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Abstract - People will be able to use the fifth generation (5G) mobile communication network in the upcoming years. With 5G 

technologies, anyone can have connectivity to other people all the time. Vehicle-to-vehicle networks Massive multiple-input 

multiple-output (MIMO) communications, high-speed train networks, and millimetre wave communications are some 

techniques that have been explored for 5G systems. Each of these innovations establishes new propagation characteristics and 

specifications for 5G channel modelling. Accurate and effective channel models that span diverse 5G technologies and 

situations are urgently required, as they are essential for system design and performance evaluation. This paper thoroughly 

assesses the currently used 5G communication techniques, including mmWave, NOMA, and Massive MIMO. Also, this paper 

gives an overview of 6G communication specifications and studies the challenges of 6G technologies. Moreover, this paper 

provides a conclusion and future research directions for mobile technologies. 
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1. Introduction 
 Systems for wireless communications, particularly 

mobile communication systems, are expanding very quickly. 

Mobile communication technologies have to fulfil the 

demand of the growing number of customers, new 

applications, new traffic rates, and data amenities. For 

instance, node-to-node communications use concepts like the 

smart grid, smart cities and homes, and health care. These 

applications have a wide range of communication needs that 

must be met for a unified wireless technology to function 

properly. Rapid advancements in mobile communication 

technology can be linked to growing mobile usage and the 

scale of similar industries. As a result, wireless 

communication systems need to manage faster transmission 

speeds, larger capacity, and improved bandwidth utilization 

[1]. The system must increase its spectrum use due to a lack 

of spectrum resources. Utilizing constrained spectrum 

resources, conventional MIMO technology can meet users' 

performance requirements. 
 

1.1. Brief discussion on MIMO 

 In wireless communication systems, MIMO technology 

uses numerous antennas to transmit many streams of data 

simultaneously. Multiuser MIMO term is used when MIMO 

is utilized to connect with many terminals simultaneously. In 

cellular networks, MU-MIMO leads to four improvements: 

• Higher data rate since more antennas allow for the 

simultaneous service of more terminals and the sending 

of more independent data streams; 

• Increased dependability because there are more separate 

paths that the radio signal can travel across with more 

antennas; 

• Increased energy efficiency as a result of the base 

station's ability to direct its emitted energy in the 

directions in which it believes the terminals to be 

positioned; and 

• Less interference since the base station (BS) can 

deliberately evade transmission in areas where it would 

be undesirable for interference to spread 

 

However, a typical MIMO system performs less because 

it has fewer antennas. Future 5G networks will heavily rely 

on massive MIMO due to its potential to meet the needs of 

wireless business models, maximize spectrum efficiency, 

increase system capacity, and improve link and data 

transmission dependability. 
 

1.2. Massive MIMO 

 A new technology called massive MIMO extends 

MIMO in terms of the number of users and resources.  The 

massive MIMO is a system that employs antenna arrays with 

several antennas (approximately a hundred) and serves 

dozens of terminals concurrently using a similar time-

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Shilpa Bhairanatti &  S. Mohan Kumar / IJEEE, 10(1), 24-40, 2023 

 

25 

frequency (T/F) spectrum. The fundamental idea of massive 

MIMO is to gain the maximum benefits of traditional MIMO 

on a larger scale. The Massive MIMO has a significant role 

in creating a forthcoming broadband (static or mobile) 

network that will be reliable, protected, and power-efficient 

while effectively utilizing the spectrum. As a result, it serves 

as a facilitator for the infrastructure of the imminent digital 

civilization that will link the Internet of People and the 

Internet of Things (IoT) to other technologies like cloud 

computing. Spatial multiplexing, a prerequisite for massive 

MIMO, requires that the base station have adequate uplink 

and downlink channel information. It is simple to achieve on 

the uplink by transmitting pilots through the terminals. 

Accordingly, the BS guesses the responses of the channel to 

every terminal. The process of linking links is extra 

complicated. In typical MIMO networks, such as the LTE 

paradigm, the BS transmits the pilot waveform that the 

terminals use to guess the responses of the channel. The 

terminals then quantize their estimations and transmit them 

back to the BS. Due to two factors, this won't be possible in 

M-MIMO systems, especially in a mobile environment. To 

achieve excellence, the antennas' downlink pilots must be 

orthogonal to each other. As a result, a massive MIMO 

network will need up to a hundred times more T/F spectrum 

than a traditional network. This is because the amount of T/F 

spectrum required for downlink pilots grows with the 

number of antennas. Second, the number of BS antennas is 

inversely related to the number of channel responses that 

each terminal must predict. Therefore, the base station would 

require up to a hundred times more uplink resources than 

traditional systems to receive information about the channel 

responses. Although FDD operation may be conceivable in 

some circumstances, the solution is to function in TDD mode 

and depend on the reciprocal between the uplink and 

downlink channels. [2]. The main benefits of massive MIMO 

systems can be briefed as follows: 

 

• Enormous spectral efficiency; 

• Communication consistency; 

• High energy competence; 

• Low complexity signal processing; 

• Promising propagation; 

• Channel hardening. 

 

Massive MIMO's additional antennas will aid in 

concentrating energy into a more condensed space area, 

improving spectral efficiency and throughput. Fig. 1 depicts 

the uplink and downlinks of M-MIMO systems. In a massive 

MIMO network, as the number of antennas rises, the radiated 

beams narrow and spatially converge toward the user. Figure 

10 displays the beam patterns for various antenna setups. 

These spatially fixed antenna beams upsurge the throughput 

and reduce intrusion among adjacent users [61]. Massive 

MIMO gives a huge benefit compared to a conventional 

MIMO system, as in table 1.  

1.3. Progression of Communication Network  

Since the beginning of the cellular communication 

period in the 1980s, it has grown significantly throughout the 

last few decades. The evaluation of cellular networks started 

with 1G and went beyond 5G. It is shown in Fig. 2. 

Generally, a BS, some mobile phones, and essential 

protocols constitute a cellular network. 

 

Below is a brief description of numerous techniques. 

However, the key purpose of this work is to examine 5G and 

6G networks, as well as their advantages and limits. 

 
1.3.1. 1G Networks 

 The 1G mobile networks launched at the beginning of 

the 1980s used analog transmission for voice-only facilities. 

The data rates of 1G systems are up to 2.4 kbps, and these 

systems use Frequency Division Multiple Access (FDMA). 

They had a low-quality voice because of considerable 

interference. There are various types of 1G systems, such as 

NMTS, AMPS, and TACS [4]. 

 
1.3.2. 2G (second-generation) Networks 

 Launched in the early 1990s, the 2G systems were 

viewed as digital upgrades to first-generation (1G) networks. 

They offered primitive email services, Short Message 

Service (SMS) and voice services. These networks use 

CDMA and TDMA technologies with data rates of 14.5 kbps 

to 64 kbps. The GSM and IS-95 CDMA are some examples 

of popular 2G platforms. 2G networks have poor hardware 

capabilities and portability [4]. 

 

1.3.3.  2.5G and 2.75G 

 As 2G innovation evolves to offer greater data rates and 

facilities, one can use internet service of a data rate higher 

than 384 kbps using 2.5G networks. CDMA2000, EDGE and 

GPRS are some instances of 2.5G systems [4]. 

 

1.3.4.  3G Networks  

 The GSM and CDMA-based 3G cellular networks were 

first presented at the beginning of the year 2000. These 

systems combined voice, MMS (Multimedia Message 

Support), and SMS services with mobile web browsing. The 

UMTS (Universal Mobile Telecommunication Systems) and 

WCDMA are two examples of 3G systems. In the middle of 

the 2000s, smartphones gained popularity. Although 3G 

networks could deliver data speeds of up to 384 Kbps, they 

needed a lot of bandwidth and complicated hardware. 

 

1.3.5. 3.5G 

 The HSDPA (High-Speed Downlink Packet Access), 

HSUPA (High-Speed Uplink Packet Access), and HSPA+ 

(High-Speed Packet Access) were launched with 3G systems 

to enhance data speed in response to the ongoing need for 

faster data rates. These networks offered up to 2 Mbps data 

speed and were known as 3.5G networks. 
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Fig. 1 Massive MIMO uplink and downlink 

 

 
Fig. 2 Evolution of 1G to 6G communication model

Table 1. Below provides a summary of information on several communication methods. 

Generation 
Access 

Technique 

Transmission 

Technique 

Error 

Correction 

Method 

Data 

Rate 

Frequency 

Band 
Bandwidth Application Description 

1G 
AMPS, 

FDMA 

 

Circuit 

switching (CS) 
NA 2.4 kbps 0.8 GHz Analog Voice 

Chat with 

each other. 

2G 

CDMA, 

GSM, 

TDMA 

 

CS NA 10 kbps 

0.8 GHz  

0.9 GHz, 

1.8 GHz, 

1.9 GHz 

25MHz 
Data and 

Voice 

Message and 

talk while 

traveling 

3G 

WCDA, 

CDMA 

2000, 

UMTS, 

HSDPA 

CS and packet 

switching (PS)  

Turbo codes 

(TC) 

384  to 

5Mbps 

800 MHz, 

850 MHz, 

900 MHz, 

1800MHz, 

1900MHz, 

2100 MHz 

25 MHz 

video calling 

and  

Voice, Data 

Internet 

surfing and 

mobile 

applications 

4G 

LTEA 

, OFDMA, 

SC-FDMA, 

WiMAX 

PS TC 

100  to 

200 

Mbps 

2.3 GHz, 

2.5 GHz, 

3.5 GHz 

100 MHz 

Video 

Calling, 

Voice,  

Data, 

HD TV & 

online games 

Share Data & 

Voice over 

broadband  

5G 

FBMC 

BDMA, 

NOMA,  

PS LDPC 
10 -50 

Gbps  

1.8 GHz 

2.6 GHz,  

30-300 GHz 

30-300 GHz 

virtual reality, 

HD, 

Voice,  

Data, 

Video 

Calling, 

 

With IoT and 

V2X, 

broadband 

wireless 

services go 

beyond 

mobile 

broadband. 
   

Although 3.5G offered a faster data throughput, the 

technology and implementation were expensive, and 

interoperability with 2G was complicated [4]. 
 

1.3.6. 4G 

 In the early 2010s, 4G mobile networks were launched. 

4G networks can manage more data traffic while maintaining  

 

a higher level of service and provide data speeds of more 

than 90 Mbps. With the help of 4G networks, one can join a 

meeting with video conferencing, play online games, and 

watch smart TV. LTE, WiMAX, and LTE-A are among the 

4G systems, and they are potentially compatible with 

networks from earlier generations [9]. 4G networks can only 
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be used with high-end 4G-equipped cell phones because the 

frequency bands are quite expensive [9]. 
 

1.3.7. 5G Networks 

 The 5G mobile systems [59] now being developed are 

intended to be 100 times quicker than the 4G systems already 

in use. 5G technology can provide a data speed of around 10 

Gbps, low latency, and superior consistency. A person can 

download an HD movie in a few seconds using a 5G 

network. As seen in Figure 3, this technology is compatible 

with a wide range of IoT-enabled gadgets and smart 

automobiles.  
 

In order to meet the continuous demands posed by 5G, 

an effective wireless access technique is needed that can 

boost network efficiency without expanding network 

capacity or increasing the density of the cell. The key 

benefits of 5G technology are as follows: 

 

• Data rate: A 5G technology can have a data speed of 

around 10 Gbps, much higher than 4G technology. 

• Latency: Contrary to 4G networks' 10 ms latency, 5G 

networks offer a very low latency ( around 1 ms). 

• Efficient signalling: Effective signalling for IoT 

interoperability and M2M connectivity is provided by 

5G networks. 

• User experience: Different types of reality systems (like 

Augmented and virtual reality) and artificial intelligence 

(AI) systems are improved by 5G networks. 

• Spectral proficiency: spectral and network efficiency of 

5G systems is much higher than 4G systems. 

• Power proficiency: Contrary to 4G systems, 5G systems 

offer effective power utilization in the network. 

• Ubiquitous Connection: In comparison to 4G networks, 

5G networks may sustain more than 65,000 connections 

and offer enormous broadcasting data. 

• Life of Battery: 5G offers a battery life of almost ten 

years for low-powered Internet of Things gadgets. 

 

Despite its many benefits, 5G technology has certain 

drawbacks. The 5 D technology has the following 

drawbacks: 
 

• Frequency bands: The 5G networks use 300 GHz 

frequency bands. It will be very expensive for wireless 

operators to achieve this high-frequency band. 

• Coverage: Since the wavelength of high-frequency 

waves is smaller, it cannot go beyond large distances. 

Due to this problem, more base stations should be placed 

in a small space to provide all users with a dependable 

link. The added BS doubles the network's overall 

expenses and intricacy. 

• Cost: Since 5G involves more than adding a layer to the 

4G network, it would be prohibitively expensive to 

design the system from the beginning. 

• Device Support: It will be difficult for mobile companies 

to provide cheap phones that can sustain 5G 

infrastructure because the current phones can not operate 

5G technology. 

• Safety and Confidentiality: Even though 5G employs the 

AKA (Authentication and Key Agreement) process, it is 

still impervious to attacks like middleman attacks, 

position monitoring, and eavesdropping. 

• Availability: Network overload and congestion will 

become significant issues with the launch of IoT and 

M2M. It will be challenging to make the network 

accessible to everyone due to the issues associated with 

radio access networks. 

• Cybercrime: Data cybercrime would significantly rise at 

a fast speed. Consequently, strict cyber laws would be 

required to stop these attacks. 

 

1.3.8. 6G Networks 

 The 6G cellular systems are limitless, full-featured 

wireless networks. It is in the process of being developed and 

will offer extraordinary transmission speeds in the terabit 

range. A smart antenna, a lot of memory in mobile phones, 

and massive optical networks would be necessary for this 

technology. Wireless networks could use artificial 

intelligence due to the absence of cells in 6G networks. 

Although the frequency range of 6G networks is unknown, it 

is evident that a significantly higher frequency band will be 

necessary to support the increased data throughput of 6G 

systems. While 6G is associated with significantly higher 

frequency in THz bands, 5G is expected to utilize up to 300 

GHz frequency bands. It is anticipated that 6G will employ 

the THz band in the upcoming years. Certain applications of 

6G networks are interconnected robotics and automated 

vehicles, wireless brain-computer interfacing, blockchain 

technologies, multi-sensor augmented realities, deep-sea 

exploration, haptic internet, and industrial IoT. It is expected 

that the 6G networks will be available in 2030. The benefits 

of 6G networks are listed below: 
 

• Data rate:  Higher data speed than 5G networks, 

approximately 10 Tbps. 

• Latency: Compared to 5G networks, the latency of a 6G 

network is 0.1 ms. 

• Efficient signaling: To support widespread IoT 

connection and M2M connectivity, 6G networks offer 

effective signaling. 

• User experience: 6G improves artificial intelligence 

systems and different types of reality-based systems. 

• Spectral performance: The spectral and network 

performance of 5G networks is much less than 6G 

networks. 

• Energy proficiency: Contrary to 5G systems, 6G systems 

have less power consumption. 

• Ubiquitous Connection: Huge broadcasting data will be 

provided by 6G, which may accommodate nearly 1 

million users—much higher than 5G networks. 
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1.4. Article Organization  

 The following sections comprise the remaining text in 

the article: The literature overview is presented in part II. 

Topics covered include precoding, resource allocation, 

security, 5G massive MIMO, NOMA, machine learning, and 

deep learning solutions. Section III includes a brief review of 

6G communication standards, Section IV includes problems 

and difficulties with 6G networks, and Section V includes 

closing remarks.  

 

2. Literature Survey 
 For wireless systems, MIMO technology is essential. 

Multiple signals can be sent and received concurrently over a 

single radio channel. MIMO is a crucial technology in Wi-Fi, 

3G, 4G, and 4G LTE-A networks. MIMO is primarily 

utilized to attain high energy and spectral efficiency, but it 

falls short because it offers poor throughput and incredibly 

unreliable communication. Numerous MIMO technologies 

were employed to address the issue, such as single-user 

MIMO, multiuser MIMO, and network MIMO. 

  
Table 2. Below displays a feature evaluation of 4G, 5G, and 6G technologies. 

Performance Index 4G 5G 6G 

Peak Data Rate 100 Mbps 10 Gbps Up to 10Tbps 

Latency 10 ms 1 ms Up to 0.1 ms 

Connectivity density 1 Lakh gadgets /km2 1 Lakh gadgets /km2 100 Lakh gadgets /km2 

Power Efficiency  1x 100x4G 100x5G 

Spectral efficiency  1x 100x4G 100x5G 

Available spectrum  Up to 6GHz Up to 300GHz Up to 3THz 

Mobility 200 m/h 300 m/h 600 h 
 

Table 3. Comparative analysis of various 5G massive MIMO techniques 

Ref Objective Method Problem Performance Observation 

Chen et 

al. [1] 

Improving the 

resources' time, 

frequency, and spatial 

resources 

Pattern division 

multiple access 

It is a study about 

PDMA and its 

applications in 5G 

BLER, Spectrum 

efficiency gain 

and spectral 

efficiency  

PDMA uses SIC's 

joint transmission 

and reception 

design to optimize 

the multiuser 

communication 

system. 

Yu et 

al. [2] 

Predistortion for mm 

Wave and massive 

MIMO 

Full-Angle Digital 

pre-distortion with 

power amplifiers 

(PAs) 

To deal with 

beamforming-

related issues 

 The full-digital 

beamforming 

(DBF) transmitter 

is developed  

Liu et 

al. [4] 

Hybrid beamforming 

for MIMO 

beam-oriented 

digital pre-distortion 

Inappropriate 

configuration of 

digital chain and 

Power amplifiers 

Power spectral 

density, spectrum, 

phase offset 

Low complex 

power scalable PA 

Wu et 

al. [13] 

Performance 

improvement for 

downlink MIMO 

Precoding  Sum rate 

maximization for 

massive MIMO 

Sum rate for 

varied SNR, total 

BS antennas  

It is discovered 

that HBF with the 

fewest RF chains 

outperforms even 

for a very high 

number of 

antennas. 

Yang 

et al. 

[14] 

64-channel massive 

MIMO with digital 

beamforming 

new sectorial 

transceiver array 

design with a bent 

substrate-integrated 

waveguide 

heat 

dissipation, energy 

efficiency  

achieves a 

downlink peak 

data rate of 50.73 

Gb/s with spectral 

efficiency of 101.5 

b/s/Hz. 

Observed that 

beam-tracking and 

two data streams, 

the DBFbased 

millimeter-wave 

MIMO system can 

achieve steady 

5.3-Gb/s 

throughput 
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These new MIMO technologies, though, again fell short 

of what end consumers wanted. Massive MIMO is a 

development of the MIMO system utilized in the 5G 

technology. Base stations are connected to hundreds of 

thousands or even millions of antennas to boost throughput 

and spectral efficiency. Massive MIMO employs several 

broadcasts and receives antennas to boost spectral efficiency 

and transmission rate. Massive MIMO can operate at a 

higher capacity when several UEs simultaneously produce 

downlink traffic. Massive MIMO enables spectral efficiency 

and throughput by employing additional antennas to channel 

energy into smaller space areas. In order to improve the  

performance of 5G communication standards. The most 

recent methods in this area of 5G communication are 

described in this section. 

 

2.1. 5G massive MIMO 

 Massive MIMO, generally known as radio frequency 

(RF) chains, is a requirement in recent proposals for 5G 

systems [1]. Along with boosting the transmitter volume 

significantly, RF chain extension also results in larger 

nonlinear distortions. Also, the efficient power amplifier 

(PA) linearization method should be used in 5G systems. An 

essential PA linearization method is digital pre-distortion 

(DPD). DPD can anticipate PA's nonlinear distortions based 

on precise modelling and can get rid of them by adding the 

right corrective signal [2] [3] [4]. Crosstalk correction and 

architectural modification are the two critical research areas 

in the massive MIMO technology.  

 

 Alternatively, the intermodulation distortion in either 

linear or nonlinear systems between the transmit pathways of 

MIMO systems causes higher signal distortion effects [5], 

making the DPD method more difficult than in SISO 

systems. The high level of integration causes powerful 

crosstalk in large MIMO systems. Many DPD approaches for 

crosstalk compensation has been recommended to solve this 

problem. On the other hand, the MIMO system requires that 

a distinct digital chain be built for each antenna, so there are 

an equal number of digital chains and PAs. Due to hybrid 

beamforming technology, the number of digital chains in M- 

MIMO transmitters can be significantly lower than the 

number of PAs [6]. Consequently, In the area of 5G 

communication, beamforming is viewed as a potential 

technology. Liu et al. [4] suggested a beam-based (BO-DPD) 

method for PAs in fusion-based beamforming (MIMO) 

transmitters that can attain linearization of the transmitted 

signal in the central beam direction and solve the issues of 

DPD deployment. Since there are fewer digital chains than 

PAs in large MIMO beamforming transmitters, it is 

impracticable to use the standard DPD to linearize each PA. 

 

Therefore, the BO-DPD can alleviate this problem by 

creating and linearizing the "virtual" main beam signal rather 

than individual PAs. Due to shadowing and free space path 

loss, the electromagnetic waves of millimetre-wave 

(MWave) frequency face substantial diminution [8]. 

Furthermore, the millimetre-wave signal's shorter 

wavelength makes it possible to increase antenna gain by 

utilizing an array of many different antenna components. It is 

reported that the current MWave point-to-point 

communication system may produce very high data speeds at 

a very large distance when equipped with an enormous 

antenna array. Moreover, the fixed narrow beam only 

geographically offers a small coverage area, making it 

unsuitable for mobile communication environments. Due to 

this, specific cutting-edge beam-steerable antenna array 

approaches [9-11] and the active phased array have recently 

been implemented to empower 5G Mwave mobile networks 

[12,16,40]. The active beamforming systems can offer better 

transmission power and better beamforming tractability  than  

a passive multi-beam antenna array. Further, the efficiency of 

the active beamforming systems can be enhanced when 

combined with MIMO technologies.  

  

Wu et al. [13] analyzed a single-cell downlink multiuser 

MIMO system operating in a general channel paradigm with 

a mix design that permits several streams per UE, presuming 

perfect channel state information is obtained. They want to 

identify an analog and digital combiner that increases the 

communication system's sum rate. Their suggested condition 

mutually develops 2 phases by attempting to prevent 

information loss at each level, in contrast to the conventional 

2 phase design standard, which individually plans the analog 

and digital phases. They present an optimum solution in a 

massive MIMO network where twice the least number of 

radio frequency chains are accessible. 

 

 Yang et al. [14] recommended a massive (MIMO) 

transceiver(64-channel) with an utterly DBF design for 5G 

millimetre-wave transmissions. The DBF-based large MIMO 

transmitter/receiver works in the TDD (time division duplex) 

form at a frequency of 28000 MHz with a 0.5 GHz signal 

bandwidth. The transceivers are set up as a 2-Dimensional 

array for improved beamforming in the horizontal plane with 

sixteen columns (horizontal orientation) and four rows 

(vertical orientation). Using a bent substrate-integrated 

waveguide, a novel sectorial transceiver array strategy is 

suggested to attain a half-wavelength element design in the 

horizontal orientation.  

 

Due to the scattered architecture of the system, the 

channel gain from the APs (Access Points) to a user 

fluctuates significantly in cell-free massive (MIMO). Data 

decoding techniques with deterministic channels perform 

poorly due to these variations. Designing a precoding method 

that balances the efficient channel gain perceived by the 

consumers is a method of lessening the channel variations. 

Conjugate beamforming (CB) cannot efficiently harden the 

consumers' channel.  
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Table 4. Beamforming and precoding techniques 

Attributes Analog beamforming Digital precoding Mix precoding 

Number of streams Single stream Multi-stream Multi-stream 

Number of 

consumers 
single-user Multiuser Multiuser 

Signal control 

capability 
Phase control only Phase and amplitude control Phase and amplitude control 

Hardware necessity At least one RF chain 

RF chains that have the 

maximum and an equivalent total 

transmit antennas 

Intermediate; the number of RF 

chains less than the number of 

transmitter antennas 

Cost Slightest Maximum Intermediate 

Energy 

consumption 
Slightest Maximum Intermediate 

Performance Slightest Optimal Approximately-optimal 

suitable for large 

MIMO at mmWave 

Inappropriate, no 

amplitude control, no 

multiuser 

High energy utilization, higher 

costs, and impracticality 
Real and useful 

 

Interdonato et al. [15] suggested a CB (ECB) method. 

Here, the precoding vector conjugates the channel estimation 

standardized by its squared norm. By assuming separate 

Rayleigh fading channels, allowing for channel estimate 

errors, pilot reusing, and the user's paucity of CSI, they 

construct an accurate closed-form equation for a feasible 

downlink spectral efficiency (SE) for this system. Table 4, 

given below, shows a comparative analysis of different 

beamforming techniques. 

 

Zhou et al. [64] developed the optimal beamforming 

(OB) method for downlinking cell-free massive MIMO 

systems with TDD. In TDD systems, the access points 

estimate the uplink channel state information using pilots 

from the users and then apply channel mutuality to get the 

downlink CSI. In order to attain stability between the 

required signal and manage multiuser interference, the OB 

beamformer is centrally established at the CU based on the 

collaboration of all access points. The OB model is a max-

min challenge that seeks to maximize the minimal prompt 

signal-to-interference-plus-noise ratio across all users to 

understand the highest possibility of massive cell-free MIMO 

while maintaining user equity. 

 

 By dynamically assigning the numbers of uplink and 

downlink RAUs (remote antenna units), network-assisted 

full-duplex distributed (NAFD) massive (MIMO) systems 

facilitate concurrent uplink and downlink communications, 

potentially increasing the spectral utilization in wireless 

transmission. In these systems, CSI is crucial for downlink 

transmission, uplink reception, and the cancellation of cross-

link interference brought on from downlink RAUs to uplink 

RAUs. Furthermore, downlink terminals must estimate CSI 

to accurately decode the received signals due to the 

diminished channel hardening effect. In general, it is 

impossible to measure CSI due to substantial training 

overhead correctly. Li et al. [17] suggested an efficient CSI 

based on a beamforming training method. With this method, 

they can construct closed-form formulas for feasible 

downlink and uplink rates using various receivers and 

beamforming. From a multi-objective optimization 

standpoint, they suggest a practical power allocation 

approach that relies only on slowly fluctuating large-scale 

fading. 

 

 Analog beamforming design, hybrid beamforming 

design, and fully (DBF) design are only a few of the various 

active beamforming designs that have been suggested and 

examined in the literature so far [11]–[15]. The practical 

hardware implementation of the millimetre-wave MIMO 

beamforming system still faces significant obstacles. The 

primary hardware limitations result from the high signal 

bandwidth, circuit technology, connectivity approaches, 

energy consumption, and size of the transceiver components, 

among other factors. 

 

2.2. 5G NOMA 

Nonorthogonal multiple access (NOMA) is a significant 

5G mobile technology technique. NOMA can increase 

spectral performance and enable vast connections with low 

transmission delay and signalling cost through 

nonorthogonal resource allocation. Power NOMA can create 

a new power dimension to accomplish multiplexing in the 

present access domain, which can be viewed as superposing 

multiple signals into one orthogonal resource. Consequently, 

successive interference cancellation (SIC), in which 

duplicate signals are removed based on related CSI, is a vital 

method for extracting the information from these superposed 

signals. 

 

Using CR-NOMA, Budhiraja et al. [18] suggested a 

simultaneous channel allocation and power control technique 

for femtocell users (FUs). The key goal is to exploit the sum 

rate of the femtocell users for the assured quality of service 

(QoS). The Femto base station (FBS) employs CR-NOMA to 
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provide guaranteed QoS for FUs. Next, they proposed a 

method for coupling strong and weak users through channel 

gain variation. By coupling, the NOMA intrusion between 

users lessens, leading to better channel utilization. Also, In a 

femtocell, they distinguish between an even and an odd 

number of FUs to offer a quality of service for weak users. In 

order to do this, a greedy channel allocation technique called 

NOMA is used. 

 

Kazemian [19] stated that due to several users being 

superimposed on the same frequency subchannel, the 

standard FFT-NOMA model exhibits inter-user intrusion and 

PAP Ratio. The enhanced-NOMA (ENOMA) method, which 

uses a new, less complex improved version of the CSLM 

cascaded, is suggested to lessen the PAP Ratio, inter-user 

intrusion, and bit error rate(BER) in an FFT-NOMA model.  

 

Riaz et al. [20] stated that to overcome the issues of 5G 

networks, (NOMA) is a practical substitute for the most 

advanced orthogonal multiple access (OMA) approaches 

now available. Additionally, it is possible to integrate a 

power control method to lessen the impact of user 

disturbance in the network. This work goes through the 

fundamental ideas, distinguishing characteristics, and 

advantages and disadvantages of the numerous power 

domain NOMA designs. Furthermore, they suggest an uplink 

PC strategy for power domain NOMA network users. The 

EGT framework is used in the given technique to alter the 

transmission energy level of the user, reducing user 

interference. A (SIC) receiver is used at a base station to 

disperse the user signals. 

  

Gandotra et al. [21] used NOMA-based device-to-device 

communication 5G systems for performing sectorization. 

The suggested NOMA-based methodology brings the theory 

of multiple interference annulment, which activates the event 

of revocation of intrusion levels in the network and involves 

optimum resource distribution.  

Table 5. comparative analysis of various 5G NOMA-based communication techniques. 

Ref Objective Method Problem Performance Observation 

[18]  joint channel 

allocation and power 

control algorithm for 

CR-NOMA, maximize 

the sum rate of the 

FUs 

Interference reduction 

by pairing the strong and 

weak users 

Power 

management, QoS 

Sum rate Greedy channel 

allocation, along with 

successive convex 

approximation for low 

complexity (SCALE) with 

KKT 

[19] Low complex NOMA 

to reduce the PAPR, 

BER, interference  

Used of modified 

mapping (CSLM) 

cascaded with the 

Walsh–Hadamard 

transform  

Distortions, 

spectrum 

efficiency, BER  

PAPR= 4.3 

BER= 9.5 

Complexity = 

reduced to 

56% 

Reduced complexity is 

beneficial for 5G and 

beyond networks that 

require low energy 

consumption, maximum 

capacity 

[20] Power control for 

uplink 5G networks 

Evolutionary game 

theory helps to adjust 

the power levels  

congestion, 

cooperation, and 

competition users 

Spectral 

efficiency, 

network 

efficiency  

Automated power level 

selection according to the 

requirement  

[21] Interference 

cancellation and 

resource allocation for 

NOMA  

Interference 

reduction using 

multiple 

interference 

cancellation 

Traditional 

methods work on 

omni-directional 

antennas at the 

BS, but this model 

considers D2D-

NOMA 

Suma rate, 

Energy 

efficiency, 

Fairness 

Factor, 

Complexity 

Interference cancellation 

is obtained by optimal 

signal detection  

[22] Cooperative NOMA 

broadcasting for 5G 

cellular V2X  

Half and full duplex 

assisted NOMA for 

V2X communication  

Power allocation 

problem, 

computational 

complexity 

Achievable 

rate 

Quasi –concave problem 

is formulated and solved 

by transforming them into 

convex feasibility 

problems 

[24] Power and SCMA-

based downlink 

NOMA 

A method obtained by 

combining message-

passing and successive-

interference-cancellation 

algorithm 

Connectivity 

 issue  

Symbol error 

rate  

Achieves better 

performance despite being 

overloaded  



Shilpa Bhairanatti &  S. Mohan Kumar / IJEEE, 10(1), 24-40, 2023 

 

32 

Since the current LTE networks are built on the OMA 

method, the few spectrum resources have not been entirely 

and effectively exploited, making dense networks susceptible 

to acute data congestion and poor access proficiency [6]. 

Hence, we need more efficient radio access technology. As a 

viable solution for 5G systems, the NOMA can completely 

exploit its capacity, attaining better transmission rates, lesser 

system latency, better consistency, and cheap service 

requisites than the OMA system. It is made possible by 

power domain multiplexing [7] at the transmitter and SIC [8] 

at the receivers [9], [10]. NOMA offers a new 5G vehicle-to-

vehicle services paradigm to prevent resource conflict, 

enhancing spectrum efficiency and decreasing latency. It 

has the potential to achieve high-capacity transmission over 

constrained resources [11]. Numerous academic bodies have 

expressed interest in these vehicular networking issues and 

potential. Numerous academics are working to incorporate 

NOMA into various scenarios to improve efficiency and 

meet the LLHR standards of vehicular networks. In [12], 

[13], the central SPS at the base station and the dispersed 

power control of the vehicles are combined in the authors' 

novel NOMA-related mix centralized and distributed strategy 

for the V2X (vehicle-to-everything) broadcasting system.  

 

It has been demonstrated that NOMA can decrease 

access latency and increase reliability in a crowded network. 

Liu et al. [22] recommended 2 relay-based NOMA 

transmission methods for 5G vehicle-to-vehicle 

transmissions, i.e., HDR-NOMA broadcasting/multicasting 

and FDRNOMA broadcasting/multicasting. They studied the 

optimal power distribution challenges for them. Power 

distribution issues  are designed to optimize the least feasible 

rate for all users to ensure fairness and enhance the QoS for 

customers using channels with a poor environment. It is 

demonstrated that the problems are quasi-concave even if 

neither of the problems expressed is concave nor convex. 

Consequently, a bisection-related power distribution 

technique is suggested to find the problems' optimized 

solution. 

 

 Ihsan et al. [23] stated that traffic proficiency, control, 

and consistency of transportation systems B5G have recently 

been shown to be much improved by incorporating (NOMA) 

in V2X transmissions. Because of the rapid mobility of 

vehicles and the associated increased channel estimation 

uncertainty, inspecting imperfect (CSI) is essential in V2X 

communications. In B5G cellular vehicle-to-everything 

networks, this research suggests a power-proficient 

distribution approach for the RSU-Supported NOMA 

multicasting. Specifically, the energy efficiency 

maximization challenge will study the outage probability of 

cars under faulty CSI, QoS, and power limitations. As the 

issue is non-convex and cannot be solved directly, they adopt 

a low-complexity GABS approach to approximate the outage 

probability constraints into non-probabilistic constraints 

before finding the effective power allocation at RSUs. Next, 

the power distribution problem of the automobiles connected 

to each RSU is transformed into a manageable CCFP 

problem using a sequential convex approximation (SCA) 

approach. Dinkelbach and the dual decomposition approach 

are used to obtain the best solution to the CCFP issue.  

 

Sharma et al. [24] suggested a dual power and code 

domain-based NOMA method for the 5G and 6G wireless 

networks. They gave the concept of a downlink method 

where users encounter various channel settings. The 

transmitter uses a sparse code multiple access encoder and 

enables customers to receive a variety of power allocations. 

Integration of message-passing and consecutive interference-

cancellation algorithms is the basis of the detection. 

 

Liu et al. [25] suggested a NOMA-related CR which 

permits the SU to access multiple subchannels in the non-

existence and existence of the PU. Correspondingly, the 

receiver decodes the NOMA signals using the PFDM and 

SFDM decoding. In the PFDM, the optimal SU throughput 

can be attained. However, the subchannel power has to be 

regulated to ensure the PU throughput. Owing to the 

interference that the PU causes in the SFDM, the SU 

throughput may be reduced. In order to increase the 

standardized throughput of the SU by mutually improving 

spectrum resources, such as the number of sub-channels and 

subchannel transmission energy, they have proposed two 

optimization problems focused on PFDM and SFDM, 

respectively. The suggested optimization issues are solved 

using a combined optimization approach. Next, the lower 

constraint of sensing time for energy recognition is 

determined to assure spectrum sensing performance, which 

includes false alarm possibility and detection possibility. 

 

 Saraereh et al. [62] stated that by assigning separate 

powers, NOMA could enable multiuser multipathing in the 

transmission power domain, which significantly boosts 

system capacity and spectral efficiency. This article suggests 

an improved radio resource distribution method for power 

distribution optimization and user grouping in  (NOMA) 

based 5G systems, intending to reduce high computation 

intricacy and increase system bandwidth. Maximizing system 

capacity is the purpose of the optimization process. The non-

convex optimization problem is divided into two smaller 

problems that must each be handled independently using the 

step-by-step optimization concept. Initially, all users are 

assembled using the greedy technique, and then the fixed 

group's sub-carriers are used for power allocation. 

 

2.3. Machine Learning and Deep Learning Methods for 5G 

2.3.1. Supervised Learning  

 Numerous deep learning (DL) techniques are based on 

supervised learning methods, which train the model using 

labelled datasets. From the perspective of resource 

distribution, supervised learning systems have been 

suggested in research articles [31]– [36]. Sun et al. [31] 
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suggested a DNN paradigm generalization that estimates the 

WMMSE intervention management technique with correct 

estimates and high computational performance compared to 

cutting-edge interference management techniques. Using the 

DL technique for dynamic channel assortment, carrier 

combination, and partial spectrum, the researchers [32] have 

suggested a resource distribution method for small cells. 

Zhou et al. [33] have presented an effective deep neural 

network for assigning resources in cognitive radio networks 

to maximise energy and spectrum efficiency. In order to 

forecast the bit and power distribution in a multiuser OFDM 

network, Li et al. [34] have devised a framework that uses a 

Hopfield neural network (NN). The researchers proposed a 

supervised DNN mode for subcarrier allocation in a NOMA-

OFDMA downlink multimedia broadcasting network [35]. 

The suggested model offers a less complex performance that 

comes close to ideal. In [36], In "Learning to Optimize for 

Resource Management," the authors suggest a framework 

that achieves near-optimal efficiency with fewer data 

samples. A comparative analysis of these supervised and 

unsupervised is presented in table 6.  

 
Table 6. Comparative analysis of supervised and unsupervised machine learning techniques 

Ref Objective Method Problem Performance Observation 

[27] Prediction of channel 

state by using machine 

learning  

Identifying the 

features which affect 

the  CSI and training 

CNN to learn the 

parameters  

Complexity, the 

channel estimation 

error  

Computing time, 

channel state 

information  

The two-step training 

mechanism with 

CNN-LSTM 

improves learning and 

increases the accuracy  

[28] To develop an efficient 

network slicing approach 

and present a combined 

classification algorithm 

by using glowworm and 

deer hunting algorithm 

A deep learning-

based approach with 

an optimization 

function is 

developed. The 

optimization model 

uses   

Network overload, 

huge training data  

Accuracy, 

sensitivity, F1 

score, false 

positive rate,  

Network slices are 

classified as eMBB, 

mMTC, and URLLC 

by using deep 

learning classifier 

[31]  A new machine learning 

method to reduce the 

complexity  

Incorporating deep 

learning to train and 

improve the 

WMMSE 

Computational 

complexity, 

implementation 

complexity 

Mean square 

error, sum rate 

CPU time  

Interference 

cancellation can be 

obtained by using 

deep neural networks; 

DNNs can reduce 

interference 

effectively  

[32]  Resource management in 

unlicensed spectrum  

Non-cooperative 

game theory and 

deep learning-based 

model  

Resource 

allocation, multiple 

access, spectrum 

sharing  

Traffic load, 

average airtime 

allocation  

The game theory-

based DL model 

achieves Nash 

equilibrium   

[33]  Deep learning model for 

resource allocation  

CNN-based deep 

learning model  

Channel state 

information is 

required for 

resource allocation  

Computational 

complexity, 

training duration   

Deep learning 

improves the learning 

process resulting in 

better analysis of 

channel state 

information  

[35] Subcarrier, bit and 

power Allocation for 

multiuser OFDM 

Use of fully 

connected hopified, 

i.e. recurrent neural 

network 

Subcarrier 

allocation and 

channel state 

information   

Sum power and 

energy function 

Optimal subcarrier, 

bit and power 

allocation with the 

minimum 

transmit power 
 

However, these studies fail to address the performance 

deterioration that develops over time in a dynamic 

atmosphere. Specifically, systems examined on lab-based 

databases ignore the realistic factor relating to the 

atmosphere's dynamic nature, which obscures the 

significance of retraining. 

2.3.2. Unsupervised learning 

 Alternatively, unsupervised models train the model 

using several methods to avoid dependence on a labelling 

technique. In [37], the researchers suggest an unsupervised 

learning-based quick-beamforming formation technique for 

sum-rate maximization in the MIMO BS system. The 
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suggested convolution model significantly increases 

computing speed with efficiency near the ideal WMMSE 

technique. It is best for real-time services. To improve 

performance, the authors change the suggested model's 

training procedure into two parts: supervised pre-training and 

unsupervised retraining [38]. In [39], the authors provide an 

unsupervised DNN model for multi-channel cognitive radio 

networks' best resource allocation and interference 

minimization. [61], the authors provide an ensemble model 

based on an unsupervised learning strategy that outperforms 

cutting-edge approaches for sum-rate expansion in a 

multiuser fading interference channel. In [41], the resource 

distribution policy is parameterized using a random edge 

graph NN that was trained by an unsupervised model-free 

learning technique. Generally, unsupervised methods 

degrade in performance over time, similarly to supervised 

models, because they converge to a local optimum. 
 

2.3.3. Deep Learning Methods 

 For 5G technologies, Luo et al. [27] suggested an 

effective online CSI estimate technique, known as OCEAN, 

for envisaging CSI from historical data. Precisely, they first 

select several critical features that impact a radio link's CSI, 

then collect information about these qualities and the CSI in 

a sample of data. Next, they develop a learning framework 

that combines an LSTM (long short-term memory) network 

and a CNN (convolutional neural network). Additionally, 

they created a two-step offline-online training method, 

making the prediction outcomes more reliable when using 

the 5G wireless communication systems. 

  

By dividing the physical network into many logical 

networks,   network  slicing  is  designed  to  support  various  

developing applications with higher performance and 

flexibility demands. Thus, many mobile phones have 

generated a huge amount of data owing to these applications. 

This has created extraordinary hurdles and significantly 

affects the efficiency of network slicing. With the help of a 

hybrid learning algorithm, this research tries to build an 

effective network slicing. Consequently, Abidi et al. [28] 

suggested a system that has three basic stages: (a) Collection 

of Data, (b) OWFE, and (c) Slicing categorization. Initially, 

the variables connected with several network devices, like 

"user device type, period, packet loss ratio, packet delay 

budget, bandwidth, delay rate, speed, jitter, and modulation 

type," were collected in the 5G network slicing database. 

Then, they used the OWFE, which involves multiplying a 

weight function by the attribute values to produce a high-

scale variance. The suggested model is known as glowworm 

swarm-based DHOA. They improved this weight function by 

fusing two meta-heuristic processes and named it GS-

DHOA. They used a mixed classifier using deep belief and 

NN to categorize the precise network slices for each device 

according to the specified attributes, such as "eMBB, 

mMTC, and URLLC." The GS-DHOA optimizes the weight 

function of both networks. 
 

 Zhou et al. [29] stated that increased traffic demands, 

beamforming, and massive MIMO technologies, lead to 

more dynamic and complicated 5G networks. Thus, instead 

of using the straightforward standard F/TDD, 5G network 

operators must efficiently manage radio resource allocation. 

They explain how to overcome this issue using the deep 

LSTM learning method to produce localized predictions of 

the traffic load at the UDN base station. The suggested 

approach implements the suitable action strategy a priori to 

evade the congestion based on localized prediction. 
 

 He et al. [30] recommended an MU-MIMO sensor based 

on the DL method for the 5G and B5 G-based Internet of 

Things, where the network functions in intrusive 

atmospheres linked over the frequency domain or time. A 

traditional symbol-by-symbol sensor and a Deep CNN were 

used for this network in an iterative detection framework. 

The Deep CNN was used to suppress the competing signals 

by retaining the features via the DL method. The 

framework's standard sensor can be either MMSE-MLD or 

ZF (zero-forcing)-MLD, where the standard ZF or MMSE 

(minimum mean square error) is utilized before the 

maximum likelihood detection(MLD) is used to seek nearby 

signal possibilities. Therefore, the suggested MU-MIMO 

sensor may reduce the impact of interrelated intrusions with 

minimal computing effort, which ultimately increases the 

actual MU-MIMO networks' dependability in the context of 

interrelated intrusions. User scheduling is used to improve 

system detection performance, where numerous user 

selection standards are suggested to identify the best use 

from a group of users. 

  

The mmWave represents the 30 GHz and 300 GHz wave 

spectra. It is a vital component of the 5G wireless systems. 

The coupling of a mmWave massive MIMO system with 

deep learning techniques was examined by Jin and Huang et 

al. [43] to simplify the hardware design, less power 

depletion, and precise estimation of CSI [42]. Huang et al., in 

contrast to Jin, concentrated on a massive mmWave MIMO 

model for successful hybrid precoding with a Deep neural 

network. In the DNN, a  completely connected layer with 

128 blocks following by 2 hidden layers, which are also 

completely connected but have more blocks than the 

previous layer. The next hidden layers, containing 128 and 

64 blocks, are followed by an output layer. Next is the noise 

layer, which corrupts the signals with AWGN or other 

mixing errors. A ReLU activation function is present in each 

hidden and input layer [43]. With their mmWave massive 

MIMO system, both [42] and [43] achieved significant 

success. The adaptable denoising CNN is better than 

traditional estimating techniques and has a wider noise 

perception range than a traditional denoising CNN, as shown 

by the normalized mean square error (NMSE) results. The 

adaptable denoising CNN performs better than the denoising 

CNN in respect of NSME performance versus the number of 

iterations. 
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However, there is only a 1 dB difference between the 

two strategies until they converge after 150 cycles[42]. Due 

to deep learning exceptional mapping, structural information, 

and learning abilities, the deep learning-based hybrid 

precoding method outdoes other approaches in terms of 

spectrum efficiency. It suggests that the suggested mmWave 

massive MIMO method will be able to resolve the non-

convex optimization in hybrid precoding [43].  
 

 

 In order to reduce the total MSE of the user's signals in 

MIMO-NOMA systems, the researchers suggested the deep 

learning system FNN with two hidden layers with 100 nodes. 

This approach produces a reduced MSE when learning the 

joint precoding and SIC decoding nonlinearly by tackling the 

problem of faulty SIC decoding compared to the present 

linear methods. Additionally, it delivers lower BERs, 

demonstrating the great reliability of NOMA systems [44]. 
 

 

 To recuperate the initial channel state information for 

single-user and multiuser hoping, Liao et al. [45] deployed a 

Bi-LSTM and Bi-ConvLSTM system, which improves 

renewal eminence and response precision of the convolution 

neural network compressed organizational features of the 

massive MIMO channel. Feature vectors were recovered 

from the filtered data using the 2D and 3D CNN, and the 

data was then compressed using the 2D and 3D max-pooling 

networks, correspondingly. It reduces the data to 1/4 its 

original size and rearranges it into a 1D vector [45]. CNNs 

were used by Vieira et al. [46] to demonstrate how massive 

MIMO channel metrics may be used to accurately estimate 

user positions, fingerprints, and the sparse channel topology. 

  

 In order to regulate the best channel statistics while 

converting the power distribution problem into a basic 

program using a DCNN, authors in [47] addressed the non-

convex  sum  rate  maximization  problem for massive 

MIMO  systems. The  sum  spectral  efficiency  optimization 

problem  in multi-cell massive MIMO systems was 

examined  by  authors  in [48]  using  CNN. When 

comparing the training sets with the test sets, the deep 

convolutional  neural  network  exhibits  a  loss  of  less  than 

0.02%. The DL models behave the same or better than 

training sets when these issues are solved using the 

fundamentals of optimization theory. Each study 

demonstrates the viability of applying deep learning to 

massive MIMO real-time power regulation. Table 7 

demonstrates a comparative analysis of various deep 

learning-based schemes.  

 
Table 7. Comparative analysis of deep learning-based methods 

Reference Research DL Method Performance and observation 

[42] [43] • Estimation of CSI 

• mmWave band 

• DNN 

• CNN 

• FFDNet and DnCNN perform significantly better than 

traditional channel estimation techniques (LS and 

MMSE). 

[44] • Downlink of MIMO-

NOMA 

• Precoding and SIC 

decoding 

• FNN • Attains lesser MSE and lesser BERs 

• Nonlinearly addressed the problems of faulty SIC 

decoding 

[45] • Estimating the channel 

and DOACSI feedback 

• DNN 

• CNN 

• LSTM 

• With bigger batch sizes, the MSE efficiency of the 

Computation is more stable. 

• When using longer training sequences, the channel 

estimation's performance is optimised. 

• Keeps strong system performance and gain at the BS even 

with various antenna arrangements. 

[32] [46] • Wi-Fi positioning 

• Improve localization 

• CNN 

• MLP 

• As the number of users rises, average precision declines. 

• Capability for positioning generalise effectively in line-of-

sight or highly clustered propagation circumstances 

[47] ][48] • Power control 

• Address a non-convex 

issue 

• CNN • As network size grows, the required number of cycles to 

attain the static point does not change noticeably. 

• Although the average gain is only 1%, the biggest relative 

improvement occurs when initialization is increased from 

1 to 5. 

• A single neural network may accommodate various user 

counts per cell. 
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Table 8. Challenges in 5G deployment 

Challenges Description 

Coexistence of 5G Radio with 

other networks  

Several networks operate in the same frequency bands, which causes overlapping of 

frequencies. Therefore, frequency prioritizing plays an important role in smooth 

coexistence. 

Signal distortion  The advancement in wireless communication schemes has led to the evolvement of 

modulation schemes. The higher modulation schemes cause signal distortion, which 

degrades the communication performance because of dense constellations 

Propagation losses These networks are operated in high-frequency domains such as mmWave, and terahertz 

frequencies which are associated with high propagation losses. Therefore, signal quality 

is degraded, and low SNR is obtained  

Coexistence of uRLLC, mMTC, 

and eMBB 

The existence and deployment of 5G in the same RAN significantly impact the working 

of 5G, and massive connectivity violates the uRLLC and increases delay. 

Handover synchronization  The handover between high mobility radio access technologies consumes more time, 

resulting in increased delay and call drop.  
 

3. The beginning of 6G 
The commercialization of 5G networks, including all of 

their services and use cases, is in the primary stage of 

development. In order to be effectively implemented, these 

networks have to eliminate many obstacles (Table 1) 

effectively. The problems and technological shifts have led 

to the development of a 6G network. According to 

speculations, 6G networks will dominate the following ten 

years (2030–2055), ushering in the era of "everything 

connected." Many nations have already begun exploring 6G 

networks. Finland launched its flagship 6Genesis programme 

in 2018 to create an entire 6G ecosystem [49]. ITU has 

created a group named "Network 2030,". The purpose of this 

group is to explore new technologies for the networks 

beyond 2030.  

 

For many applications, such as the transfer of sensations 

and emotions, next-generation networks are anticipated to be 

connected with high bandwidths, terahertz frequencies (up to 

3THz), and high data speeds (up to 1Tb/s). According to 

authors in [63], from 1G to 5G, with an emphasis on 6G, the 

next generation of wireless networks has been  addressed  

along  with  their  innovations,  services, and problems. The 

goal of 6G networks is to increase user happiness. It moves 

along the same path as networks from earlier generations. 

 

4. Issues and challenges in 6G 
The study of the 6G network is still in its beginnings. As 

a result, many problems and difficulties need to be solved. 

With various potential methodologies and use cases, 6G 

networks are thought to be intelligent and versatile. This 

section discusses a few topics of 6G communication 

networks: 

• THz communication is quickly becoming a desirable 

technology for the 6G network, increasing system 

capacity by supplying more spectrum ranges. But, due 

to obstructions and high absorption losses, these 

frequencies may only be suitable for short-range 

transmission. Small-sized transceivers with low noise 

and lower inter-module intrusions are needed to enable  

 

such high-frequency sophisticated devices [58]. Thus, 

to get high-performance gain, researchers should 

examine how well the equipment can function at such 

high frequencies and adjust it appropriately. 

• The current channel estimate models cannot 

accommodate higher frequencies' variability and 

uncertainty. Therefore, new channel and propagation 

models must be developed to estimate the performance 

of such intricate environments. 6G is expected to work 

in distinct types of networks. It is essential to design 

flexible systems and dynamic protocols that can react to 

the context in order to enable seamless connectivity and 

network interoperability. 

 

• 6G will incorporate several networks, such as terrestrial 

and satellite networks, to achieve broad coverage and 

high mobility. Furthermore, because of the significant 

delay, apparent Doppler shift, and inter-satellite links, it 

is difficult to implement satellite communication with 

ground communication. These difficulties may impact 

synchronization, random access, signal recognition, 

reception efficiency, and other activities. So, to properly 

reap the benefits of an interconnected communication 

system, innovative approaches must be provided to 

reduce the associated difficulties.   

 

•  Edge computing or intelligence will significantly 

increase the network's computational capability. 

However, it is exceedingly challenging to run 

complicated AI-based systems that necessitate large 

data collection on edge nodes due to the limited supply 

of resources and storage. Therefore, researchers must 

create sophisticated and original AI algorithms for edge 

nodes. Additionally, efficient mobile edge scheduling 

and offloading mechanisms must be developed to 

improve the system's efficiency. 

• AI will be the driving force behind 6G, which demands 

highly powerful Computation and extensive data 

manipulation. Therefore, the key components of the 6G 

network will be energy efficiency and power 



Shilpa Bhairanatti &  S. Mohan Kumar / IJEEE, 10(1), 24-40, 2023 

 

37 

optimization. It is necessary to develop power-efficient 

methods for next-generation systems. 

• Wireless  network security and privacy  are  the main 

concerns. The  key  6G network technologies 

necessitate massive data transmission and collection. 

Numerous PHY security strategies  and  encryption 

systems must be developed to guarantee security and 

privacy. 6G  networks  are  thought  to  offer  protection 

from new  threats. Future society and the economy will 

be entirely reliant on technology. Therefore, a 

trustworthy design with the necessary privacy and 

secrecy is needed. 
 

 

5. Conclusion  
 MmWave massive MIMO technologies embody an 

effort to connect the significant prospects of the bandwidth 

available in the mmWave frequency band and the vast 

capacity gains of massive antenna array models. In this work, 

we have summarized the theories and methods given for 

mmWave massive MIMO technologies. Also, we outlined 

the differences between the features of the new network 

technology and the earlier systems from which it is deriving, 

as well as the main research difficulties and future objectives. 

It is essential to remember that 5G and B5G technologies are 

not  solely  driven  by  technological  advancements  and  the 

ability to supply large bandwidth and rapid data rates for 

booming mobile data. This article discusses the current 

advancements in this area of massive MIMO, mmWave, and 

NOMA-based 5G and 6G communication protocols. Deep 

learning-based communication performance-improving 

methods are also examined. Moreover, there are a number of 

difficulties in the area of 5G communication standards. 

These difficulties must be overcome for the 5G network to 

transition to the 6G network. 
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