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Abstract - Today, mobile robots are being strongly 

developed and widely used in life such as cargo robots, 

medical robots, wheelchairs for the disabled, etc. However, 

letting the robot move intelligently in dynamic 

environments without knowing the map in advance is a new 

research area of interest by scientists. The paper presents 

the application of deep reinforcement learning (DRL) to 

navigate mobile robots in an unknown environment. The 

system is built on robot operating system (ROS). The 

simulation results on the Gazebo software have verified the 

effectiveness of the proposed method. 

 

Keywords  — Robot operating system (ROS), Deep 

reinforcement learning, Navigation,  Simultaneous 
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I. INTRODUCTION 

In Industry 4.0, mobile robot is an area of interest for its 
important role in everyday life as well as in manufacturing 

work and automated lines in industrial factories. Mobile 

robot is defined as a robot vehicle capable of self-

movement and self-mobility to perform assigned tasks well. 

Usually an intelligent navigation system for a robot will 

consist of two main parts: simultaneous localization and 

mapping (SLAM) and a motion trajectory system. Fully 

portable robot systems are designed based on the robot 

programming operating system [1-3]. ROS is optimal for 

the design of unified robotic systems, especially combining, 

calibrating, and transmitting data from sensors with a 
central microcontroller circuit. Currently, DRL technology 

has been widely used in games [4, 5] and studied to 

improve robot performance instead of using both SLAM 

and motion trajectory system in environments unknown [6-

8]. However, the deep reinforcement learning algorithm 

requires a large amount of data to train the robot . Therefore, 

it is recommended to use a simulation environment in order 

to speed up the training and not to tire the robot. In a 

simulation, creating an accurate model robot and its 

environment is a challenge and often requires a lot of 

enough data samples. To solve these dilemmas, robot 

learning is simulated and designed in Gazebo as it is 
compatible with the complex structure of the robot. 

Furthermore, Gazebo allows the construction of a virtual 

environment [9], which is imperative in the process of 

scrutinizing the reinforcement learning algorithms. 

The remainder of the paper is organized as follows. The 

second part introduces the theoretical basis of deep 

reinforcement learning. Experimental setup will be given in 

the third section. The fourth part presents the architecture of 

the mobile robot control system. Finally, the fifth part is the 

conclusion of this article.  

II. THEORETICAL BASIS 

A. Reinforcemenr Learning Agent-Environment 
A reinforcement learning task is about training an agent 

which interacts with its environment. The agent arrives at 

different scenarios known as states by performing actions. 

Actions lead to rewards which could be positive and 

negative. The agent has only one purpose here – to 

maximize its total reward across an episode. This episode is 

anything and everything that happens between the first state 

and the last or terminal state within the environment. We 

reinforce the agent to learn to perform the best actions by 

experience. This is the strategy or policy. 
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Fig. 1 Interaction diagram between agent and 

environment 

B. Markov Decision Process (MDP) 

An important point to note – each state within an 

environment is a consequence of its previous state which in 

turn is a result of its previous state. However, storing all 

this information, even for environments with short episodes, 

will become readily infeasible. To resolve this, we assume 

that each state follows a Markov property, i.e., each state 
depends solely on the previous state and the transition from 

that state to the current state. 

A typical MDP is represented using a 6-tuple (S, A, T ,γ , 

D, R), where S is a (finite) set of possible states that 

represent a dynamic environment, A is a (finite) set of 
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available actions that the agent can select at a certain state, 

T is the state transition probability matrix that provides the 

probability of the system transition between every pair of 

the states, γ ∈ [0, 1) is the discount rate that guarantees the 
convergence of total returns, D is the initial-state 

distribution, and R is the reward function that specifies the 

reward gained at a specific state by taking a certain action. 

C. Q-Learning 

Let’s say we know the expected reward of each action at 

every step. This would essentially be like a cheat sheet for 

the agent! Our agent will know exactly which action to 

perform. It will perform the sequence of actions that will 

eventually generate the maximum total reward. This total 

reward is also called the Q-value and we will formalise our 

strategy as: 

              ,, , max ,
a

Q s a r s a Q s a         (1) 

The above equation states that the Q-value yielded from 

being at state s and performing action a is the immediate 

reward r(s,a) plus the highest Q-value possible from the 

next state s’. Q(s’,a) again depends on Q(s”,a) which will 
then have a coefficient of γ2. So, the Q-value depends on Q-

values of future states as shown here: 

       , 2 ,, ,,..., , , ... ,n nQ s a Q s a Q s a Q s a      (2) 

Adjusting the value of γ will diminish or increase the 

contribution of future rewards. Since this is a recursive 

equation, we can start with making arbitrary assumptions 

for all Q-values. With experience, it will converge to the 

optimal policy. In practical situations, this is implemented 

as an update: 

      
   

   1 1
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t t t t

t t t t
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Q S A Q S A
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 

  
 

 (3) 

where α is the learning rate or step size. This simply 

determines to what extent newly acquired information 

overrides old information. 

D. Deep Q-Learning 

In deep Q-learning, we use a neural network to 

approximate the Q-value function. The state is given as the 

input and the Q-value of all possible actions is generated as 

the output. The comparison between Q-learning and deep 

Q-learning is wonderfully illustrated below: 

 
Fig. 2 From Q-learning to deep Q-learning 

So, the steps involved in reinforcement learning using a 

deep Q-learning network (DQN) are: 

- All the past experience is stored by the user in memory. 

- The next action is determined by the maximum output of 

the Q-network. 
- The loss function here is mean squared error of the 

predicted Q-value and the target Q-value – Q*. This is 

basically a regression problem. However, we do not know 

the target or actual value here as we are dealing with a 

reinforcement learning problem. Going back to the Q-value 

update equation derived fromthe Bellman equation. we 

have: 

               
*

1 1max ( , )t t
a

Q R Q S a                (4) 

In order for the neural network to learn how to estimate 

Q-Value for actions correctly, the Loss function must 

calculate the error between the actual and predicted Q-value: 

    
,

2
, , ,max , ; , ;i i

a
Loss r Q s a Q s a     

  
(5) 

E. Learning Procedure for Deep Q Learning of Mobibe 

Robot in ROS  

The system observes the current scene including depth 

frames, and take action based ε-greedy strategy. The 

interaction experience e = (si, ai, ri, si+1) is stored in replace 

memory M keeps N most recent experiences by interacting 

with the environment , then DQN agent samples the mini 

batch from replay memory and train network on this mini 

batch. 

Algorithm for Deep Q-learning with replace memory  

Initialize replay memory to size N 

Initialize the Q- network Q(s,a,θ)  
Initialize the TurtleBot system 

For episodes = 1, M do  

      Initialize sequence s1 = {x1} and sequence ϕ = ϕ(s1) 

      For t, 1, T do  

           With probability ε select a random action at at 

           Otherwise select at  maxQ*(ϕ(st),a;θi)   

          1,t ts r  Execute action at  observe reward rt  

           Store transition (ϕt,at,rt,ϕt+1) in M 

           Sample random mini batch of  

           (ϕt,at,rt,ϕt+1) from M 

             Set:   

 
,

1
*

,
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for terminal 

for non-terminal max , ;

i i

i j i
a

r
Q

r Q a



  



 


 




 

           Perform a gradient descent step on 

            
2

, ;i iy Q s a    according to equation (5)   

      End for  

End for  

III. EXPERIMENTAL SETUP 

For the analysis of a DQN network was used the 

programming language Python [10]. The Python language 

has as priority the legibility of the code under speed. The 

vast library and frameworks provided by Python makes it 
an exquisite tool for machine learning and data analysis 

purposes.  
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A. Robot Operating System (ROS) 

ROS [1] is an open source software framework for 

robotics development. The main goal of ROS is to 

standardize and reuse robot software globally and create a 

community for robot developers. ROS manages and 

provides application packages for a variety of purposes, and 

it has formed a delivery ecosystem of user-developed 

packages. As depicted in Fig. 3, ROS is a robot and sensor 

control support system with abstract hardware and robot 

application development based on existing conventional 

operating systems. ROS data communication is not only 
supported by one operating system but also supported by 

multiple operating systems, hardware and programs, 

making it well suited for the development of robots when 

many different hardware combined. 

 
Fig. 3 ROS-enabled operating systems 

The main architecture of ROS is based on nodes, and 

each node is an independent process. The use of the nodes 

offers a number of benefits to the overall system. First of all, 

since each node is independent of each other, the failure of 

one node is not likely to result in a total system crash. 

Second, the ROS architecture also helps to improve code 
reusability. In ROS, communication is done by passing 

messages between nodes (Fig. 4). In general, nodes do not 

know who they are communicating with. All sent messages 

are published for a topic. If a node wants to receive 

messages, it must subscribe to specific topics. There can be 

many publishers and many subscribers to one button. In the 

case of multiple threads, a button will ignore all 

notifications from the threads it did not subscribe to. 

 
Fig. 4 Communication between buttons 

 

In the paper, the authors use ROS Melodic version with 

Ubuntu 18.04 operating system on Dell Gaming G3 3590 

computer with processor: Core i7 9750H, graphics card: 

Nvidia GTX1660 TI 6GB DDR5. 

B. Turtlebot 

TurtleBot is a ROS standard platform robot, and there are 

3 version of the series. TurtleBots are affordable and 

programmable mobile robots for use in education, research, 

hobby, and product prototyping. The third version was used 

on this project, shown in Fig. 5. 

 
Fig. 5 Real and simulated TurtleBot3 Burger in Gazebo 

The TurtleBot3 Burger uses 2 DYNAMIXEL motor 

series XL, for the object detection the TurtleBot3 utilize a 

360 degree sensor laser LiDAR, and it has an IMU sensor 

for the odometry calculations. All the control is made by 

the open source controller board OpenCR1.0 and Raspberry 

Pi 3 microprocessor.  

C. Software Gazebo  

Besides, robotics experimentation is essential in robotics 

[11-13] as a final goal, robot simulation is an essential tool 

on all roboticist’s toolbox. A good simulator makes 

possible to test algorithms quickly, to design robots, and to 

train systems with artificial intelligence using realistic 

scenarios. With Gazebo [9] is possible to simulate these 

environments easily and with the advantage of having an 

active community. This makes Gazebo a great tool on the 

area of robotic simulation.  

IV. THE ARCHITECTURE OF CONTROL SYSTEM 

OF MOBILE ROBOT 

In Deep Q-learning, use neural networks to approximate 

the Q-value function. The state is given as input and the Q-

value of all actions can be generated as output. 

The deep learning neural network model proposed in this 

study consists of four layers: input layer, two hidden layers, 

and output layer. The first hidden layer consists of 64 fully 

connected architecture, with 26 inputs taken from Laser 

Distance Sensor (LDS), distance to target and angle to 

target, There, there are 1728 trained parameters. The second 

hidden layer also has 64 neurons with 64 inputs from the 

first hidden layer so 4160 parameters are trained. 

 
Fig. 6 Four-layer neural network structure 
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State: is an observation of environment and describes the 

current situation. This is vital for the agent because it would 

calculate and act depending on the state. The state size is 26 

and 24 LDS (Laser Distance Sensor) values. The other two 

are distances to goal, and angle to goal. A mathematical 
approach for this is as follow: State = LDS (24 values) + 

Distance (1) + Angle (1) LDS denotes the (24) values that 

the lidar sensor emits. Distance represents the distance to 

the goal and Angle is the angle between the robot heading 

and vector to the goal. 

 
Actions (Degrees of Freedom): The robot has five 

actions which can act on depending on the type of state. In 

here, the robot has a fixed linear velocity of 0.15m/s and the 

angular velocity is determined by the state. 

 
Fig. 7 Actions of mobile robot 

Action Angular velocity (rad/s) 

0 -1.5 

1 -0.75 

2 0 

3 0.75 

4 1.5 

Reward function: We need to define the reward and 

penalty system for the DRL network. Remember that 

rewards and penalty relationships are numbers attributed to 

smart agents. There are three different conditions for the 

reward system, which give better results for controlling the 
robot to automatically reach the target. 
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In which, r: reward function  

                   rd: reward from distance  

                    θ: angle to target  

V. SIMULATION 

In order to examine adequately the capability of the 

mobile robot, some tasks are performed in simulations by 

designing a robot simulator in Gazebo. 

A. Simulation Environments  

The training environment is set up to demonstrate the 

task of navigating and avoiding obstacles (including static 

and dynamic obstacles) for the robot in Gazebo. The black 

circle represents the robot, the chestnut-like walls, the white 

cylinder is the obstacle, the red square represents the robot's 

target, and the blue lines represent the scanning capabilities 

of the sensor. Laser way (LDS) from robot.  

There are two environments used for the simulations. 

The first environment is shown in Fig. 8 (a), which 
represents an area of free movement for the robot to move. 

There are four fixed obstacles surrounded by the wall. The 

second environment, is shown in Fig. 8 (b). The number of 

walls increases, moving obstacles, represented by white 

blocks, make the environment more dynamic, closer to the 

environment in the real world. If the mobile robot collides 

with a wall or any obstacle, a negative reward will be 

awarded for this action and the current learning will stop. 

Conversely, if the mobile robot reaches the target, a 

positive reward will be awarded and the learning process 

resumes. 

 

 
a) Environment one  

 
b) Environment two 

Fig. 8 Training environments used on Gazebo 

simulation  

B. Simulation Result  

 Fig. 9 a sequence of the actions made by the TurtleBot 

from an initial position until it could arrive to the target 

after the training episodes. 
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Fig. 9 Image series in the first simulation environment  

Episode

 
Fig. 10 The total rewards and average max Q-value of 

each epoch 

In the first episodes it can be noticed that the total bonus 

points fluctuate around the negative value, which happens 

because the robot receives incomplete environmental 

information. This reward per episode means the robot is 

trying to maximize its reward for completing the quest.  

After the autonomous robot is trained in the first 

environment, the experiment is carried out in the second 
environment and tested. It is shown in Fig. 11 a sequence of 

actions performed by TurtleBot from the starting position 

until it can reach the target after the training sessions.  

  

  

Fig. 11 Series of images in the second simulation 

environment  

Episode

 
Fig. 12 The total reward and the average maximum Q 

value in the second environment  

Fig. 12 shows the total reward that the robot gets in the second 
environment using the DQN algorithm. Comparing this result with 

the first environment, we can see that the robot needs more 
learning for it to achieve good results. From there we see with a 
more complex environment, the agent can take longer training to 
achieve good performance. 

VI. CONCLUSION 

This paper has proposed a deep reinforcement 

learning method to implement a robot's operating process in 

a virtual environment built in Gazebo. The robot system 

and reinforcement network are built into the ROS. A 

network-based task with laser scan signals generated from 

the LDS sensor as input data. The simulation results 

showed significant performance of the proposed method in 

obstacle avoidance and finding the way to the destination 

for Turtlebot. Furthermore, the robot's performance can be 

monitored through a visualization tool and opens up a 

highly probable DQN algorithm in various specific 
environments. The reinforcement learning network will be 

deployed in the robot's navigation mission in the real 

environment for future work. 
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