
SSRG International Journal of Electrical and Electronics Engineering Volume 8 Issue 4, 19-24, April 2021
ISSN: 2348 – 8379 / https://doi.org/10.14445/23488379/IJEEE-V8I4P104 © 2021 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Building Intelligent Navigation System for Mobile

Robots Based on the SARSA Algorithm

Nguyen Thi Thu Huong

Department of Electrical Engineering, Faculty of Control Engineering, Le Quy Don Technical University

Received Date: 07 March 2021

Revised Date: 14April 2021
Accepted Date: 26 April 2021

Abstract - This article presents the construction of an

intelligent automatic navigation system for mobile robots in

a flat environment with defined and unknown obstacles. The

studies using programming tools are the operating system

for mobile robots (Robot Operating System - ROS). From

updated information on maps, operating environment, robot

control position, and obstacles (Simultaneous Localization
and Mapping (SLAM)) to calculate the motion trajectory of

the mobile robot. The navigation system calculates the

global and local trajectory for the robot based on the

application of SARSA algorithm. The results of simulation

studies in the Gazebo environment and the experimental run

on the real Turtlebot3 mobile robot showed the practical

efficiency of automatic navigation for this mobile robot.

Keywords - Artificial intelligence, Mobile robot, Robotic,

Reinforcement learning, SARSA algorithm.

I. INTRODUCTION

The term robotics and robot control are nowadays

becoming common and are step by step closely linked to

people's daily lives such as service robots (robot vacuuming,

cleaning the house, cooking, preparing, etc.), industrial

robots (robots in production lines), medical robots, robots in

the military field, etc. Robot engineering is a multi-

disciplinary field including mechanics, electricity,

electronics, and automatic control and information

technology. Each field, when researched, plays an important

role in the process of researching, designing, and

manufacturing robots [1] - [5]. The action environment to
control a robot is often represented as a finite state (Markop

Decision Process - MDP), and the reinforcement learning

algorithms for this context have much to do with the

Dynamic planning techniques. The transition probabilities

and the gain probabilities in MDP are often random but

static during the course of the robot control problem. Unlike

supervised learning, in reinforcement learning, there are no

correct input/output pairs, and near-optimal actions are not

explicitly assessed as true or false. Furthermore, online

performance is of interest here, which involves finding a

balance between discovery (unmapped territory) and
exploitation (existing knowledge). There are two commonly

used methods to solve decision problems: searching in

strategic space and searching in the space of value functions,

also known as "strategic iteration" and "value iteration". .

These two methods are characteristic reinforcement learning

algorithms. Besides, in recent studies, scientists propose a

combined method between the two above methods, which is

the Actor-Critic learning method [3, 7, 10, 13, 16].

Previously, we worked on traditional Controllers like

PID, Fuzzy PD, PD+I, PI, LQR, and many more classic

controllers [1, 2, 14, 21, 22]. The biggest problem with

those methods is that they need to be tuned manually. So, it

will cause many errors, the system works inaccurately,

making the quality of the controller not high. Therefore, it

will cause many errors, the system works inaccurately,
making the quality of the controller not high. The working

system is not optimal, not good. Many times optimum

values aren’t achieved at all. The biggest benefit of

reinforcement learning algorithms as controllers is that the

model tunes itself to reach the optimum values such as Q-

learning algorithm, Deep Q-Network algorithm, DDPG

algorithm, SARSA (State Action Reward State Action)

algorithm, etc. The SARSA algorithm is an algorithm that

finds the optimal cumulative value for an action, which is

very similar to the Q-learning algorithm. The obvious

difference between them is that Q-learning belongs to an off-
policy algorithm group while the SARSA algorithm belongs

to an on-policy group [3, 8, 11].

With the SARSA algorithm, learning is done by a number

of agents that only choose random actions to explore the

environment in the first moves. Then selected actions in the

next steps are all in compliance with the agreed policy. By
the way, the learning agents will learn longer than other

algorithms. However, it will be safer, better learning quality.

For mobile robots, the automatic navigation in fixed and

mobile obstacle environments, the use of the SARSA

algorithm is appropriate, bringing many benefits in the

intelligent control process for the robot [9, 24, 26].

II. THE CONTROL MODEL FOR MOBILE ROBOT

A robot is a complex mechanical system with many

masses and many degrees of freedom. Each degree of

freedom performs a movement and is controlled by an

electric drive system. Furthermore, the robot is a controlled

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/

Nguyen Thi Thu Huong / IJEEE, 8(4), 19-24, 2021

20

object containing many interrelated motors. To build the

control system model for a robot, we consider a mobile

robot, as shown in Figure 1. Two coordinate frames can be

used to describe the movement of a mobile robot. One is the

global coordinate frame (X, Y) defined in the world, and the
other is the local coordinate frame (Vl and Vr) defined on

the mobile robot. The angle between the two coordinate

frames is denoted by θ. The robot's motion will be defined

for the navigation stack. As the overall coordinate is chosen

in Figure 1, it is clear that the robot's velocity contains three

components: the linear velocity along the OX axis and the

angular speed along the OY axis.

0

Fig. 1 The path planning motion model of mobile robots

The path planning task explored in this study relies on a

two-wheeled mobile robot and a semi-front for arbitrary

movement. This mobile robot can control the speed of its

two rudders to achieve arbitrary motion trajectories such as

linear motion, spin, or circle. Figure 1 shows the robot's

posture at adjacent intervals. Based on the established

kinetic model, this mobile robot can travel on a flat path and

can avoid fixed and moving obstacles moving [1, 3, 9].

The world coordinate system pose of the mobile robot at

time t is set to Wt = [xt, yt , θt]T if the world coordinate pose

of the mobile robot at a time with (t + Δt) is

,
T

x yt t t tt t
W     

the distance between the left and

right driving wheels is L, the speeds of the left and right
driving wheels are vl and vr, and the robot linear speed and

angular speed are respectively v and ω, the speed v of the

mobile robot in the ideal motion state is:

2

l r
v v

v


 (1)

The angular velocity of the robot is:

l r
v v

L



 (2)

The instantaneous curvature radius R is:

v
R


 (3)

As shown in Figure 1, θ1 = θ2 = θ, after Δt, the heading

angle of the robot changes as follows:

t t t
    (4)

The motion from position Wt = [xt , yt , θt]T to
t t

W 


, ,
T

x yt t t t t t     can be regarded as a circular arc with

radius R. If the arc is used to approximate the actual

trajectory of the mobile robot, the geometric relationship

should be:

(())

(()) , 0

x x R sin sint t t t t

y y R cos cost t tt t

t
t t

  

   

 

 
 
 
 
 

  

    




 
 
 
 
 

 (5)

Combining the above equations, the motion equation of

the differential mobile robot can be obtained as:

, 0

2

L

2

L(v +v)r lx (sin(θ +θ)-sinθ)t t t
(v -v)x r lt t
(v +v)r ly y (cos(θ +θ)-cosθ)t t tt t (v -v)r l

t t t



  

 
 
 
 
 
 
 
 
 





  



 
 
 
 
 

 (6)

The goal is to teach omnidirectional mobile robots to

follow a control program based on recognition and data

processing through identification devices such as smart

cameras; Intelligent sensors, and control algorithms so that

the robot follows certain trajectories in the space and

working environment in accordance with parameters

e 0,
x,k

 e 0, e 0
y,k θ,k

  , with k is constant. Then the

mobile robot will perform awareness in the working

environment to make the automatic navigation smoothly

(avoiding fixed obstacles and moving obstacles) perfectly to

the destination [4, 6, 7, 20, 23, 26].

III. RESEARCH AND APPLICATION OF SARSA

ALGORITHM FOR MOBILE ROBOT

The reinforcement learning method with the SARSA

algorithm is developed to serve the intelligent calculation of

science and technology in general and, in particular,

cybernetics (automatic robot control). Where “action value

equals present value plus the sum of optimal future values.”

With SARSA algorithm on-policy group in particular and
reinforcement learning in general, everything is divided into

“State – st” and “Action – at” with time denoted by a series

of time steps. (t = 0, 1, 2, .vv ...). For a continuous work

environment such as controlling a mobile robot, the first

thing to do is to quantify the state space to get an update

 , ,...1 2S S S Sm and quantize the action space to set

Nguyen Thi Thu Huong / IJEEE, 8(4), 19-24, 2021

21

 , ,...1 2A a a an , and the result is the medium generates

reward (,)r r s a Rt t  , for better understanding, we have

an interactive learning environment diagram as shown in

figure 2, [3, 9, 19].

Agent

Robot operating

environment

State

St

Reward

 rt

Action

at

Fig. 2 The robot learning environment interactive

diagram

The SARSA algorithm is an on-policy algorithm for

Learning. The major difference between SARSA and Q-

Learning is that the maximum reward for the next state is not

necessarily used for updating the Q-values. Instead, a new

action, and therefore reward, is selected using the same

policy that determined the original action. The name SARSA

actually comes from the fact that the updates are done

(, , , ', ')Q s a r s a , where: s, a is the original state and action, r

is the reward observed in the following state, and s', a' are the

new state-action pair. The Q-value update rule is defined by:

) : (+ (s ,a)- (
1 t+1 t+1

(, ,) ,)[]Q Q Q
t t t t t t t

Q s a s a r s a


 (7)

It is straightforward to design an on-policy control

algorithm based on the SARSA prediction method.

As in all on-policy methods, we continually estimate Qπ

for the behavior policy π, and at the same time change π

toward greediness with respect to Qπ. The general algorithm
is given as: as you can see, there are two action selection

steps needed for determining the next state-action pair along

with the first. The parameters α and γ have the same meaning

as they do in Q-Learning.

Suppose {f1, ..., fn} are numerical features of the state and

the action. Thus, fi(s, a) provides the value for the i-th feature

for state s and action a. These features are typically binary,

with domain [0, 1], but they can also be other numerical

features. These features will be used to represent the Q-
function.

) ((
0 1 1

(, ,) ... ,)f f
n n

Q s a s a s a 


    (8)

For some tuple of weights, ω = [ω0, ω1, ..., ωn] . Assume

that there is an extra feature f0 whose value is always 1 so

that ω0 does not have to be a special case. An experience in

SARSA of the form {s, a, r, s', a'} (the agent was in state s,

did action a, and received reward r and ended up in state s,' in

which it decided to do action a' provides the new estimate of

(', ')r Q s a to update Q(s, a). This experience can be used

as a data point for linear regression.

Let (', ') (,)r Q s a Q s a    Weight ωi is updated by:

 (,)f
i i i

s a   (9)

Similarly, we can use linear function approximation on the
Q-learning algorithm. The transition is of the form {s, a, r,

s'}, and the difference.

'
(', ') (,)

a
s a s ar maxQ Q    

 
 (10)

The update rules for Q-values and weights are:

;(,) (,)

(,)f
i i i

s a s a

s a

Q Q 

 





 




 (11)

This update can then be incorporated into SARSA, giving

the algorithm:

In robotics, it’s often usually to use linear or non-linear

feature representations to handle the large-scale state-action

spaces. At that time, the SARSA algorithm implements

action agents for intelligent automatic navigation for mobile

Nguyen Thi Thu Huong / IJEEE, 8(4), 19-24, 2021

22

robots to perform trajectories to avoid dynamic as well as

static obstacles during the movement of the mobile robot.

The robot also calculates the shortest trajectory for the robot

to move to the destination with the fastest path [2, 3, 9].

VI. RESEARCH RESULTS AND

COMMENTS

With the algorithm researched and proposed in the

second and third parts as above, we conduct research on the

robot Turtlebot3 mobile robot with a structure including a

two-wheeled robot to control the two sides and a

multidirectional wheel in the section. The robot's head, the

control circuit using a Raspberry Pi 3 embedded computer,

has a control signal receiver unit from Jetson TX2, an Astra

smart camera, and an intelligent sensor that then transmits

commands to a smart microcontroller, etc. To record images

from the environment as well as to measure the distance

between omnidirectional mobile robots and unknown
obstacles, mobile robots equipped with Rplidar 3D are

placed on top to scan 360 degrees from values to

obstructions, the robot's surrounding perceptual environment.

Fig. 3 Schematic diagram of 3D LiDAR terrain

detection

When terrain reconstruction is performed in 3D space, the

undulating ground and obstacles can be detected by 3D

LiDAR. As shown in Figure 3, the irregular square is a block

of undulating ground divided in a grid, The laser cast from a

3D LiDAR can detect all positions on the undulating ground,

and all height information is updated to the variables of the

node. As shown in the square on the right, the height of the

top surface (maxHeight) of the square is the value of the

node, and the height of the bottom surface (minHeight) is the
value of the node.

In this section, some simulations are performed based on a

powerful and environmental simulation engine in Gazebo.
As shown in figure 4 shows the map built on Gazebo is a

map created with strict walls, and a mobile robot can be

controlled to move around fixed obstacles or obstacles.

Mobile. This issue, in order to give the robot context for

robot movements, is used to build action maps when the

robot is active. Dark blue dotted lines show the robot's path

when avoiding obstacles created by smart tree sensor, smart

camera, and updated robot's current position (mobile robot is

denoted by blue tree leaves) using geometric dimensions.

This is a visual tool that can provide live updates of maps

generated from the SLAM algorithm to control the robot.

Furthermore, the omnidirectional mobile robot's trajectory in

the map can also navigate automatically, and in this

environment, obstacles can always be created, as shown in
figure 4 for the robot to move.

Fig. 4 Build visual maps and robot simulation models in

Gazebo

An environment contains a robot (green) with a depth

camera and randomly placed obstacles (white and brown) in

Gazebo, as figure 4. The point cloud data generated by the

depth camera with 125 degrees as figure 5, and point cloud

data generated by the depth camera with 130 degrees as

figure 6. Here is primarily a visualization tool that can

provide live updates of maps generated from the SLAM and

SARSA augmented learning algorithms. Furthermore, the

robot's trajectory in the map can also be displayed in the real-

world environment where the training and teaching, and
identification process so that the robot knows during obstacle

avoidance in a smart and perfect way.

Fig. 5 The point cloud data is generated by the depth

camera at an angle of 125 degrees

Nguyen Thi Thu Huong / IJEEE, 8(4), 19-24, 2021

23

Fig. 6 The point cloud data is generated by the depth

camera at an angle of 130 degrees

In addition, we can build a grid map system created from

point cloud data to observe and identify obstacles, helping

the robot to move optimally during the control process.

Fig. 7 Turtlebot3 relocalization and navigation in a

square environment

In figure 7, the robot was set to the correct orientation and

position near the upper left corner of the newly built map, the

same as the real position shown on the right side of the

figure. With human assistance, this initialed localization

method made the particles quickly converge to a

concentrated region and obtained the correct position. Then,

combined with the robot odometer and laser data, robot
localization and navigation experiments consistently

maintained the correct trajectory. Robot relocalization with a

manually set correct position.

These results showed that the SARSA algorithm is

significantly better than other algorithms, which also

indicated the advantages of the RL algorithm in image

recognition [11, 21, 24]. Compared with the deep learning

algorithm Q-learning, the SARSA algorithm is better than Q-

learning in terms of value accuracy and strategy, which is

also consistent with previous reports [10, 12, 15, 25]. The

reinforcement learning technology is utilized to achieve the

mapping from state to action and meet the mobile needs of

mobile robots. The data have also proven that the robot path

planning method based on reinforcement learning is an

effective end-to-end mobile robot path planning method; this
goal is to avoid obstacles in the defined and unspecified

environment. The above results illustrate the feasibility of the

proposed method in the path planning of mobile robots.

V. CONCLUSION

In this article, the author presents a mobile robot self-

learning strategy without relying on prior experience under

clear feedback. The author has studied the mobile robot

navigation problem based on the enhanced learning method

with the SARSA algorithm. The SARSA algorithm is applied

to improve the self-learning, computation, and perception of

mobile robots through interactions with an unknown

environment. Tests were performed on automated intelligent
navigation tasks for mobile robots. The simulation results in

Gazebo and the fact that the stability and applicability of the

SARSA algorithm are very effective, these new studies can

completely apply to the control and navigation of mobile

robots. In industrial factories in Vietnam as well as in the

world, further, than previous studies [10, 12, 23], the

research results of the paper are better. Then, the SARSA

algorithm is simpler, making it possible to improve the

quality of the robot's operation through intuitive tools, such

as cameras and smart sensors to navigate with the goal of

avoiding obstacles. Obstacles so that the robot reaches the

destination without any obstacles.

ACKNOWLEDGMENT
This study was supported by the Department of

Electrical Engineering, Faculty of Control Engineering, Le

Quy Don Technical University (MTA - Military Technical

Academy). No. 236, Hoang Quoc Viet Road, Bac Tu Liem

district Ha Noi capital of Viet Nam.

https://www.mta.edu.vn/.

REFERENCES
[1] Nguyen Doan Phuoc., The Advanced control theory, Science and

Technics Publishing House, In Viet Nam, (2015).

[2] Nguyen Thanh Tuan., Base Deep learning, The Legrand Orange

Book. Version 2, last update, August (2020).

[3] Vu Thi Thuy Nga, Ong Xuan Loc, Trinh Hai Nam., Enhanced

learning in automatic control with Matlab Simulink., Hanoi

Polytechnic Publishing House, (2020).

[4] Charu C. Aggarwal., Neural Networks and Deep Learning., Springer

International Publishing AG, part of Springer Nature, (2018).

[5] X. Ruan, D. Ren, X. Zhu, and J. Huang., Mobile Robot Navigation

based on Deep Reinforcement Learning., Chinese Control And

Decision Conference (CCDC), (2019).

[6] Roan Van Hoa, L. K. Lai, Le Thi Hoan., Mobile Robot Navigation

Using Deep Reinforcement Learning in Unknown Environments.,

SSRG International Journal of Electrical and Electronics Engineering

(SSRG-IJEEE), 7(8)(2020) 15-20 .

[7] Wu, Y.; Tan, H.; Peng, J.; Zhang, H.; He, H., Deep reinforcement

learning of energy management with continuous control strategy and

traffic information for a series-parallel plug-in hybrid electric bus.”

Appl. 247(2019) 454-466, Energy.

Nguyen Thi Thu Huong / IJEEE, 8(4), 19-24, 2021

24

[8] A. Folkers, M. Rick, and C. Buskens., Controlling an autonomous

vehicle with deep reinforcement learning., IEEE Intell. Veh. Symp.

Proc., (2019) 2025–2031.
[9] Cuong Nguyen Manh, Tien Ngo Manh, Dung Pham Tien, Van

Nguyen Thi Thanh, Manh Tran Van, Duyen Ha Thi Thanh, and Duy

Nguyen Duc “Autonomous Navigation for Omnidirectional Robot

Based on Deep Reinforcement Learning,” IJMERR, 9(8)(2020)

1134-1139.

[10] L. a. S. H. Lin., Modeling and Adaptive Control of an Omni-

Mecanum-Wheeled Robot., Intelligent Control and Automation, 4

(2013) 166-179.

[11] Pinto, L.; Gupta, A. Supersizing self-supervision: Learning to grasp

from 50K tries and 700 robot hours. In Proceedings of the 2016 IEEE

International Conference on Robotics and Automation (ICRA),

Stockholm, Sweden, (2016) 16–21 3406-3413.

[12] Bicchi, A.; Kumar, V. Robotic grasping and contact: A review. In

Proceedings of the 2000 ICRA, millennium Conference, IEEE

International Conference on Robotics and Automation, Symposia

Proceedings (Cat. No. 00CH37065), San Francisco, CA, USA, 24–28

1(2000) 348-353.

[13] Fang, B.; Jia, S.; Guo, D.; Xu, M.; Wen, S.; Sun, F. Survey of

imitation learning for robotic manipulation. Int. J. Intell. Robot. Appl.

3(2019) 362–369.

[14] Zhang, F.; Leitner, J.; Milford, M.; Upcroft, B.; Corke, P. Towards

vision-based deep reinforcement learning for robotic motion control.

arXiv 2015.

[15] Arulkumaran, K.; Deisenroth, M.P.; Brundage, M.; Bharath, A.A.

Deep Reinforcement Learning: A Brief Survey. IEEE Signal Process.

Mag. 34(2017) 26–38.

[16] Luong, N.C.; Hoang, D.T.; Gong, S.; Niyato, D.; Wang, P.; Liang,

Y.C.; Kim, D.I. Applications of deep reinforcement learning in

communications and networking: A survey. IEEE Commun. Surv.

Tutorials 21(2019) 3133-3174.

[17] Cao, J.; Liu, W.; Liu, Y.; Yang, J. Generalize Robot Learning From

Demonstration to Variant Scenarios with Evolutionary Policy

Gradient. Front. Neurorobotics. (2020).

[18] Krishnan, S.; Garg, A.; Liaw, R.; Thananjeyan, B.; Miller, L.;

Pokorny, F.T.; Goldberg, K. SWIRL: A sequential windowed inverse

reinforcement learning algorithm for robot tasks with delayed

rewards. Int. J. Robot. Res. 38(2019) 126 -145.

[19] Hwangbo, J.; Lee, J.; Dosovitskiy, A.; Bellicoso, D.; Tsounis, V.;

Koltun, V.; Hutter, M. Learning agile and dynamic motor skills for

legged robots. Sci. Robot. (2019).

[20] Golemo, F.; Taiga, A.A.; Courville, A.; Oudeyer, P.Y. Sim-to-real

transfer with neural-augmented robot simulation. In Proceedings of

the Conference on Robot Learning, New York, NY, USA, (2018) 29–

31 817- 828.

[21] Mees, O.; Merklinger, M.; Kalweit, G.; Burgard, W. Adversarial skill

networks: Unsupervised robot skill learning from video. In

Proceedings of the 2020 IEEE International Conference on Robotics

and Automation (ICRA), Paris, France, 30 May–5 June (2020) 4188–

4194.

[22] Zhao, T.; Deng, M.; Li, Z.; Hu, Y. Cooperative Manipulation for a

Mobile Dual-Arm Robot Using Sequences of Dynamic Movement

Primitives. IEEE Trans. Cogn. Dev. Syst. 12(2020) 18–29.

[23] Deng, M.; Li, Z.; Kang, Y.; Chen, C.L.P.; the Chu, X. A Learning-

Based Hierarchical Control Scheme for an Exoskeleton Robot in

Human-Robot Cooperative Manipulation. IEEE Trans. Cybern.

50(2020) 112–125.

[24] R. K. e. a. Megalingam., ROS based autonomous indoor navigation

simulation using SLAM algorithm., Int. J. Pure Appl. Math, (2018),

199-205.

[25] Shota Ohnishi, Eiji Uchibe, Yotaro Yamaguchi, Kosuke Nakanishi,

Yuji Yasui, and Shin Ishii., Constrained Deep Q-Learning Gradually

Approaching Ordinary Q-Learning., Publishing by Frontiers in

Neurorobotics Journal, December 13(2019) 7-12.

[26] https://www.mathworks.com/help/reinfocermentlearning/ug/ddpg -

Agent. html, (2020).

https://www.mathworks.com/help/reinfocermentle-arning/ug/ddpg%20-%20Agent.%20html
https://www.mathworks.com/help/reinfocermentle-arning/ug/ddpg%20-%20Agent.%20html

