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Abstract - Security and economics of a power system are 

optimized by the control of reactive power dispatch from 

synchronous generators and var sources like SVCs installed 

in the system. Optimal reactive power dispatch (ORPD) is 

achieved by properly setting the value of control parameters. 

Generator bus voltages, transformer tap positions and SVC 
settings are the control parameters for reactive power 

optimization. Generally, artificial intelligence techniques 

are used for optimizing the values of control variables.  In 

this work, a hybrid bat optimization algorithm based on 

particle swarm algorithm, namely HPSOBA, is proposed for 

reactive power optimization. This algorithm mimics the 

echolocation behavior of microbats. Microbats emit a kind 

of SONAR and wait for the echo that is bounced from the 

prey. The bats analyse the echo for understanding the 

location and size of the prey in their path. This behavior is 

copied in the new algorithm. The strength of this algorithm 

is tested by comparing its performance with that of the other 
bio-inspired algorithms like Biogeography Based 

Optimization (BBO). The test systems taken are the standard 

IEEE-30 bus and IEEE-57 bus systems. The results obtained 

are much encouraging.    

Keywords — Optimal reactive power dispatch, Particle 

swarm optimization, Bat optimization algorithm, Loss 

minimization, VD minimization. 
 

I. INTRODUCTION 

Reactive power or voltage control is a primary requisite 

for ensuring the security of power systems [1]-[2]. Reactive 

power control is possible by the installation of new var 

sources or by optimizing the reactive power output from 

synchronous generators and already installed var sources in 
the system. Non-optimized reactive power flow is indicated 

by increased real power loss in a power system. 

Minimization of real power loss is, therefore, necessary for 

optimal reactive power dispatch [3]. Another less important 

quantity that is adjusted to achieve this task is voltage 

deviation at load buses. The ORPD is a nonlinear, 

multiobjective and multi constrained optimization problem 

[4]-[5]. Finding the global best solution for this problem is 

not so easy.  

 

The decision variables in this optimization problem are 
generator bus voltage magnitudes, transformer tap settings 

and var output from SVCs located in the system [6]-[7]. 

These control variables are non-continuous, and the problem 

has multiple minima and maxima. An efficient optimization 

algorithm is needed for attacking these kinds of problems. 

 

Reactive power optimization is long being attempted by 

conventional optimization techniques such as Linear 

Programming (LP) [8], Nonlinear Programming (NLP) [9], 

Mixed-integer Programming (MIP) [10], Decomposition 

Technique (DT) [11], Dynamic Programming (DP) [12] has 

been studied.  Gradient-based optimization algorithms have 
also been used to solve the ORPD problem [13]-[15]. These 

methods are incapable of handling nonlinear, discontinuous 

functions and constraints and problems having multiple local 

minimum points. Newton method has been successfully used 

in [16]–[18]. In all these techniques, simplifications have 

been done to overcome their limitations.   

 

Recently, intelligence-based optimization methods have 

been proposed for engineering optimization problems. Wu, 

in [19], used Evolutionary Programming (EP) in a power 

system to accomplish optimal reactive power 
dispatch/voltage control. Lai in [20] showed EP is more 

capable of handling non-continuous and non-smooth 

functions comparing nonlinear programming. In [21], Lee 

has combined the Simple Genetic Algorithm (SGA) with 

successive linear programming for solving reactive power 

control problems. Particle Swarm Optimization (PSO) was 

applied in [22] for reactive power and voltage control 

considering voltage security assessment. In [23] Differential 

Evolutionary (DE) algorithm is implemented to the optimal 

http://www.internationaljournalssrg.org/
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reactive power dispatch problem. Mahadevan in [24] solved 

the ORPD problem by a Comprehensive Learning Particle 

Swarm Optimization Algorithm (CLPSO) approach. Other 

approaches for solving this problem, such as SARCGA and 

SOA, are introduced in [25]-[26]. For multiobjective reactive 
power optimization, some heuristic algorithms are used. 

Strength Pareto Evolutionary Algorithm (SPEA) [27]-[28] 

have been applied to multiobjective ORPD problems, and 

multiobjective differential evolution (MODE) [29] has been 

applied to multiobjective optimal power flow problems.  

 

Most recently, optimization algorithms have been 

developed based on the food searching behavior of animals. 

Some animals are performing well with good intelligence in 

some actions. This intelligent behavior motivated researchers 

across the world to develop what are called bio-inspired 

algorithms. These bios inspired algorithms are widely 
exploited for power system optimization. Some of the 

bioinspired optimization techniques for power system 

optimization are Ant Colony Optimization (ACO) [30], 

Bacterial Foraging Algorithm (BFA) [31], FireFly Algorithm 

(FFA) [32], Artificial Bee Colony (ABC) Algorithm [33] and 

Biogeography Based Optimization (BBO) [34] algorithm. 

These algorithms produce encouraging results in power 

system related optimization.  

 

After the successful implementation of many bio-

inspired optimization algorithms, increased attention is being 
given to developing new bio-inspired algorithms. In this 

paper, the newly introduced BA algorithm is suggested for 

the ORPD problem. The algorithm copies the echolocation 

characteristics of natural bats. Bats are found to be intelligent 

in searching their food by analyzing the echo of the waves 

emitted by them.  

 

This paper is organized as follows: the problems of 

reactive power and voltage control are formulated in Section 

2. Section 3 explains the HPSOBA algorithm, which can be 

used effectively in power engineering problems. Section 4 

presents numerical results and discussions. Conclusions are 
drawn in section 5. 

II. PROBLEM FORMULATION 

The objective of this work is to optimize the reactive 

power flow in a power system by minimizing the real power 

loss and the Sum of load bus voltage deviation. Therefore, 

an augmented objective function is formed with the two 

objective components along with suitable weights. 

 

A. Objective function 

The objective function of this work is the weighted sum 

of real power loss and voltage deviation. The design 

parameter values corresponding to the minimum value of the 

objective function are identified. Hence, the objective 

function can be expressed as: 

   min 1 1Lf wP w VD    

Where w is the weighing factor for real power loss and 
voltage deviation and is set to 0.7. 

 

a) Real power loss minimization (PL) 

The total real power of the system can be calculated as 

follows. 

    2 2

1

2 cos 2
NL

loss k i j i j i j

k

P G V V VV  


   

 Where NL is the total number of lines in the system; Gk is 

the conductance of line k, Vi and Vj are the magnitudes of 
the sending end and receiving end voltages of the line; δi 

and δj are angles of the end voltages.  

b) Load bus voltage deviation minimization (VD) 

Bus voltage magnitude should be maintained within the 

permissible range to ensure a quality supply of electrical 
power. The voltage profile is improved by minimizing the 

deviation of the load bus voltage from the reference value (it 

is taken as 1.0 p.u. in this work). 

   
1

3
PQN

i ref

k

VD V V


    

B. Constraints 

The minimization problem is subject to the following 

equality and inequality constraints 
 

a) Equality constraints 

1) Load Flow Constraints 

The equality constraints represent the load flow 

equations, which are given below for ith bus: 

    
1

cos 4
NB

Gi Di i j ij k ij j j

j

P P VV Y G   


   

    
1

sin 5
NB

Gi Di i j ij k ij j j

j

Q Q VV Y G   


     

Where PGi, QGi are the active and reactive power of ith 

generator, PDi,QDi is the active and reactive power of  ith 

load bus.  
 

b) Inequality constraints 

2) Generator constraints 

Generator voltage and reactive power of ith bus lie 

between their upper and lower limits as given below: 

 min max 1,2,... 6Gi Gi Gi GV V V i N     

 min max 1,2,... 7Gi Gi Gi GQ Q Q i N    

Where VGi
min and VGi

max are the minimum and maximum 

voltage of ith generating unit and QGi
min and QGi

max are the 

minimum and maximum reactive power of ith generating 

unit. 
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3) Load bus constraints 

 min max 1,2,... 8PQi PQi PQi PQV V V i N    

Where, are the minimum and maximum value voltage 

of load bus i. 

4) Transmission line constraints 

 max 9Li LiS S   

Where SLi is the apparent power flow of ith branch, and 

SLi max is the maximum apparent power flow limit of ith 

branch. 

Transformer tap settings are bounded between upper 

and lower limit as given below: 

 min max 1,2,... 10i i i TT T T i N    

Where Ti
min and Ti

max are the minimum and the 

minimum and maximum tap setting limits of ith transformer.  

5) Shunt compensator constraints 

Shunt compensation is restricted by their limits as 

follows: 

 min max 1,2,... 11Ci Ci Ci CQ Q Q i N    

Where QGi
min and QGi

max are the minimum and maximum 

VAR injection limits of ith shunt capacitor. 

 

III. PROPOSED ALGORITHM 

The basic and hybrid versions of the algorithms are 

discussed here. The particle best and global best solutions of 

particle swarm optimization algorithm are incorporated in the 

bat algorithm for updating the position of each bat in the 

hybrid version o the bat algorithm. 
 

A. Particle Swarm Optimization (PSO) 

PSO is a stochastic algorithm motivated by the social 

approach of animals that prefer to be in herds of flocks. PSO 

is extensively deployed for the achievement of the optimal 

solution of many engineering problems due to its flexibility 
and has emerged as the most effective algorithm to compute 

for optimization problems. PSO initializes with fixed 

population size (particles), and each particle is a possible 

potential solution in a search space. Each of these generated 

particles in the swarm moves to the optimal location by 

attaining the velocity with its position. Despite the versatility 

and flexibility of PSO, it gets stuck in the local minima 

during the solution search. Researchers have endeavored to 

develop the enactment of PSO by presenting new variables 

of the formula to regulate and control the optimal search 

process. Some scholars modified it by filtering the 
initialization of the flock, while others presented new factors 

such as constriction coefficient, inertia weight, and mutation 

operation to enhance exploitation and exploration 

characteristics. The two main mechanisms followed by the 

PSO are cognitive and social [35]. 

Mathematically, PSO can be represented by velocity and 

position formulas which are given in (12) and (13), 

respectively, 

 

 

1

1 1

2 2

 pbest 

 gbest (12)

t t t

id id id id

t

gd id

v v c r x

c r x

   

 
 

1 1,2, , ;

1,2, , (13)

t t t

id id idx x v i n

d m

   

 
 

Where i, d, and t denote the index of particles, 

dimension, and discrete-time index being considered, 

respectively. n and m represent the population of particles in 

a group and sizes of a particle, respectively. ω, r1, r2 and C1, 

C2 are inertia weight factor, randomization parameters, and 

social and cognitive components, respectively. 
 

B. Bat Algorithm (BA) 

BA is a progressive metaheuristic optimization 

technique and works on the hunting approach adopted by the 

micro-bats. The fundamentals of BA are derived from the 

echolocation-based conduct of the bats that happens 

according to the changing loudness and pulse rates of 
emission. In contrast to the other metaheuristic algorithms, 

BA is not controlled through mutation and crossover and 

provides a decent balance in exploration and exploitation 

mechanisms to search for a globally optimum solution. 
 

Every bat in BA owns a location xi
t and vi

t velocity for 

iteration t to accomplish a solution in a d dimensional search 

space. The simulated micro-bats have a changing loudness 
and frequency. Each bat alters its emission rate and loudness 

throughout searching its prey. Prey pursuing increases 

through a local random walk. The selection for the optimum 

lasts until a stopping criterion is met. The approach follows a 

frequency-tuning exercise to regulate the vibrant 

performance of a flock of bats, and the equilibrium among 

exploitation and exploration can be organized through the 

regulation technique that depends on the factors of BA [36]. 

The mathematical equations of the position, frequency, and 

velocity are given in (14)-16), 

   min max min 14if f f f     

   1

best 1 5t t t

i i i iv v x G f     

 1 1 6 1t t t

i i ix x v    

Where Gbest is the best-approached solution and β in 

[0,1] is a random vector drawn from a uniform distribution. 
 

C. Hybrid PSO and BA (HPSOBA) 

PSO, in its standard form, has an issue of getting stuck 
in local minima that results in slower convergence and 

hinders the achievement of the most optimal solution. On the 

other hand, BA in its standard form offers better exploitation 
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but poor exploration. Poor exploration is due to the lack of 

memory of the best solution found thus far during the 

progression of the optimization process, sometimes causing 

the bats to divert from promising solution search space. This 

requires the introduction of mechanisms that avoid such 
issues, and the presented algorithms resolve the above-

mentioned issues. 
 

The HPSOBA was a multipurpose and distinctive 

technique that combined the significant topographies of the 

standard PSO and BA. The designed technique offered the 

optimal solution of EDP for thermal, hybrid, and all RES-

based plants as cited in [37]. The mathematical 

representation of the HPSOBA is given in (17) and (18), 

 

 

 
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1 1
1
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 pbest 
17

 gbest 
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id id id
t

id
t
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v c r x
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c r x



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  
  
 

 

 1 1(1 ) pbest  18t t t

i i i ix r x r v      

The algorithm was developed using two major 

parameters: a new and unique parameter  and the inertial 

weight that were computed using (19) and (20). 

 19
c

f
r


 

  
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 min max
min max

max

20iter r
iter

 
  

  
    

   
 

The designed algorithm introduced a new factor α that 

was computed using the random pdf r, cognitive, social 

component c of PSO, and frequency component of BA for 

the ranges used in the standard form. Generally, the 

researchers have considered c1 and c2. That’s why these 

parameters have been equated to c in (29). The value of the 

random number r was the same for both α and ω parameters. 
 

D. Implementation of HPSOBA for ORPD 

The step by step procedure for the HPSOBA algorithm 

for optimal reactive power flow is explained below. 

Step 1: Initialize the algorithm parameters of population 

size NP; frequency range; fmax, fmin, velocity bounds; 

vmax,vmin, pulse rate; r and loudness A. 

Step 2: Each virtual bat is represented as a vector of 

control variables. i.e. Xi=[VG1,VG2,…..VG NG,TP1,TP2,…..TP 

NT, Qc1,Qc2….QcNC]. NP Number of virtual bats is 

generated randomly, respecting their limits. 

Step 3:  NR load flow is run, and the objective function 

value is calculated. 

Step 4: The best objective function value is identified. 

Step 5: Start the generation by creating a new virtual bat 

by using equations (14), (15) and (16).   

Step 6: The pulse rate of the bat is compared against a 

randomly generated number. Once a bat approaches its 

prey, it reduces the loudness and increases its pulse 

emission rate. Thus, a bat with a low pulse rate is far away 

from its prey and needs to be improved (better solutions are 

to be identified using local search around the current best 

solution). Only the bat with low pulse rates are modified, 

and the others are retained. 

Step 7: Evaluate the new solution. If the new solution is 

better than the current best solution, then the new solution 

is the current best solution. Otherwise, the old best solution 

is the best solution for the current iteration also. 

Step 8: Repeat steps 5-7 until the convergence criterion 

is not met. 

IV. RESULTS AND DISCUSSIONS 
The effectiveness of the proposed HPSOBA based 

approach is tested in IEEE-30 and IEEE 57 bus systems. The 

algorithm parameters are tuned well to suit the proposed 

work. The optimal parameters of the HPSOBA algorithm 

are; maximum number of generations; 200, velocity limits V; 

[0.005, -0.005], frequency f; [-0.09, 0.09] and loudness limits 

A; [-65, 65]. Reactive power is optimized by optimally 
setting the values of the design variables. Generator bus 

voltages, transformer tap positions and settings of SVCs are 

the control variables or design variables. The population size 

is taken as 30, and the algorithm is run 20 times for obtaining 

the best results. The upper and lower limits of the control 

variables are given in table 1. 

Table 1. Control variables and their limits 

Control Variable Limit   

Generator voltage (VG) (0.9-1.1) p.u. 

Tap setting (TP) (0.9 -1.1) p.u. 

MVAR by static 

compensators (QC) 

(0-30) MVAR 

 

Three different objective functions are considered to 

optimize the reactive power in the system. In case ‘1’, only 

real power loss is minimized, case ‘2’ considers the 

optimization of voltage profile at the load buses and both real 

power loss and the Sum of voltage deviation are taken for 

reactive power optimization in case ‘3’.                      
 

A. IEEE-30 Bus system 

IEEE-30 bus system is a medium size test system and is 

widely used for many powers system-related research works. 

The system line data and bus data are taken from [38]. The 

test system taken has six generating units connected to buses 

1, 2, 5, 8, 11 and 13. There are 4 regulating transformers 

connected between bus numbers 6-9, 6-10, 4-12 and 27-28. 

Two shunt compensators are connected in bus numbers 10 

and 24. The system is interconnected by 41 transmission 

lines.  The dimension of this optimization problem is 12. The 

system is considered under baseload conditions.  
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a) Case 1: Minimization of Real Power Loss 

Real power transmission loss minimization is the major 

component of reactive power optimization objectives, and it 

needs more attention. This case takes only the real power 

loss minimization as the objective function. The proposed 
algorithm is run, and the optimal value of total line loss is 

obtained. Tuned values of control variables corresponding to 

different objectives are given in table 2.  
 

Table 2. Optimal control variables for IEEE-30 bus 

system 

Parameter Case 1 Case 2 Case 3 

V1 1.1000 0.9954 1.0589 

V2 1.0957 0.9644 1.0490 

V5 1.0771 1.0199 1.0281 

V8 1.0791 1.0177 1.0260 

V11 1.1000 0.9776 1.0380 

V13 1.1000 1.0940 1.0418 

TP6-9 1.0027 0.9861 0.9880 

TP6-10 0.9467 0.9025 1.0342 

TP4-12 0.9905 1.1000 1.0294 

TP27-28 0.9696 0.9519 0.9777 

Qc10 10.0000 9.0530 10.0000 

Qc24 10.0000 10.000 10.0000 

PL 4.6205 8.3168 5.1010 

VD 1.7654 0.1346 0.3025 

Real power optimization results by different algorithms 

are compared in table 3. It is clear that HPSOBA is 

performing better than the BBO and PSO algorithms. The 

reduction in reactive power by HPSOBA is higher by 0.3445 

than by BBO. The loss minimization obtained by PSO is 
5.09219 MW. HPSOBA obtains 4.6205 MW. From table 3, 

it is clear that HPSOBA outperforms other algorithms in the 

loss minimization task. The Sum of load bus voltage 

deviation in HPSOBA is 1.7654 MW, while BBO obtains a 

higher value of 2.1410. 

Table 3. Minimization of objective terms (Case 1) 

 

Parameter 

Real Power loss Minimization 

HSPOBA BBO [34] PSO [39] 

Ploss (MW) 4.6205 4.9650 5.09219 

VD (p.u.) 1.7654 2.1410 --- 
 

Var output from SVCs is adjusted for real power 

optimization. It can be seen from Table 4 that the var output 

required by HPSOBA is small. By way of minimizing var 

generation, the reactive power reserve is maximized. It 
results in an improved voltage stability margin.  This is an 

additional benefit offered by HPSOBA than other algorithms 

compared here. 

 

Table 4. Reactive power requirement suggested (Case 1) 

Bus 

Number 

Q requirement (MVAR) 

HPSOBA BBO [34] PSO [39] 

10 10.0000 28.910 15.3650 

24 10.0000 10.070 6.22000 
 

The strength of an optimization technique is usually 

tested by its convergence reliability and speed. The excellent 

convergence quality of HPSOBA is depicted in figure 1. It 

encourages the use of this algorithm for further research.  

 

 

Fig 1. Convergence of HPSOBA in loss minimization 

in IEEE-30 system 

 

b) Case 2: Minimization of Sum of Voltage Deviation 

The objective of minimization of voltage deviation is 

considered in this case. The optimal settings of control 

variables that minimize the Sum of voltage deviation are 

minimized by HPSOBA and BBO algorithms. It is seen that 

the Sum of voltage deviation by BBO is 0.1194 p.u.  This is 

slightly less than the voltage deviation of 0.1346 p.u. 

Obtained by HPSOBA. In this case, BBO performs in a 

better way than HPSOBA. But this is objective is not much 

important as loss minimization. This is for maintaining the 

load bus voltage at about 1.0 p.u. the voltage need not 
exactly be at 1.0 p.u.  

Table 5. Minimization of objective terms (Case 2) 

Parameter Voltage deviation Minimization  

HPSOBA BBO [34] PSO [37] 

VD (p.u.) 0.1346  0.1194 0.13029 

Ploss (MW) 8.3168 6.3766 NA 

HPSOBA algorithm effectively optimizes the reactive 

power generation from SVCs. The total var required is 

19.053 as against 21.68 suggested by BBO.   
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Table 6. Reactive power requirement suggested (Case 2) 

 

Bus 

Number 

Q requirement (MAVR) 

HPSOBA BBO [34] PSO [97] 

10 9.0530 9.2400 6.75000 

24 10.000 12.440 4.72900 

For voltage minimization, the HPSOBA algorithm takes 

a greater number of iterations than what was required in loss 

minimization. However, the algorithm converges to the 

optimal results. The reliability of the algorithm is proved. 

 

 

 

Fig. 2 Convergence of HPSOBA in VD minimization in 

IEEE-30 bus system 
 

c) Case 3: Minimization of Both Real Power Loss and 

Voltage Deviation 

Unlike the two previous cases, this case considers both 

real power loss and voltage deviation optimization 

simultaneously. This approach is most suitable for reactive 

power optimization as all the parameters of reactive power is 

included. The two objectives are augmented with proper 

weights. BA performs in an excellent manner in optimizing 

both real power loss and voltage deviation.  The loss level by 

the BBO algorithm is only 5.6320 MW, but HPSOBA 
achieves 5.1010 MW. The additional saving is 0.531MW.   

 

Table 7. Minimization of objective terms (Case 3) 

Parameter Both Real Power Loss & 

Voltage Deviation Minimization  

 

HPSOBA BBO [34] 

Ploss (MW) 5.1010 5.6320 

VD (p.u.) 0.3025 0.1549 

 

The reduced amount of reactive power by HPSOBA, in 

this case, is tabulated in table 8.   The convergence behavior 

is shown in figure 3.  

Table 8. Reactive power requirement suggested (Case 3) 

 

Bus 

Number 

Q requirement (MVAR) 

HPSOBA BBO [34] 

10 10.000 20.67 

24 10.000 12.10 

 

 

Fig. 3 Convergence of HPSOBA in loss and VD 

minimization in IEEE-30 bus system 

 

B. IEEE-57 Bus system 

IEEE 57-bus system has 80 branches, 7 generator buses 

and 15 tap setting transformers. The possible reactive power 

compensation buses are 18, 25 and 53. Hence there are a 

total of 25 control variables. The system data, variable limits 

and the initial values of control variables are given in [40].  

 

a) Case 1: Minimization of Real Power Loss 

The algorithm is run for minimizing the three different 

objectives, and the optimal parameters corresponding to the 

best objective function is given in table 9. The performance 

of the HPSOBA algorithm is compared with the seeker 
optimization algorithm (SOA) [41] in loss minimization.   

 

Table 9.  Optimal control parameters for IEEE-57 bus 

system 

Parameter Case 1 Case 2 Case 3 

V1 1.1000 1.0254 1.1000 

V2 1.1000 1.0447 1.1000 

V3 1.0398 0.9559 1.0367 

V6 1.0897 1.0124 1.0804 

V8 1.1000 1.0787 1.0896 

V9 1.0947 1.0989 1.0742 

V12 1.0891 0.9882 1.0720 

TP4-18 0.9628 1.0681 1.0577 

TP4-18 0.9936 0.9589 1.0469 

TP21-20 0.9862 0.9255 0.9819 

TP24-26 1.0273 0.9876 1.0108 
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TP7-29 1.0536 1.0121 1.0248 

TP34-32 0.9595 0.9268 0.9505 

TP11-41 1.0775 0.9331 1.0205 

TP15-45 1.0180 0.9957 1.0102 

TP14-46 0.9984 0.9361 1.0227 

TP10-51 1.0004 1.0407 1.0187 

TP13-49 0.9714 0.9000 0.9808 

TP11-43 0.9972 0.9694 0.9771 

TP40-56 1.0794 1.1000 1.0321 

TP39-57 1.0309 1.0308 1.0278 

TP9-55 1.0687 1.0729 1.0515   

Qc18 6.0149 10.0000 5.0158 

Qc25 8.8052 9.9712 8.4962 

Qc53 6.7507 9.8828 9.9790 

PL 21.9600 32.5553 21.8904 

VD 1.8666 0.7204 1.3905 

SOA reports a loss of 24.26548 MW and HPSOBA 

21.9600 MW. The difference in loss obtained by the 

algorithms is   2.30548 MW. HPSOBA shows better 

performance than SOA in this case. The voltage profile 

improvement by minimization of VD is also really good.  
 

Table 10. Minimization of objective terms (Case 1) 

Parameter Real Power Loss Minimization  

 

HPSOBA SOA [41] 

Ploss (MW) 21.9600 24.26548 

VD (p.u) 1.8666 NA 
 

As compared in the IEEE 30 bus case, the total var 

requirement can be considered for understanding the 

optimization of var level. Table 11 shows that the total var 

requirement by HPSOBA is less than that indicated by SOA. 
The advantage is that it optimizes the var reserves. 

 

Table 11. Reactive power requirement suggested (Case 1) 

Bus Number 
Q requirement (MVAR) 

HPSOBA SOA [41] 

18 6.0149 9.9984 

25 8.8052 5.9040 

53 6.7507 6.2880 

Figure 4 proves the excellent convergence behavior of 

HPSOBA in a large power system. This is an indication 

that the proposed HPSOBA is suitable for all sizes of power 

systems and will exhibit good convergence to the best 

results.  

 

 

Fig. 4  Convergence of HPSOBA in loss minimization 

in IEEE-57 system 

b) Case 2: Minimization of Sum of Voltage Deviation 

Most of the previous works on ORPD with the IEEE-57 

bus system considers only loss optimization. In this work, 

VD minimization is also considered, and the Sum of voltage 

deviation is given in table 12.  

Table 12. Minimization of objective terms (Case 2) 

Parameter Voltage Deviation 

Minimization 

HPSOBA 

VD (p.u) 0.7686 

Ploss (MW) 23.4650 

In this case, the algorithm suggests a var requirement 

which is less than 10 MVAR, as shown in table 13. Less var 
requirement indirectly keeps the cost of SVC minimum. 
 

Table 13. Reactive power requirement suggested(Case 2) 

Bus Number 
Q requirement (MVAR) 

HPSOBA 

18 7.3459 

25 9.6752 

53 8.5907 
 

The algorithm takes more number iterations in VD 

minimization than in the other two cases. The convergence 

curve is shown in figure 5. 

 

Fig. 5 Convergence of HPSOBA in VD minimization 

in the IEEE-57 bus system 
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c) Case 3: Minimization of Both Real Power Loss and 

Voltage Deviation 

Simultaneous optimization of both VD and loss in the 

IEEE-57 bus system is taken for testing the performance of 

HPSOBA in this case. The loss minimization is 21.8904 

MW, and this considerably smaller than the loss optimized 

by SOA in loss minimization in this system. The voltage 

deviation is with a very small value of 1.3905 MW. The 

algorithm takes about 90 iterations, and this is quite less 

number for a large power system.   

Table 14. Minimization of objective terms (Case 3) 

Parameter Both Real Power Loss & 

Voltage Deviation 

Minimization  

HPSOBA 

Ploss (MW) 22.5430 

VD (p.u) 2.2746 

From table 15, it is obvious that the total var needed is 

much lower. Var requirement, in this case, is slighter higher 

than the other cases. 

Table 15. Reactive power requirement suggested (Case 3) 

Bus Number 
Q requirement (MVAR) 

HPSOBA 

18 10.5459 

25 7.8426 

53 9.7807 

Fig. 6 is the convergence curve of the algorithm in both 

loss and VD minimization. The algorithm takes about 100 

iterations for achieving the best results. 

 

Fig. 6 Convergence of HPSOBA in loss and VD 

minimization in the IEEE-57 bus system 
 

V. CONCLUSION 
BA is a newly introduced bio-inspired optimization 

algorithm that mimics the food searching behavior of 

microbats. The algorithm involves no large number of 

operators and parameters.  Tuning of the parameters for 
better results was found to be very simple, and this 

algorithm is also easy to be implemented. It is clear from the 

numerical results of the problem that BA outperforms the 

other bio-inspired algorithms like BBO in reactive power 

optimization. In addition to reactive power optimization, the 

proposed algorithm suggests only less amount of reactive 

power generation from SVCs installed. This maximizes the 

reactive power reserve and thereby improves the voltage 
stability limit. The convergence speed of the algorithm is 

also studied to understand the effectiveness of the algorithm 

in its task. Therefore, it is believed that this algorithm may 

be exploited for other power system operations like 

economic load dispatch, optimal power flow, voltage 

stability improvement etc. 
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