure 7, the robot was set to the correct orientation and 

position near the upper left corner of the newly built map, the 

same as the real position shown on the right side of the 

figure. With human assistance, this initialed localization 

method made the particles quickly converge to a 

concentrated region and obtained the correct position. Then, 

combined with the robot odometer and laser data, robot 
localization and navigation experiments consistently 

maintained the correct trajectory. Robot relocalization with a 

manually set correct position.  

These results showed that the SARSA algorithm is 

significantly better than other algorithms, which also 

indicated the advantages of the RL algorithm in image 

recognition [11, 21, 24]. Compared with the deep learning 

algorithm Q-learning, the SARSA algorithm is better than Q-

learning in terms of value accuracy and strategy, which is 

also consistent with previous reports [10, 12, 15, 25]. The 

reinforcement learning technology is utilized to achieve the 

mapping from state to action and meet the mobile needs of 

mobile robots. The data have also proven that the robot path 

planning method based on reinforcement learning is an 

effective end-to-end mobile robot path planning method; this 
goal is to avoid obstacles in the defined and unspecified 

environment. The above results illustrate the feasibility of the 

proposed method in the path planning of mobile robots. 

V.  CONCLUSION 

In this article, the author presents a mobile robot self-

learning strategy without relying on prior experience under 

clear feedback. The author has studied the mobile robot 

navigation problem based on the enhanced learning method 

with the SARSA algorithm. The SARSA algorithm is applied 

to improve the self-learning, computation, and perception of 

mobile robots through interactions with an unknown 

environment. Tests were performed on automated intelligent 
navigation tasks for mobile robots. The simulation results in 

Gazebo and the fact that the stability and applicability of the 

SARSA algorithm are very effective, these new studies can 

completely apply to the control and navigation of mobile 

robots. In industrial factories in Vietnam as well as in the 

world, further, than previous studies [10, 12, 23], the 

research results of the paper are better. Then, the SARSA 

algorithm is simpler, making it possible to improve the 

quality of the robot's operation through intuitive tools, such 

as cameras and smart sensors to navigate with the goal of 

avoiding obstacles. Obstacles so that the robot reaches the 

destination without any obstacles. 

ACKNOWLEDGMENT  
This study was supported by the Department of 

Electrical Engineering, Faculty of Control Engineering, Le 

Quy Don Technical University (MTA - Military Technical 

Academy). No. 236, Hoang Quoc Viet Road, Bac Tu Liem 

district Ha Noi capital of Viet Nam. 

https://www.mta.edu.vn/. 

REFERENCES  
[1] Nguyen Doan Phuoc., The Advanced control theory, Science and 

Technics Publishing House, In Viet Nam, (2015). 

[2] Nguyen Thanh Tuan., Base Deep learning, The Legrand Orange 

Book. Version 2, last update, August (2020). 

[3] Vu Thi Thuy Nga, Ong Xuan Loc, Trinh Hai Nam., Enhanced 

learning in automatic control with Matlab Simulink., Hanoi 

Polytechnic Publishing House, (2020). 

[4] Charu C. Aggarwal., Neural Networks and Deep Learning.,  Springer 

International Publishing AG, part of Springer Nature, (2018). 

[5] X. Ruan, D. Ren, X. Zhu, and J. Huang., Mobile Robot Navigation 

based on Deep Reinforcement Learning.,  Chinese Control And 

Decision Conference (CCDC), (2019). 

[6] Roan Van Hoa, L. K. Lai, Le Thi Hoan., Mobile Robot Navigation 

Using Deep Reinforcement Learning in Unknown Environments.,  

SSRG International Journal of Electrical and Electronics Engineering 

(SSRG-IJEEE), 7(8)(2020) 15-20 . 

[7] Wu, Y.; Tan, H.; Peng, J.; Zhang, H.; He, H., Deep reinforcement 

learning of energy management with continuous control strategy and 

traffic information for a series-parallel plug-in hybrid electric bus.” 

Appl. 247(2019)  454-466, Energy. 



Nguyen Thi Thu Huong / IJEEE, 8(4), 19-24, 2021 
 

24 

[8] A. Folkers, M. Rick, and C. Buskens., Controlling an autonomous 

vehicle with deep reinforcement learning.,  IEEE Intell. Veh. Symp. 

Proc., (2019)  2025–2031. 
[9] Cuong Nguyen Manh, Tien Ngo Manh, Dung Pham Tien, Van 

Nguyen Thi Thanh, Manh Tran Van, Duyen Ha Thi Thanh, and Duy 

Nguyen Duc “Autonomous Navigation for Omnidirectional Robot 

Based on Deep Reinforcement Learning,” IJMERR, 9(8)(2020) 

1134-1139. 

[10] L.  a.  S.  H.  Lin., Modeling and  Adaptive  Control of an  Omni-

Mecanum-Wheeled Robot.,  Intelligent Control and Automation, 4 

(2013) 166-179. 

[11] Pinto, L.; Gupta, A. Supersizing self-supervision: Learning to grasp 

from 50K tries and 700 robot hours. In Proceedings of the 2016 IEEE 

International Conference on Robotics and Automation (ICRA), 

Stockholm, Sweden, (2016) 16–21  3406-3413. 

[12] Bicchi, A.; Kumar, V. Robotic grasping and contact: A review. In 

Proceedings of the 2000 ICRA, millennium Conference, IEEE 

International Conference on Robotics and Automation, Symposia 

Proceedings (Cat. No. 00CH37065), San Francisco, CA, USA, 24–28 

1(2000)  348-353. 

[13] Fang, B.; Jia, S.; Guo, D.; Xu, M.; Wen, S.; Sun, F. Survey of 

imitation learning for robotic manipulation. Int. J. Intell. Robot. Appl. 

3(2019) 362–369. 

[14] Zhang, F.; Leitner, J.; Milford, M.; Upcroft, B.; Corke, P. Towards 

vision-based deep reinforcement learning for robotic motion control. 

arXiv 2015. 

[15] Arulkumaran, K.; Deisenroth, M.P.; Brundage, M.; Bharath, A.A. 

Deep Reinforcement Learning: A Brief Survey. IEEE Signal Process. 

Mag. 34(2017)  26–38. 

[16] Luong, N.C.; Hoang, D.T.; Gong, S.; Niyato, D.; Wang, P.; Liang, 

Y.C.; Kim, D.I. Applications of deep reinforcement learning in 

communications and networking: A survey. IEEE Commun. Surv. 

Tutorials 21(2019) 3133-3174. 

[17] Cao, J.; Liu, W.; Liu, Y.; Yang, J. Generalize Robot Learning From 

Demonstration to Variant Scenarios with Evolutionary Policy 

Gradient. Front. Neurorobotics. (2020). 

[18] Krishnan, S.; Garg, A.; Liaw, R.; Thananjeyan, B.; Miller, L.; 

Pokorny, F.T.; Goldberg, K. SWIRL: A sequential windowed inverse 

reinforcement learning algorithm for robot tasks with delayed 

rewards. Int. J. Robot. Res. 38(2019) 126 -145. 

[19] Hwangbo, J.; Lee, J.; Dosovitskiy, A.; Bellicoso, D.; Tsounis, V.; 

Koltun, V.; Hutter, M. Learning agile and dynamic motor skills for 

legged robots. Sci. Robot. (2019). 

[20] Golemo, F.; Taiga, A.A.; Courville, A.; Oudeyer, P.Y. Sim-to-real 

transfer with neural-augmented robot simulation. In Proceedings of 

the Conference on Robot Learning, New York, NY, USA, (2018) 29–

31  817- 828. 

[21] Mees, O.; Merklinger, M.; Kalweit, G.; Burgard, W. Adversarial skill 

networks: Unsupervised robot skill learning from video. In 

Proceedings of the 2020 IEEE International Conference on Robotics 

and Automation (ICRA), Paris, France, 30 May–5 June (2020) 4188–

4194. 

[22] Zhao, T.; Deng, M.; Li, Z.; Hu, Y. Cooperative Manipulation for a 

Mobile Dual-Arm Robot Using Sequences of Dynamic Movement 

Primitives. IEEE Trans. Cogn. Dev. Syst. 12(2020) 18–29. 

[23] Deng, M.; Li, Z.; Kang, Y.; Chen, C.L.P.; the Chu, X. A Learning-

Based Hierarchical Control Scheme for an Exoskeleton Robot in 

Human-Robot Cooperative Manipulation. IEEE Trans. Cybern. 

50(2020) 112–125. 

[24] R. K. e. a. Megalingam., ROS based autonomous indoor navigation 

simulation using SLAM algorithm.,  Int. J. Pure Appl. Math, (2018), 

199-205. 

[25] Shota Ohnishi, Eiji Uchibe, Yotaro Yamaguchi, Kosuke Nakanishi, 

Yuji Yasui, and Shin Ishii., Constrained Deep Q-Learning Gradually 

Approaching Ordinary Q-Learning.,  Publishing by Frontiers in 

Neurorobotics Journal, December 13(2019) 7-12.  

[26] https://www.mathworks.com/help/reinfocermentlearning/ug/ddpg - 

Agent. html, (2020). 

 

 

 

 

 

 

 

 

https://www.mathworks.com/help/reinfocermentle-arning/ug/ddpg%20-%20Agent.%20html
https://www.mathworks.com/help/reinfocermentle-arning/ug/ddpg%20-%20Agent.%20html

