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Abstract - Renewable energy demand keeps increasing each 

day due its significances over the conventional sources of 

energy, particularly in this era where the world is faced with 

many challenges related to clean energy. Among Renewable 

Energy Resources (RERs), wind energy has proven to be 

cheaper and readily available. However, it is intermittent in 

nature and therefore affecting the voltage and frequency 
stability of microgrid systems, especially in occurrence of 

wind power ramping events. In this work, a simple Deep 

Reinforcement based Automatic Load Frequency Controller 

(DRL-ALFC) is designed so as to improve the frequency 

stability of an ALFC during wind power ramping events in a 

wind-thermal micro grid. A DRL-ALFC for wind-thermal 

microgrid is verified in MATLAB/Simulink environment 

where it shows the ability to adapt to the variations wind 

power fluctuation and load. 

Keywords - Automatic load frequency controller, Deep 

Reinforcement based Automatic Load Frequency Controller 

(DRL-ALFC), Renewable energy resources (RERs), Wind-
Thermal microgrid. 

I. INTRODUCTION 

In recent time, increased environmental impact due to 
use of fossil fuel as a conventional source of electric power 

generation has made researchers to put more attention on 

renewable energy resources as alternative energy resources. 

Thus, there is high penetration of renewable energy resources 

in today’s micro and main power grid system. This is 

because the wind energy and other renewable energy 

resources are greener sources of energy and do not depreciate 

with time [1]. Although, renewable energy resources like 

wind energy are intermittent in nature and cause power 

system imbalance especially on the occurrence of wind 

power ramping events [2][3].  

The occurrences of wind power ramping events may 

cause serious frequency stability problem to the microgrid 

[4]. This necessitates the need to develop an intelligent 

automatic load frequency controller that is capable to capture 

the predicted wind pattern and establishes control effort that 

will minimize the effect of wind power ramping events [5].  
 

Availability and reliability of conventional energy 

resources like thermal is quite high and predictable [6]. 

Hence, the wind power plant can be integrated with thermal 

power plant so as to enhance the stability and reliability of 

the system [7]. Wind-thermal MG systems behave in a non-

linear fashion; however, traditional control architectures for 

maintaining power system frequency are designed assuming 

that plant can be modelled using ordinary linear differential 

equations. This assumption is reasonable for minor 

frequency deviations given the present level of non-linearity 
in power systems. Owing to an increase in the proportion of 

wind power generation, along with an increase in the use of 

battery energy storage systems, power system dynamics are 

becoming increasingly non-linear [8]. The conventional 

controls are PI/PID based with fixed gains. The gains are 

optimally tuned by several means to reduce frequency 

deviation and maintain system frequency under steady state 

conditions. 
 

Several researchers have considered/included RERs in 

their proposed automatic load frequency control (ALFC) 

studies using various controllers during the last decade. Ref 
[9] authors proposed traditional proportional integral 

controller for distributed V2G frequency control, in [10] an 

adaptive PID controller was discussed, in [11], [12] authors 

presented a robust proportional integral controller, in [13] an 

ALFC based on the method of model predictive controller is 

discussed, Fuzzy based multi area load frequency controller 

is discussed in [9], [14].  

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
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The methods that have been discussed above considered 

the power system model as a linear system, thermal power 

plant nonlinearities like dynamics of the boiler, governor 

dead-band (GDB), turbine reheat mechanism, and generator 

rate constraint (GRC) were not put into considerations. 
Moreover, volatile nature associated with RERs and use of 

fast acting power conversion devices which reduces inertia of 

the power system, the power system operation is highly 

affected [15]. In order to manage aforementioned challenges 

of non-linear feature of a microgrid, the MG operation 

requires a robust and intelligent load frequency controller 

[16]. 
 

Since evolution of deep learning, DRL based control 

strategy has been showing promising results in solving the 

load frequency control problem [17], [18], [19], [20], [21]. 

These control strategies use frequency signal to optimize the 
control action in order to improve the system response [21]. 

In this context, ref. [17], [18], [19] designed multi-agent 

generation control based on reinforcement learning to 

improve generation scheduling, where optimal control 

actions are obtained. Ref. [22] studied a data driven model 

based on DRL to continuously optimize the actions in order 

to improve the performance of the load frequency controller 

in a single-area power system. However, the existing works 

again neglect the effect of generation dead bands (GDB), 

generation rate constraints (GRC) and power ramping events 

for RERs which results to respond in the nonlinear fashion. 

However, in practice such nonlinear behaviors should not be 
neglected [14], [23].  

 

The aim of this paper is to study the performance of an 

ADRL-ALFC for a wind-thermal micro grid with the DRL-

Agent trained using DDPG algorithm. Depending on 

operating condition, the agent is trained to give optimal gain 

values, which good enough maximize the long-term reward 
and the results reveal its strength in frequency control with 

nonlinear behavior of the system. In addition to that, the 

controller is robust and gives good results during the event of 

wind power ramping. 
 

The technique suggested in this study consists of offline 

learning to achieve intended objective and online utilization. 

The control problem is designed as deep reinforcement 

problem, which uses the deep neural network to corelate the 

observation and optimal actions by adjusting network 

parameters, all this is done in the course of offline training. 

Then the trained network is deployed online, the controller 
gives out the control command which is a result of required 

proportional and integral gain values based on the observed 

system states. The RL agent with DDPG algorithm is used to 

solve the problem.  

II. SYSTEM CONFIGURATION AND 

MATHEMATICAL MODEL 

A. Mathematical modelling of Thermal Power plant 

The mechanical power is provided by prime mover, in 
thermal power plant mover a steam turbine and the 

mechanical power is controlled by opening and closing the 

steam valve. Let ∆𝑃𝑣𝑎𝑙𝑣𝑒  be denoting the change in steam 

valve position to control amount of steam to the turbine, and 

∆𝑃𝑚𝑒𝑐ℎ−𝑡ℎ𝑒𝑟𝑚 be denoting the change in mechanical power 

of the turbine caused by ∆𝑃𝑣𝑎𝑙𝑣𝑒 . If 𝜏𝑇  is a steam turbine time 

constant then, the relation between ∆𝑃𝑚𝑒𝑐ℎ and ∆𝑃𝑣𝑎𝑙𝑣𝑒  can 

be expressed as;  

∆𝑃𝑚𝑒𝑐ℎ−𝑡ℎ𝑒𝑟𝑚 =
1

1 + 𝜏𝑇𝑠
∆𝑃𝑣𝑎𝑙𝑣𝑒  

(1) 

If the signal ∆𝑃𝑐 is input to the governor and 𝜏𝑔 be the 

governor time constant therefore, equation (2) states the 

relation between the ∆𝑃𝑐 and ∆𝑃𝑣𝑎𝑙𝑣𝑒  

∆𝑃𝑣𝑎𝑙𝑣𝑒 =
1

1 + 𝜏𝑔𝑠
∆𝑃𝑐 

(2) 

In the case where there is large power imbalance 
between the source and load, the linearized MG model may 

not give required response. The nonlinear response of the 

wind-thermal micro grid is contributed by the GDB and 

GRC, therefore to it is important to include these constraints 

in the model. These non-linearities can be modelled as per 

equation (3) and (4) and summarized in figure 1.  
∆𝑃𝑣𝑎𝑙𝑣𝑒 = max(0, ∆𝑃𝑐(𝑡) − 𝐺𝐷𝐵) +min(0, ∆𝑃𝑐(𝑡) + 𝐺𝐷𝐵) (3) 

∆𝑃𝑚 = ∫[𝑚𝑖𝑛 (𝜎,max (0,
𝑑𝑃𝑚

𝑑𝑡
)) +𝑚𝑎𝑥 (−𝜎,min (0,

𝑑𝑃𝑚

𝑑𝑡
))] 𝑑𝑡 (4) 

 

B. Mathematical modelling of Wind Power plant 

Here the wind power plant is assumed to follow 

Maximum power point tracking. That is to say the wind 

speed change will always direct affect the wind power 

output hence the electrical power generated by wind turbine 

generator. Figure 1, conceptualize the MPPT for wind 

turbine model. 

Since we are interested with only electrical output variation 

then, the above model can be considered as a black box 

which gives variable electrical output.   

 

 

 
Fig. 1 The governor and turbine non-linear model 

 
 

𝜎

−𝜎

-+∆𝑃𝑐

∆𝑃𝑣𝑎𝑙𝑣𝑒

∆𝑃𝑚

Dead band GRC

Governor Turbine

∑

 
Fig. 2 wind power plant 

 
 

 

MPPT

Turbine-

Generator

Dynamic 

model

Mechanical 

input from 

wind

Electrical 

output



E. G. Swetala et al. / IJEEE, 8(8), 1-8, 2021 

 

3 

B. Mathematical of the generator-load dynamics 

If the MG is supplying power to some motor loads, 

there is a need to include the load dynamic model in load 

frequency control. This is because the motor loads are 

sensitive to frequency variations. If 𝐷 is a p.u change in load 

due to p.u change in frequency and ∆𝑃𝑒 is a net change in 

electrical power then the change in electric power out of the 

system will be balanced by; 

 Any change in electrical power demand(∆𝑃𝐿) in 

the network and  

 Change in load due to frequency deviation. 

Therefore, it can be stated as; 

∆𝑃𝑒 = ∆𝑃𝐿 +𝐷∆𝜔 (5) 

In the occurrence of any imbalance, there will be power 

swing, represented by swing equation (4) 

𝑀
𝑑(∆𝜔(𝑡))

𝑑𝑡
= ∆𝑃𝑚 − ∆𝑃𝑒 

(6) 

Substituting equation (3) into the swing equation (4) can 

be represented in Laplace and make ∆𝜔 as the dependent 

variable then,  

∆𝜔(𝑠) = (∆𝑃𝑚 − ∆𝑃𝑒)
1

𝑀𝑠 + 𝐷
 

(7) 

 

 

III. THE PROPOSED METHOD 

A. Methodology 

In this work, the wind-thermal MG load frequency 

control problem is designed in RL environment. The 

objective is to improve the system performance by designing 

a intelligent and robust to minimize the frequency deviation 
when the MG is operated under several different conditions.  

 

In Deep reinforcement learning environment, a deep 

neural network is used to learn to give proper actions based 

on system’s inputs. The DNN use the reinforcement learning 

technique to adjust its weights.  
 

The core of reinforcement learning constitutes of the RL 

Agent and environment, the environment is defined to 

represent the dynamics of the wind-thermal microgrid model 

defined as equations (1)-(7). The environment always 

changes its state based on the action given by the agent to it. 

The RL agent is trained to take proper actions i.e the optimal 

gain values to which makes up the control signal used to 

control the amount of steam by opening and closing the 

steam valve. The good control actions are ones which 

minimize the frequency deviation by balancing the demand 

and the source. In this problem, the environment states 

observed by the agent are the frequency deviation, rate of 

change of frequency and integral of the frequency deviation 
signals of the MG.  
 

The suggested solution is conceptualized as illustrated 

in figure 4. The technique involves two important phases, 

the offline phase where the training process will adjust 

neural network’s weights and biases and the online 

deployment of the trained agent model. In the course of 

learning, the agent tries to explore the environment by 
giving different actions that will maximize the agent’s 

rewards. Here the rewards are defined as the function of 

frequency deviation, with the objective of minimizing the 

deviation. After explorations, proper weights and biases of 

the agent are updated. This will define the RL agent that can 

be applied to control the thermal power plant generation to 

compensate the wind power deviation in order to meet the 

load demand. Considering environment constraints (1)-(7), 

the actor gradients are calculated and used to adjust neural 

networks’ weights and biases that will represent the agent.   

  

B. Deep Reinforcement Learning 

The training process aims to adjust the agent’s 

parameters, a Deep Neural Network (DNN) is utilized to 

adjust the generation command (∆𝑃𝑐) by giving the proper 

gain values towards global objective of load frequency 
control. The agent’s parameters are the DNN’s weights and 

biases denoted by 𝜃𝜇 = [𝑊𝑇, 𝑏].  

 

In order to improve model’s frequency response, the 

reward function is defined as sum of the reciprocal of the 

absolute of frequency deviation with denominator added by 

one in order to avoid denominator to be infinite when 

frequency deviation equals to zero. This can also be used to 

define the action-value function modeled as; 

 
Fig. 3 Generator-load model 
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Fig. 4 Framework of proposed work 
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𝑄(𝑠, 𝑎) =∑∆𝑡

𝑇

𝑡=0

∑(
1

1+ ∆𝑓𝑖
)

𝑛

𝑖=1

 

(8) 

Where 𝑄(𝑠, 𝑎) is a function of actions 𝑎 and states 𝑠, defined 

as per equations (9) and (10) below; 

𝑎𝑡 = {𝐾𝑝(𝑡), 𝐾𝑖(𝑡)} (9) 

𝑠𝑡 = {∆𝑓𝑡 ,
𝑑(∆𝑓𝑡)

𝑑𝑡
,∫∆𝑓𝑡} 

(10) 

 

Each step of exploring the environment, one scenario 
called episode step is created. At the end of each episode, the 

system frequency deviation will be calculated.it is always 

expected that the Q function has to be maximized in such a 

way that the agent’s parameters are optimal. It can be written 

that parameter 𝜃𝜇 as; 

𝐸𝐷𝜃𝜇
𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 [𝑄(𝑠, 𝑎)] (11) 

where, D stands for memory replay buffer (containing 

information of all episode steps), records controller’s 

experience. D contains the states 𝑠, control actions 𝑎 and 

rewards.  

 

C. Deep Deterministic Policy Gradient based solution 
Training the DRL Agent, the problem is formulated 

using equation (1)-(7) together with (9). Using the deep 

deterministic policy gradient, the actor’s gradient is 

computed and iteratively adjust the agent’s parameters.  

The initialization of the exploration stage is achieved by 

means of picking random actions from a noise sample. The 

moving average noise is employed as the exploration noise 

[15]. 

𝜇 ,(𝑠𝑡) = 𝜉𝑡𝜇(𝑠𝑡 , 𝜃𝑡
𝜇
) (12) 

 

The randomly selected factor 𝜉𝑡 for every iteration has to 

be computed from a sequence of random numbers by the use 

of the moving average. On completion of the exploration 

step, the expected Q-value made maximum by changing the 

agent’s actions 𝒂 depending on the environment’s reward, 

here the agent’s action 𝒂 is optimally changed by optimizing 
parameters of the agent. Using the chain rule, the agent’s 

weights and biases are updated depending on the gradient of 

Q value function differentiated with respect to each control 

actions 𝒂 [15].  

𝜃(𝑘+1) = 𝜃(𝑘) + 𝑛∇𝜃(𝑘)𝐽 (13) 

∇𝜃(𝑘)𝐽 ≈ 
1

𝑚
∑ ∇𝑎𝑄(𝑠, 𝑎|𝜃

𝑄)|𝑠=𝑠𝑖 ,𝑎=𝜇(𝑠𝑖)
𝑖

∇𝜃𝜇𝜇(𝑠|𝜃
𝜇)|𝑠=𝑠𝑖  

(14) 

With m representing a mini-batch size and 𝑛represents 

learning rate.  

 

D. DDPG Architecture framework 

The DDPG architectural framework is presented in the figure 

5. The working flow is explained in the section E below 

  

E. The Algorithm 

The proposed control method uses DDPG algorithm to 

train the agent’s parameters that will enable the controller to 

give out optimal action values depending on the system’s 

states. This is only achieved after successful training of the 

agent. Based on the designed ADRL ALFC environment the 
parameter can be updated by means of DDPG algorithm as 

illustrated in table 1 below; 

Table 1. The DDPG algorithm 

Algorithm 4: DDPG Algorithm 

1 Randomly initialize critic 𝑄(𝑠, 𝑎|𝜃𝑄) and actor 

𝜋(𝑠|𝜃𝜋) with weights 𝜃𝑄 and 𝜃𝜋 respectively 

2 Initialize target network 𝑄′ and 𝜇′ with weights 

𝜃𝑄
′
← 𝜃𝑄 and 𝜃𝜇

′
← 𝜃𝜇 

3 Initialize replay buffer 𝐷 

4 for episode ← 1:𝑀 do  

5 Initialize random process 𝑁 for action 

exploration 

6 Receive initial observation state 𝑠1 

7 for 𝑡 ← 0: (𝑇 − 1) do 

8 Select action 𝑎𝑡 = 𝜇(𝑠𝑡|𝜃
𝜇) + 𝜉𝑡 with 

exploration noise 

9 Execute action 𝑎𝑡  and observe reward 𝑟𝑡  and 

observe new state 𝑠𝑡+1 

10 Store transition (𝑠𝑡 ,𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in 𝐷 

11 Sample a random minibatch of 𝑁 transitions (𝑠𝑖, 
𝑎𝑖, 𝑟𝑖, 𝑠𝑖+1) from 𝐷 

12 Set 𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄′(𝑠𝑖+1, 𝜇
′(𝑠𝑖+1|𝜃

𝑄′) 

13 Update critic by minimizing the loss: 𝐿 =


1

𝑚
∑ (𝑦𝑖 −𝑄(𝑠𝑖 , 𝑎𝑖|𝜃

𝑄))
2

𝑖   

 
Fig. 5 DDPG architecture framework 

 

 

Noise Optimization

online Actor’s network 

parameter 

(Actor’s weights)

Optimization

online  Critic’s network 

parameter 

(Critic’s weights)

Simulation ALFC 

model

(environment)

Target Actor 

network’s parameter

Target Critic 

network’s parameter

Replay Buffer 𝑁𝑥(𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖+1)

Sample actions

Actor Critic

Update 

parameter
Actor network 

gradient
Update 

parameter
Gradient

𝑎 = 𝜇(𝑠)

Critic network 

gradient

Soft update𝑦𝑖

sample

𝑎𝑖 𝜇(𝑠𝑖)

save



E. G. Swetala et al. / IJEEE, 8(8), 1-8, 2021 

 

5 

14 Update the actor policy using the sampled policy 

gradient: 

∇𝜃𝜇𝐽

≈ 
1

𝑚
∑ ∇𝑎𝑄(𝑠, 𝑎|𝜃

𝑄)|𝑠=𝑠𝑖,𝑎=𝜇(𝑠𝑖)
𝑖

∇𝜃𝜇𝜇(𝑠|𝜃
𝜇)|𝑠=𝑠𝑖  

15 Update the target networks: 

𝜃𝑄
′
= 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄

′
 

𝜃𝜇
′
= 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇

′
 

16           end for 

17 end for 

 

 

IV. SIMULATION RESULTS AND DISCUSSION 

 

A. Simulation model 

The MG ALFC mathematical model was developed in 

Simulink environment, the model dynamics reflect equations 
(1)-(7). The model constituted of an RL Agent block, 

Reward calculation subsystem and observation subsystem as 

shown in figure 6, the model parameters are shown in table  

 

 

 

Fig. 6 Wind-thermal Micro Grid ADRL-ALFC Simulation model 

2. In this model the reward, action and observations are defined as per equation (8)-(10) 
 

Table 2. Parameter values of the thermo power plant 

Parameter Value 

𝜏𝑇  0.5s 

𝜏𝑔 0.2s 

D 0.8 

GDB 0.06% 

GRC 0.00017p.u/s 

M 10 

M 10 

The implementation was done by the help of deep 

designer app of MATLAB r2020b version. The DDPG 

training hyperparameter settings are summarized in table 3 

below. 

 

 

 

 

 

 

Table 3. Algorithm hyperparameters 

Parameter Value 

Target smooth factor 0.001 

Experience buffer length 1000000 

Discount factor 0.99 

Minibatch size 256 

Actor learning rate 0.0001 

Critic learning rate 0.001 

 

The wind thermal microgrid with non-reheated thermal 

as in the figure 6 was simulated in the MATLAB/Simulink 

environment. The wind and the wind power variation of the 

whole day is shown in the figure 7, it can be seen in the 

interval of time from 8th to 20th hour there was a wind power 

ramping event.   
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Fig. 7 24 hours wind power pattern in an area 

A. Agent training results 

Fig. 8 Episode rewards for each episode number of the 

training phase 

The model was trained for 150 episodes and each 

episode had 300 steps. Each step returned a reward value 

which was summed to obtain an overall episode reward. 

Figure 8 shows a plot of episode reward against the episode 

number. Figure 9, is a plot of episode Q values against the 

episode number. The training was targeted to achieve at least 

average reward of at least 298 for better results. 

 
Fig. 9 Episode Q-Value plot for each episode step of the 

training phase 

B. Simulation Testing Results Under Different Scenarios 

Scenario I: Comparison of the proposed method based on 

DDPG algorithm Vs DQN algorithm. 

 

Here a step change of 0.2 p.u of wind power occurred at 
instant t = 1 second is considered while assuming the load 

remain constant. The figure 10 below shows that in the 

proposed method, frequency deviation is negligibly small as 

compared to the DQN based algorithm.  

 
Fig. 10 Effect of 0.2 p.u change of wind power 

Scenario II: Effect of wind power ramping event. 
 

Both ramp up and ramp down events are considered and 

the frequency deviation for two algorithms are compared. 

The results controller is able to effectively adjust the 

generation command in order to maintain the frequency and 

meet the load requirement as required. Figure 11 below 

shows the occurrence of power ramping and the frequency 

deviation.  
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Fig. 11 Effect of wind power ramping on frequency 

deviation 

Scenario III. Test of robustness of the controller 

The generator time constants were allowed to vary by 

+25% and -25% and the frequency response were studied. It 

shows that there is negligible effect in the frequency 

deviation due to variation of the time constants. This prove 

that the controller is efficient and robust.  

 
Fig. 12 Robustness of the proposed controller 

 

Scenario IV: Comparison of the control action signal. 

Fig. 13 Comparison of the control action signal 

Following a step change of 0.2 p.u of wind power, the 

control signal smoothness is evaluated, the DDPG based 

stress/tear and wear to the actuator or the steam valve of the 

thermal power plant. While that of DQN based controller is 

having higher on-off frequency hence high degree of tear and 
wear of the steam valve. This is because that the DQN action 

space is discrete while that in DDPG is continuous 

 

V. CONCLUSION 

This paper has tried to analyze the performance of 

adaptive load frequency controller based on deep 

reinforcement learning. The wind power ramping events, 

robustness of the controller and effect of control action to 

steam valve were taken into consideration and the proposed 

method seems to have promising results. DDPG based ALFC 

outperform the DQN based controller.  

The operation of Wind-thermal microgrid can be used to 
reduce the ozone layer depletion and hence global warming 

effect, this is because the proposed controller considers the 

maximum wind power point tracking and the thermal was 

used just to compensate the deviations so as to meet the load 

demand.  
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