
SSRG International Journal of Electrical and Electronics Engineering Volume 8 Issue 4, 30-35, April 2021
ISSN: 2348 – 8379 / https://doi.org/10.14445/23488379/IJEEE-V8I4P106 © 2021 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Research and Apply Deep Reinforcement Learning

Technology to Control Mobile Robot
Roan Van Hoa1, Nguyen Duc Dien2, Lai Khac Lai3

1,2University of Economics - Technology for Industries, Viet Nam
3Thai Nguyen University of Technology, Viet Nam

Received Date: 12 March 2021

Revised Date: 15 April 2021

Accepted Date: 28 April 2021

Abstract - Today, mobile robots are being strongly

developed and widely used in life such as cargo robots,

medical robots, wheelchairs for the disabled, etc. However,

letting the robot move intelligently in dynamic

environments without knowing the map in advance is a new

research area of interest by scientists. The paper presents

the application of deep reinforcement learning (DRL) to

navigate mobile robots in an unknown environment. The

system is built on robot operating system (ROS). The

simulation results on the Gazebo software have verified the

effectiveness of the proposed method.

Keywords — Robot operating system (ROS), Deep

reinforcement learning, Navigation, Simultaneous

localization and mapping (SLAM).

I. INTRODUCTION

In Industry 4.0, mobile robot is an area of interest for its
important role in everyday life as well as in manufacturing

work and automated lines in industrial factories. Mobile

robot is defined as a robot vehicle capable of self-

movement and self-mobility to perform assigned tasks well.

Usually an intelligent navigation system for a robot will

consist of two main parts: simultaneous localization and

mapping (SLAM) and a motion trajectory system. Fully

portable robot systems are designed based on the robot

programming operating system [1-3]. ROS is optimal for

the design of unified robotic systems, especially combining,

calibrating, and transmitting data from sensors with a
central microcontroller circuit. Currently, DRL technology

has been widely used in games [4, 5] and studied to

improve robot performance instead of using both SLAM

and motion trajectory system in environments unknown [6-

8]. However, the deep reinforcement learning algorithm

requires a large amount of data to train the robot . Therefore,

it is recommended to use a simulation environment in order

to speed up the training and not to tire the robot. In a

simulation, creating an accurate model robot and its

environment is a challenge and often requires a lot of

enough data samples. To solve these dilemmas, robot

learning is simulated and designed in Gazebo as it is
compatible with the complex structure of the robot.

Furthermore, Gazebo allows the construction of a virtual

environment [9], which is imperative in the process of

scrutinizing the reinforcement learning algorithms.

The remainder of the paper is organized as follows. The

second part introduces the theoretical basis of deep

reinforcement learning. Experimental setup will be given in

the third section. The fourth part presents the architecture of

the mobile robot control system. Finally, the fifth part is the

conclusion of this article.

II. THEORETICAL BASIS

A. Reinforcemenr Learning Agent-Environment
A reinforcement learning task is about training an agent

which interacts with its environment. The agent arrives at

different scenarios known as states by performing actions.

Actions lead to rewards which could be positive and

negative. The agent has only one purpose here – to

maximize its total reward across an episode. This episode is

anything and everything that happens between the first state

and the last or terminal state within the environment. We

reinforce the agent to learn to perform the best actions by

experience. This is the strategy or policy.

Agent

Enviroment

Reward

Rt

State

St

Action

At

Fig. 1 Interaction diagram between agent and

environment

B. Markov Decision Process (MDP)

An important point to note – each state within an

environment is a consequence of its previous state which in

turn is a result of its previous state. However, storing all

this information, even for environments with short episodes,

will become readily infeasible. To resolve this, we assume

that each state follows a Markov property, i.e., each state
depends solely on the previous state and the transition from

that state to the current state.

A typical MDP is represented using a 6-tuple (S, A, T ,γ ,

D, R), where S is a (finite) set of possible states that

represent a dynamic environment, A is a (finite) set of

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/

Roan Van Hoa et al. / IJEEE, 8(4), 30-35, 2021

31

available actions that the agent can select at a certain state,

T is the state transition probability matrix that provides the

probability of the system transition between every pair of

the states, γ ∈ [0, 1) is the discount rate that guarantees the
convergence of total returns, D is the initial-state

distribution, and R is the reward function that specifies the

reward gained at a specific state by taking a certain action.

C. Q-Learning

Let’s say we know the expected reward of each action at

every step. This would essentially be like a cheat sheet for

the agent! Our agent will know exactly which action to

perform. It will perform the sequence of actions that will

eventually generate the maximum total reward. This total

reward is also called the Q-value and we will formalise our

strategy as:

      ,, , max ,
a

Q s a r s a Q s a  (1)

The above equation states that the Q-value yielded from

being at state s and performing action a is the immediate

reward r(s,a) plus the highest Q-value possible from the

next state s’. Q(s’,a) again depends on Q(s”,a) which will
then have a coefficient of γ2. So, the Q-value depends on Q-

values of future states as shown here:

       , 2 ,, ,,..., , , ... ,n nQ s a Q s a Q s a Q s a      (2)

Adjusting the value of γ will diminish or increase the

contribution of future rewards. Since this is a recursive

equation, we can start with making arbitrary assumptions

for all Q-values. With experience, it will converge to the

optimal policy. In practical situations, this is implemented

as an update:

   

   1 1

, ,

max , ,

t t t t

t t t t
a

Q S A Q S A

R Q S a Q S A  

 

  
 

 (3)

where α is the learning rate or step size. This simply

determines to what extent newly acquired information

overrides old information.

D. Deep Q-Learning

In deep Q-learning, we use a neural network to

approximate the Q-value function. The state is given as the

input and the Q-value of all possible actions is generated as

the output. The comparison between Q-learning and deep

Q-learning is wonderfully illustrated below:

Fig. 2 From Q-learning to deep Q-learning

So, the steps involved in reinforcement learning using a

deep Q-learning network (DQN) are:

- All the past experience is stored by the user in memory.

- The next action is determined by the maximum output of

the Q-network.
- The loss function here is mean squared error of the

predicted Q-value and the target Q-value – Q*. This is

basically a regression problem. However, we do not know

the target or actual value here as we are dealing with a

reinforcement learning problem. Going back to the Q-value

update equation derived fromthe Bellman equation. we

have:

*

1 1max (,)t t
a

Q R Q S a   (4)

In order for the neural network to learn how to estimate

Q-Value for actions correctly, the Loss function must

calculate the error between the actual and predicted Q-value:

    
,

2
, , ,max , ; , ;i i

a
Loss r Q s a Q s a     

  
(5)

E. Learning Procedure for Deep Q Learning of Mobibe

Robot in ROS

The system observes the current scene including depth

frames, and take action based ε-greedy strategy. The

interaction experience e = (si, ai, ri, si+1) is stored in replace

memory M keeps N most recent experiences by interacting

with the environment , then DQN agent samples the mini

batch from replay memory and train network on this mini

batch.

Algorithm for Deep Q-learning with replace memory

Initialize replay memory to size N

Initialize the Q- network Q(s,a,θ)
Initialize the TurtleBot system

For episodes = 1, M do

 Initialize sequence s1 = {x1} and sequence ϕ = ϕ(s1)

 For t, 1, T do

 With probability ε select a random action at at

 Otherwise select at  maxQ*(ϕ(st),a;θi)

 1,t ts r  Execute action at observe reward rt

 Store transition (ϕt,at,rt,ϕt+1) in M

 Sample random mini batch of

 (ϕt,at,rt,ϕt+1) from M

 Set:

 
,

1
*

,

1 1

for terminal

for non-terminal max , ;

i i

i j i
a

r
Q

r Q a



  



 


 




 Perform a gradient descent step on

  
2

, ;i iy Q s a    according to equation (5)

 End for

End for

III. EXPERIMENTAL SETUP

For the analysis of a DQN network was used the

programming language Python [10]. The Python language

has as priority the legibility of the code under speed. The

vast library and frameworks provided by Python makes it
an exquisite tool for machine learning and data analysis

purposes.

Roan Van Hoa et al. / IJEEE, 8(4), 30-35, 2021

32

A. Robot Operating System (ROS)

ROS [1] is an open source software framework for

robotics development. The main goal of ROS is to

standardize and reuse robot software globally and create a

community for robot developers. ROS manages and

provides application packages for a variety of purposes, and

it has formed a delivery ecosystem of user-developed

packages. As depicted in Fig. 3, ROS is a robot and sensor

control support system with abstract hardware and robot

application development based on existing conventional

operating systems. ROS data communication is not only
supported by one operating system but also supported by

multiple operating systems, hardware and programs,

making it well suited for the development of robots when

many different hardware combined.

Fig. 3 ROS-enabled operating systems

The main architecture of ROS is based on nodes, and

each node is an independent process. The use of the nodes

offers a number of benefits to the overall system. First of all,

since each node is independent of each other, the failure of

one node is not likely to result in a total system crash.

Second, the ROS architecture also helps to improve code
reusability. In ROS, communication is done by passing

messages between nodes (Fig. 4). In general, nodes do not

know who they are communicating with. All sent messages

are published for a topic. If a node wants to receive

messages, it must subscribe to specific topics. There can be

many publishers and many subscribers to one button. In the

case of multiple threads, a button will ignore all

notifications from the threads it did not subscribe to.

Fig. 4 Communication between buttons

In the paper, the authors use ROS Melodic version with

Ubuntu 18.04 operating system on Dell Gaming G3 3590

computer with processor: Core i7 9750H, graphics card:

Nvidia GTX1660 TI 6GB DDR5.

B. Turtlebot

TurtleBot is a ROS standard platform robot, and there are

3 version of the series. TurtleBots are affordable and

programmable mobile robots for use in education, research,

hobby, and product prototyping. The third version was used

on this project, shown in Fig. 5.

Fig. 5 Real and simulated TurtleBot3 Burger in Gazebo

The TurtleBot3 Burger uses 2 DYNAMIXEL motor

series XL, for the object detection the TurtleBot3 utilize a

360 degree sensor laser LiDAR, and it has an IMU sensor

for the odometry calculations. All the control is made by

the open source controller board OpenCR1.0 and Raspberry

Pi 3 microprocessor.

C. Software Gazebo

Besides, robotics experimentation is essential in robotics

[11-13] as a final goal, robot simulation is an essential tool

on all roboticist’s toolbox. A good simulator makes

possible to test algorithms quickly, to design robots, and to

train systems with artificial intelligence using realistic

scenarios. With Gazebo [9] is possible to simulate these

environments easily and with the advantage of having an

active community. This makes Gazebo a great tool on the

area of robotic simulation.

IV. THE ARCHITECTURE OF CONTROL SYSTEM

OF MOBILE ROBOT

In Deep Q-learning, use neural networks to approximate

the Q-value function. The state is given as input and the Q-

value of all actions can be generated as output.

The deep learning neural network model proposed in this

study consists of four layers: input layer, two hidden layers,

and output layer. The first hidden layer consists of 64 fully

connected architecture, with 26 inputs taken from Laser

Distance Sensor (LDS), distance to target and angle to

target, There, there are 1728 trained parameters. The second

hidden layer also has 64 neurons with 64 inputs from the

first hidden layer so 4160 parameters are trained.

Fig. 6 Four-layer neural network structure

Roan Van Hoa et al. / IJEEE, 8(4), 30-35, 2021

33

State: is an observation of environment and describes the

current situation. This is vital for the agent because it would

calculate and act depending on the state. The state size is 26

and 24 LDS (Laser Distance Sensor) values. The other two

are distances to goal, and angle to goal. A mathematical
approach for this is as follow: State = LDS (24 values) +

Distance (1) + Angle (1) LDS denotes the (24) values that

the lidar sensor emits. Distance represents the distance to

the goal and Angle is the angle between the robot heading

and vector to the goal.

Actions (Degrees of Freedom): The robot has five

actions which can act on depending on the type of state. In

here, the robot has a fixed linear velocity of 0.15m/s and the

angular velocity is determined by the state.

Fig. 7 Actions of mobile robot

Action Angular velocity (rad/s)

0 -1.5

1 -0.75

2 0

3 0.75

4 1.5

Reward function: We need to define the reward and

penalty system for the DRL network. Remember that

rewards and penalty relationships are numbers attributed to

smart agents. There are three different conditions for the

reward system, which give better results for controlling the
robot to automatically reach the target.
 100

100

5 cosd

r

r 




 



Goal

Collision

Other

(6)

In which, r: reward function

 rd: reward from distance

 θ: angle to target

V. SIMULATION

In order to examine adequately the capability of the

mobile robot, some tasks are performed in simulations by

designing a robot simulator in Gazebo.

A. Simulation Environments

The training environment is set up to demonstrate the

task of navigating and avoiding obstacles (including static

and dynamic obstacles) for the robot in Gazebo. The black

circle represents the robot, the chestnut-like walls, the white

cylinder is the obstacle, the red square represents the robot's

target, and the blue lines represent the scanning capabilities

of the sensor. Laser way (LDS) from robot.

There are two environments used for the simulations.

The first environment is shown in Fig. 8 (a), which
represents an area of free movement for the robot to move.

There are four fixed obstacles surrounded by the wall. The

second environment, is shown in Fig. 8 (b). The number of

walls increases, moving obstacles, represented by white

blocks, make the environment more dynamic, closer to the

environment in the real world. If the mobile robot collides

with a wall or any obstacle, a negative reward will be

awarded for this action and the current learning will stop.

Conversely, if the mobile robot reaches the target, a

positive reward will be awarded and the learning process

resumes.

a) Environment one

b) Environment two

Fig. 8 Training environments used on Gazebo

simulation

B. Simulation Result

 Fig. 9 a sequence of the actions made by the TurtleBot

from an initial position until it could arrive to the target

after the training episodes.

Roan Van Hoa et al. / IJEEE, 8(4), 30-35, 2021

34

Fig. 9 Image series in the first simulation environment

Episode

Fig. 10 The total rewards and average max Q-value of

each epoch

In the first episodes it can be noticed that the total bonus

points fluctuate around the negative value, which happens

because the robot receives incomplete environmental

information. This reward per episode means the robot is

trying to maximize its reward for completing the quest.

After the autonomous robot is trained in the first

environment, the experiment is carried out in the second
environment and tested. It is shown in Fig. 11 a sequence of

actions performed by TurtleBot from the starting position

until it can reach the target after the training sessions.

Fig. 11 Series of images in the second simulation

environment

Episode

Fig. 12 The total reward and the average maximum Q

value in the second environment

Fig. 12 shows the total reward that the robot gets in the second
environment using the DQN algorithm. Comparing this result with

the first environment, we can see that the robot needs more
learning for it to achieve good results. From there we see with a
more complex environment, the agent can take longer training to
achieve good performance.

VI. CONCLUSION

This paper has proposed a deep reinforcement

learning method to implement a robot's operating process in

a virtual environment built in Gazebo. The robot system

and reinforcement network are built into the ROS. A

network-based task with laser scan signals generated from

the LDS sensor as input data. The simulation results

showed significant performance of the proposed method in

obstacle avoidance and finding the way to the destination

for Turtlebot. Furthermore, the robot's performance can be

monitored through a visualization tool and opens up a

highly probable DQN algorithm in various specific
environments. The reinforcement learning network will be

deployed in the robot's navigation mission in the real

environment for future work.

ACKNOWLEDGMENT

This study was supported by University of Economics -

Technology for Industries, Viet Nam;

http://www.uneti.edu.vn/.

Roan Van Hoa et al. / IJEEE, 8(4), 30-35, 2021

35

REFERENCES

[1] YoonSeok Pyo, HanCheol Cho, RyuWoon Jung, TaeHoon Lim,

ROS Robot Programming, ROBOTIS Co.,Ltd (2017).

[2] Đỗ Quang Hiệp, Ngô Mạnh Tiến, Nguyễn Mạnh Cường, Lê Trần

Thắng, Phan Xuân Minh, Xây dựng hệ thống nhận thức môi trường

cho robot tự hành Omni bốn bánh dựa trên thuật toán EKF-SLAM

và hệ điều hành ROS, Tạp chí Nghiên cứu KH&CN quân sự, Trang

30-37, Số Đặc san Hội thảo Quốc gia FEE (2020).

[3] Nguyen Duc Dien, Nguyen Duc Duong, Vu Anh Nam, Tran Thi

Huong, Building Environmental Awareness System for Mobile

Robot Operating in Indoor Environment on ROS Platform, SSRG

International Journal of Electrical and Electronics Engineering

(SSRG-IJEEE), (2021) 8(1) 32-36.

[4] Hosu I-A and Rebedea T, Playing Atari games with deep

reinforcement learning and human checkpoint replay, 2016. ArXiv,

abs/1607.05077.

[5] Mnih. V, Kavukcuoglu. K, Silver. D, Rusu. A.A, Veness. J,

Bellemare. M.G, Graves. A, Riedmiller. M,

Fidjeland. A.K, Ostrovski. G, et al, Human-level control through

deep reinforcement learning, Nature 2015, pp.

518-529.

[6] Roan Van Hoa, Dinh Thi Hang, Tran Quoc Dat, Tran Dong, Tran

Thi Huong, Autonomous Navigation for Mobile Robot Based on

Reinforcement Learning, SSRG International Journal of Electronics

and Communication Engineering, 8(1)(2021) 1-5.

[7] Roan Van Hoa, L. K. Lai, Le Thi Hoan, Mobile Robot Navigation

Using Deep Reinforcement Learning in Unknown Environments,

SSRG International Journal of Electrical and Electronics

Engineering (SSRG-IJEEE), 7(8) (2020) 15-20.

[8] L. Tai and M. Liu, A robot exploration strategy based on qlearning

network, in Proc. 2016 IEEE International Conference on Real-time

Computing and Robotics (RCAR), 2016, pp. 57-62.

[9] I. Zamora, N. G. Lopez, V. M. Vilches, and A. H. Cordero,

Extending the openai gym for robotics: A toolkit for reinforcement

learning using ros and gazebo, arXiv preprint arXiv:1608.05742,

2016.

[10] D. Ascher and M. Lutz, Learning Python. O’Reilly, 1999.

[11] M. Pfitscher, D. Welfer, M. A. d. S. L. Cuadros, and D. F. T.

Gamarra, Activity gesture recognition on kinect sensor using

convolutional neural networks and fastdtw for the msrc-12 dataset,

in International Conference on Intelligent Systems Design and

Applications. Springer, (2018) 230–239.

[12] R. M. da Silva, M. A. d. S. L. Cuadros, and D. F. T. Gamarra,

Comparison of a backstepping and a fuzzy controller for tracking a

trajectory with a mobile robot, in International Conference on

Intelligent Systems Design and Applications. Springer, (2018) 212–

221.

[13] M. Cuadros, P. De Souza, G. Almeida, R. Passos, and D. Gamarra,

Development of a mobile robotics platform for navigation tasks

using image processing, in Asia-Pacific Computer Science and

Application Conference (CSAC 2014), Shangai, China, 2014.

