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Abstract - In model predictive control, building the correct 

model and solving the optimal problem are two jobs that 

always require a lot of time and effort. These are also two 

issues that many scientists are interested in studying when 

applying model-driven reporting control to certain objects. 

With a TRMS object we can build a white box model, a 

gray box model or a black box model. Some authors have 

built TRMS model published in [2], [3], [4], [5]. We have 
studied the optimal problem solving methods in model 

predictive control in articles [6], [7], [8]. In [9], we builds 

a white box model of TRMS object according to Newton 

method. Studying the effects of the interchannel effects of 

the white box model TRMS. In this paper, authors bulding 

black box modeling of Twin Rotor MIMO System by using 

neural network, compare the results of the black box 

model with the real model in order to choose a suitable 

algorithm and provide the ability to apply that model in 

simulation and object control. 

 

Keywords - Black box model, Neural network, Yaw angle, 
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I. INTRODUCTION  

Artificial Neural Networks (ANNs) are intended to 

mimic the behavior of biological neural networks (NNs). 

In fact, there are many types of neural networks and their 

applications are also different. These networks need to be 

trained using the appropriate learning algorithms for a 

particular application. A learning algorithm is an 

optimization procedure in which the synaptic weights 

between neurons are found to obtain an optimal mapping 

between a set of inputs and the corresponding desired 
outputs. In this paper, networks (Multi Layer Perceptron - 

MLP) were selected for modeling with many different 

training methods. Therefore, MLP networks and related 

learning algorithms have been briefly presented here.  

The TRMS is a laboratory set-up designed by 

Feedback Instrument Ltd [1] and is a suitable test platform 

for assessment and implementation of advanced control 

techniques. The system is connected to a computer through 

a fast interface to transfer  

control signals to the actuators and to receive the 

corresponding feedback signals from the sensors. 

Moreover, the real-time workshop toolbox of  
Matlab/Simulink provides an opportunity for the designer 

to facilitate the controller design procedure 

using advanced control toolboxes and other useful built-in 

functions. The system possesses two propellers 

perpendicular to each other, one for vertical movement and 

the other for horizontal motion. However, each one of 

them significantly affects the motion of the other.  

 

Therefore, the more accurate the TRMS model 
building, the higher the quality of control in general and 

predictive control in particular. 

II. THE TRMS MODEL 

The TRMS was given in fig 1, the physical model as 

follows: 
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Fig. 1 The TRMS 
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A. The Fundamentals of MLP Networks 

The function of a network is determined by the 

architecture of the network, its parameters include    

weights, biases and the type of its processing elements. 

The architecture of a typical MLP network is defined by 

the number of layers and the number of neurons in each 

layer. The structure of an MLP network is designed based 

on an iterative process. Some of the most common 

learning algorithms that can be used to train MLP 

networks include: Levenberg-Marquardt back-propagation, 

gradient descent back-propagation, quasi-Newton back-
propagation, Bayesian regularisation back-propagation, 

conjugate gradient back-propagation, one step secantback-

propagation, resilient back-propagation, and scaled 

conjugate gradient back-propagation. The paper mainly 

uses Gradient Descent back-propagation, and some of its 

conjugate algorithms to identifycation TRMS model. 

a) Designing the Excitation Signal  

The TRMS has been excited with various input signals 

of different shapes such as sine and square waves, different 

possible amplitudes and different 

frequencies. The frequency of the training data ranges 

from 0.01Hz to 1Hz and cover amplitude between -2.5V 

and 2.5V, the minimum and maximum applicable voltages 

to the system respectively. 

b) Model Structure Selection and Training algorithms 

The Neural Network Autoregressive External input 

Model Structure (NNARX) approach has been selected in 
order to model the system, due to the fact that the input-

output data set of the real system is available. In an 

NNARX model structure,the inputs to the NN-based 

model are the past control inputs of the real system, 

[ ( ), ( 1),..., ( )]    u t d u t d u t d m and also the past 

observed outputs, [ ( 1), ( 2),..., ( )]  y t y t y t m , where d is 

some multiple of the sampling period and set to one here, 

and m and n are input and output lag spaces which are 

assumed to be two and three respectively. Fig 2 shows a 

SISO NNARX model structure. It is noted that the output 

of the SISO model, ˆ( )y t , can be expressed as 

ˆ( ) ( ( ), ( 1),...,

          ( ), ( 1), ( 12),..., ( ))      (1)

   

    

NNy t f u t d u t d

u t d m y t y t y t n
 

 
Fig. 2 The NNARX model structure of a SISO system 

 

Some of the most common learning algorithms used in 

this article include: 

+  Gradient descent (GD) back-propagation; 

+ Gradient descent with momentum (GDM) back-

propagation; 

+ Gradient descent with adaptive learning rate (GDA) 

back-propagation; 

+ Gradient descent with adaptive learning rate and 

momentum (GDX) back - propagatio; 

+ Conjugate gradient back-propagation with Fletcher-
Reeves (CGF); 

+ Conjugate gradient back-propagation with Polak-Ribiere 

updates; 

+ Conjugate gradient back-propagation with Powell-Beale 

restart (CGB). 

All of these algorithms are based on the so-called Mean 

Squared Error (MSE) method. In MSE paradigms the 

objective is to determine the weights and the biases of an 

NN by minimising the following criterion: 

1
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Where: 

            q = 1,2,....,Q         (3)   q q qe t e  

Q: Number of patterns or number of data set for training 

qt : Vector of target output (observed output) of pattern q. 

qy : Vector of network output (output prediction) of pattern 

q. 

qe : Error of pattern 

V: Mean squared error 

 

c) Test Model 

Model validation is a procedure in which a model is 

tested to clarify whether the model adequately represents 

the characteristics of the corresponding real system. Note 

that each model is tested in accordance with its future 

application. If the residuals (prediction errors) of a model 
contain no or negligible information 

about the past residuals or about the dynamics of the 

system, it is likely that all information has been extracted 

from the training set, and conclusively the model 

approximates the system well. Hence, one needs, in 

principle, to check whether the residuals are uncorrelated 

with all the linear and nonlinear combinations of the past 

data. Such a test is of course completely unrealistic to be 

carried out in practice; thus, it is common to consider only 

a few wisely chosen auto-correlation and cross-correlation 

functions. In [5], equation (4) is the auto-correlation of 
prediction errors, and the cross-correlationbetween the 

inputs and the residuals of a model is presented in equation 

(5). The cross-correlation of the squared inputs and the 

squared errors is mentioned in equation (6). Equation (7) 

presents the cross-correlation between the squared inputs 

and the residuals of the model and finally the cross-

correlation between the residuals and the multiplication of 

the residuals and the inputs is expressed in equation (8). 

1

2

1

( )( )
1   if =0 

( )               (4)
0  if 0

( )

















 


  








N

i i

i
ee N

i

i

e e e e

r

e e

 



Huong T.M. Nguyen & Mai Trung Thai  / IJEEE, 8(6), 15-22, 2021 

 

17 

1

2 2

1 1

( )( )

( ) 0              (5)

( ) ( )





 







 

 

  

 



 

N

i i

i
ue

N N

i i

i i

u u e e

r

u u e e

 

2 2

2 2 2 2

1

2 2 2 2 2 2

1 1

( )( )

( ) 0      (6)

( ) ( )





 







 

 

  

 



 

N

i i

i

u e N N

i i

i i

u u e e

r

u u e e

 

2

2 2

1

2 2 2 2

1 1

( )( )

( ) 0      (7)

( ) ( )







 









 

 

  

 



 

N

i i

i

u e N N

i i

i i

u u e e

r

u u e e

 

1

2 2

1 1

( )( )

( ) 0   0      (8)

( ) ( )







 

 

 







 

 

  

 



 

N

i i

i
e

N N

i i

i i

e e

r

e e

 

where the bar over the symbols represents the average of a 

signal as   

1

1
                                                          (9)
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N is the total number of data and 

                                                                 (10) i i iu e  
It is common to check whether the functions for lags in 

the interval [ 20;20]    are zero within an asymptotical 

95% confidence interval, i.e. if the following condition is held:  

1.96 / 1.96 /                                   (11)  N r N  

III. SIMULATION RESULTS 

The black box model of the TRMS object with 2 degrees 

of freedom on Matlab/Simulink and the real model when 

using the Gradient descent algorithm to train and test the 

network is shown in Figures 3 to 6. 

 

Fig. 3 The yaw angle of the TRMS model when using the 

Gradient descent algorithm to train the network 

 

 
Fig. 4 The pitch angle of the TRMS model when using the 

Gradient descent algorithm to train the network 

 
Fig. 5 The yaw angle of the TRMS model when using the 

Gradient descent algorithm to test the network 

 
Fig. 6 The pitch angle of the TRMS model when using the 

Gradient descent algorithm to test the network  

 

Comment:  

The pitch  mean  squared  error  of  training  is:  2.518215. 10-2 

The pitch  mean  squared  error  of  test  is: 2.518215.10-2 

The yaw  mean  squared  error  of  training  is: 4.669712. 10-2 

The yaw  mean  squared  error  of  test  is: 4.669712. 10-2 

The black box model of the TRMS object with 2 degrees 

of freedom on Matlab/Simulink and the real model when 

using the Gradient  descent  with  momentum  and  adaptive  

rate algorithm to train and test the network is shown in 

Figures 7 to 10. 
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Fig. 7 The Yaw angle of the TRMS model when using the 

Gradient  descent  with  momentum  and  adaptive  rate 

algorithm to train the network 

 
Fig. 8 The Pitch angle of the TRMS model when using the 

Gradient  descent  with  momentum  and  adaptive  rate 

algorithm to train the network 

 
Fig. 9 The Yaw angle of the TRMS model when using the 

Gradient  descent  with  momentum  and  adaptive  rate 

algorithm to test the network 

 
Fig. 10 The pitch angle of the TRMS model when using the 

Gradient  descent  with  momentum  and  adaptive  rate 

algorithm to test the network  
 

Comment:  

The pitch  mean  squared  error  of  training  is:  3.106907. 10-3 

The pitch  mean  squared  error  of  test  is: 3.106907.10-3 

The yaw  mean  squared  error  of  training  is: 5.579323. 10-3 

The yaw  mean  squared  error  of  test  is: 5.579323. 10-3 

The black box model of the TRMS object with 2 degrees 

of freedom on Matlab/Simulink and the real model when 

using the Conjugate  gradient  with  Powell-Beale restarts 

algorithm to train and test the network is shown in Figures 11 

to 14. 

 
Fig. 11 The yaw angle of the TRMS model when using the 

Conjugate  gradient  with  Powell-Beale restarts algorithm to 

train the network 

 

Fig. 12 The pitch angle of the TRMS model when using the 

Conjugate  gradient  with  Powell-Beale restarts algorithm to 

train the network 

 

Fig. 13 The yaw angle of the TRMS model when using the 

Conjugate  gradient  with  Powell-Beale restarts algorithm to 

test the network 
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Fig. 14 The pitch angle of the TRMS model when using the 

Conjugate  gradient  with  Powell-Beale restarts algorithm to 

test the network  
 

Comment:  

The pitch  mean  squared  error  of  training  is:  1.188296. 10-4 

The pitch  mean  squared  error  of  test  is: 1.188296.10-4 

The yaw  mean  squared  error  of  training  is: 6.483548. 10-5 

The yaw  mean  squared  error  of  test  is: 6.483548. 10-5 

The black box model of the TRMS object with 2 degrees 

of freedom on Matlab/Simulink and the real model when 

using the Conjugate  gradient  with  Fletcher-Reeves 
algorithm to train and test the network is shown in Figures 15 

to 18. 

 

Fig. 15 The yaw angle of the TRMS model when using the 

Conjugate  gradient  with  Fletcher-Reeves algorithm  

to train the network 

 
Fig. 16 The pitch angle of the TRMS model when using the 

Conjugate  gradient  with  Fletcher-Reeves algorithm to train 

the network 

 

 

 
Fig. 17 The yaw angle of the TRMS model when using the 

Conjugate  gradient  with  Fletcher-Reeves algorithm to test 

the network 

 
Fig. 18 The pitch angle of the TRMS model when using the 

Conjugate  gradient  with  Fletcher-Reeves algorithm to test 

the network  

Comment:  

The pitch  mean  squared  error  of  training  is:  5.216955. 10-4 

The pitch  mean  squared  error  of  test  is: 5.216955.10-4 

The yaw  mean  squared  error  of  training  is: 3.315153. 10-4 

The yaw  mean  squared  error  of  test  is: 3.315153. 10-4 

The black box model of the TRMS object with 2 degrees 

of freedom on Matlab/Simulink and the real model when 
using the Conjugate  gradient  with  Polak-Ribiere  updates 

algorithm to train and test the network is shown in Figures 19 

to 22. 

 

Fig. 19 The yaw angle of the TRMS model when using the 

Conjugate  gradient  with  Polak-Ribiere  updates algorithm 

to train the network 
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Fig. 20 The pitch angle of the TRMS model when using the 

Conjugate  gradient  with  Polak-Ribiere  updates algorithm 

to train the network 

 

Fig. 21 The yaw angle of the TRMS model when using the 

Conjugate  gradient  with  Polak-Ribiere  updates algorithm 

to test the network  

 
Fig. 22 The pitch angle of the TRMS model when using the 

Conjugate  gradient  with  Polak-Ribiere  updates algorithm 

to test the network 
Comment:  

The pitch  mean  squared  error  of  training  is:  3.889634. 10-4 

The pitch  mean  squared  error  of  test  is: 3.889634.10-4 

The yaw  mean  squared  error  of  training  is: 4.608945. 10-4 

The yaw  mean  squared  error  of  test  is: 4.608945. 10-4 

The black box model of the TRMS object with 2 degrees 

of freedom on Matlab/Simulink and the real model when 

using the Gradient  descent  with  adaptive  learning rate 

algorithm to train and test the network is shown in Figures 23 

to 26. 

 

Fig. 23 The yaw angle of the TRMS model when using the 

Gradient  descent  with  adaptive  learning rate algorithm to 

train the network 

 
Fig. 24 The pitch angle of the TRMS model when using the 

Gradient  descent  with  adaptive  learning rate lgorithm to 

train the network  

 
Fig. 25 The yaw angle of the TRMS model when using the 

Gradient  descent  with  adaptive  learning rate algorithm to 

test the network 

 
Fig. 26 The pitch angle of the TRMS model when using the 

Gradient  descent  with  adaptive  learning rate algorithm to 

test the network  
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Comment:  

The pitch  mean  squared  error  of  training  is:  2.760583. 10-2 

The pitch  mean  squared  error  of  test  is: 2.760583.10-2 

The yaw  mean  squared  error  of  training  is: 6.769054. 10-2 

The yaw  mean  squared  error  of  test  is: 6.769054. 10-2 

The black box model of the TRMS object with 2 degrees 

of freedom on Matlab/Simulink and the real model when 

using the Scaled  conjugate  gradient algorithm to train and 

test the network is shown in Figures 27 to 30. 

 

Fig. 27 The yaw angle of the TRMS model when using the 

Scaled  conjugate  gradient algorithm to train the network  

 
Fig. 28 The pitch angle of the TRMS model when using the 

Scaled  conjugate  gradient algorithm to train the network 

 
Fig. 29 The yaw angle of the TRMS model when using the 

Scaled  conjugate  gradient algorithm to test the network 

 

Fig. 30 The pitch angle of the TRMS model when using the 

Scaled  conjugate  gradient algorithm to test the network  

Comment: 

The pitch  mean  squared  error  of  training  is:  3.441739. 10-4 

The pitch  mean  squared  error  of  test  is: 3.441739.10-4 

The yaw  mean  squared  error  of  training  is: 1.333501. 10-4 

The yaw  mean  squared  error  of  test  is: 1.333501. 10-4 

Comment: The simulation results show that when using 

the same data sets with different training algorithms to 

recognize the TRMS object model for different results, the 
mean squared error between the models. The real object 

and recognition model of the training model and the test 

model decreases from 10-2 to 10-5. With these datasets, if 

using the training algorithms are: Conjugate  gradient  with  

Powell-Beale  restarts, Conjugate  gradient  with  Fletcher-

Reeves, Conjugate  gradient  with  Polak-Ribiere  updates 

or Scaled  conjugate  gradient, the squared deviation is 

about 10-4 or 10-5 are both acceptable. 

 

V. CONCLUSION 

Building a model of the TRMS according to the black 

box model using Neural network through the simulation on 

Matlab and comparing with the real model shows that the 

mean square error between the training and the testing 

model in both yaw and pitch angles when using the same 

network training structure and datasets, we can use the 

models using the training and testing algorithms: 
Conjugate  gradient  with  Powell-Beale  restarts, 

Conjugate  gradient  with  Fletcher-Reeves, Conjugate  

gradient  with  Polak-Ribiere  updates hoặc Scaled  

conjugate  gradient because of small model bias, and the 

model trained and tested by the experts should not be used 

algorithm: Gradient  descent, Gradient  descent  with  

momentum  and  adaptive  rate or Gradient  descent  with  

adaptive  learning rate because of large model error. The 

next research is expected that the authors will build a black 

box model or a gray box model thanks to GA identification 

in order to exploit and test modern control methods to 

control TRMS objects. 
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