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Abstract - Glaucoma identification is a multidomain task which involves the analysis of multimodal report sets. These sets 

include retinal scans from different sensors, blood report parameters, and eyesight reports. Existing glaucoma 

identification models either use a single report for analysis or suffer from domain adaptation issues, which limits their 

classification performance. Moreover, the models that use multidomain scans are highly complex and thus have limited 

scalability levels. To overcome these issues, the study of this text proposes the design of a hybrid Long-Short-Term Memory 

(LSTM) with a Gated Recurrent Unit (GRU) to identify glaucoma via correlation analysis. Both LSTM & GRU are 

individually capable of representing any signal into feature sets, but a hybrid combination of these models assists in the 

optimal representation of retinal reports via high-density feature analysis. These features are selected via a Genetic 

Algorithm (GA), which uses inter-class feature variation for fitness optimizations. The selected features are processed via a 

classification model that uses dual Convolutional Neural Networks (dCNNs) and assists in incorporating transfer learning 

during classification operations. The dCNN comprises a Recurrent Neural Network (RNN), which performs the initial 

classification of individual scans into approximate glaucoma levels. These approximate levels are fine-tuned by a 

customized CNN, which assists in identifying final glaucoma severity under clinical use cases. Correlation analysis 

between retinal scan components (including Macula, Arteries, Veins, and Optical Disc features) and glaucoma-specific 

blood reports & eyesight reports assist in continuous optimizations. Due to these operations, the proposed model can 

achieve 8.5% higher accuracy, 9.3% higher precision, and 4.9% higher recall, with 12.5% lower computational delay 

when compared with existing methods. These observed enhancements assist in deploying the model for real-time clinical 

use cases. 
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1. Introduction 
Deep convolutional neural networks (DCNNs) have 

the ability to acquire efficient representations that are 

typically relevant to a number of applications and visual 

domains when trained on large-scale datasets [1–10]. 

However, classification models trained using the 

representations of a single dataset perform less well on 

additional datasets and classification tasks with Deep 

Relation Transformers (DRT) [1, 10]. This is due to an 

issue known as dataset bias or domain shift [11]. To 

further fine-tune these models, it is customary to use 

datasets specific to the task at hand. Nonetheless, getting 

sufficient labelled data to precisely alter a large number of 

the parameters required by deep multi-layer networks may 

be difficult and costly.[12-20] The objective of domain 

adaptation strategies is to offset the negative effects of 

domain changes. In more recent domain adaptation 

algorithms, transformations that turn the source and target 

domains into a single latent feature space are being learned. 

Commonly, this is accomplished by optimizing the 

representations to reduce a domain shift indicator, such as 

the maximum mean discrepancy [22, 29] or the correlation 

distances [16, 19]. Presented here [21] is a method for 

effectively recreating the target domain from its source 

representation. In recent years, the generative adversarial 

adaptation method has gained popularity as an example of 

this principle. To lower the approximate domain 

discrepancy distance, this strategy employs an adversarial 

goal in connection to a domain discriminator. Generally, 

generative adversarial learning is closely related to 

adversarial adaptation [22], which pits the generator 

against the discriminator. This kind of learning needs 

competition between the generator and discriminator. The 

technique by which the generator creates its pictures 

deceives the discriminator, which strives to distinguish 

between synthetic and genuine photographs. This causes 

the discriminator’s task to fail. In the realm of domain 

adaptation, this idea has been used to guarantee that the 

network cannot differentiate between the distributions of 
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data originating from its source domain and data 

originating from its target domain via Self-Organized 

Operational Neural Networks (Self-ONNs) [19], [23], [24]. 

In contrast, these algorithms must make design decisions, 

such as which loss function to use, whether or not to utilize 

a generator, and whether or not to share weights between 

domains. For instance, although [24] divides some layers 

to train a slightly asymmetric mapping, [27] and [29] [31] 

share weights and learn a symmetric mapping of both the 

source and target images into a single feature space by 

sharing weights. This is achieved by mapping both the 

source and target images to the same feature space. 

Nevertheless, there are currently no effective domain 

adaptation algorithms that can adapt to fundus photographs 

for the purpose of glaucoma diagnosis. [25,26] In general, 

fundus images may be acquired utilizing a variety of 

medical equipment, but the photographs nearly always 

have the same basic look. In part, different sets of fundus 

pictures may be distinguished from one another based on 

the location of the optic disc and optic cup. The most 

noticeable distinction between this set and the others is the 

overall brightness. Since pictures of the optic disc and cup 

of the fundus may be analyzed to detect glaucoma, these 

alterations are not an essential feature in an 

ophthalmologist’s glaucoma diagnosis. In contrast, these 

changes significantly impacted classification when it came 

to models of classification that were trained on several 

datasets.[28] 

 

This experimental study provides a hybrid LSTM and 

GRU-based Domain Adaptation Model for Correlation 

Analysis-based Glaucoma Diagnosis within the scope of 

this work. Moreover, to properly represent feature sets, our 

technique combines LSTM and GRU. The majority of the 

proposed model consists of two distinct models. The first 

is an unsupervised Genetic Algorithm (GA) for feature 

selection, while the second is a source-photograph-based, 

pre-trained classification model. Both of these models 

need picture inputs. Here a new domain adaption strategy 

that employs deep convolutional neural networks (dCNNs) 

for transfer learning operations is presented. This work 

provides a novel technique for extracting and selecting 

glaucoma-related characteristics. In addition, we contribute 

to enhancing classification performance for multimodal 

report types by developing a correlation model. Our efforts 

have been beneficial in various application contexts, as 

seen by the outcomes gained from a number of medical 

imaging clinical image sets.[30] 

2. Proposed Methodology 
Based on the review of existing glaucoma analysis 

models, it can be observed that these models either use a 

single report for analysis or suffer from domain adaptation 

issues, which limits their classification performance. 

Moreover, the models that use multidomain scans are 

highly complex and thus have limited scalability levels. To 

overcome these issues, this section proposes the design of 

a hybrid Long-Short-Term Memory (LSTM) with Gated 

Recurrent Unit (GRU) to identify glaucoma via correlation 

analysis. 

As observed from Fig  1, both LSTM & GRU are 

individually capable of representing any signal into feature 

sets, but a hybrid combination of these models assists in 

the optimal representation of retinal reports via high-

density feature analysis. These features are selected via a 

Genetic Algorithm (GA), which uses inter-class feature 

variation for fitness optimizations. The selected features 

are processed via a classification model that uses dual 

Convolutional Neural Networks (dCNNs) and assists in 

incorporating transfer learning during classification 

operations. The dCNN comprises a Recurrent Neural 

Network (RNN), which performs the initial classification 

of individual scans into approximate glaucoma levels. 

These approximate levels are fine-tuned by a customized 

CNN, which assists in identifying final glaucoma severity 

under clinical use cases. Correlation analysis between 

retinal scan components (including Macula, Arteries, 

Veins, and Optical Disc features) and glaucoma-specific 

blood reports & eyesight reports assist in continuous 

optimizations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 Flow diagram of the proposed model for Glaucoma 

classifications 
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Fig. 2 Hybrid LSTM & GRU-based model for extraction of features 

3. Hybrid LSTM & GRU Model 
The initial reports from the data set are aggregated and 

given to an efficient hybrid LSTM & GRU-based feature 

extraction model, which is depicted in Fig 2. 

 

 

Due to this combination, the model can identify high-

density feature sets. These sets are initially extracted via 

equations 1, 2, 3, 4, 5 and 6 as follows, 

 

i = var(xin ∗ Ui + ht−1 ∗ Wi) … … … …  (1) 

 

f = var(xin ∗ Uf + ht−1 ∗ Wf) … … … ..  (2) 

 

o = var(xin ∗ Uo + ht−1 ∗ Wo) … … … … . . (3) 

 

Ct
′ = tanh(xin ∗ Ug + ht−1 ∗ Wg) … … … (4) 

 

Tout = var(ft ∗ xin(t − 1) + i ∗ Ct
′) … … … (5) 

 

hout = tanh(Tout) ∗ o … … … . (6) 

 

Where, xin, W & 𝑈 represents aggregated input reports 

and LSTM constants, which are set up by the 

hyperparameter tuning process. The extracted features are 

further augmented via the use of an efficient GRU-based 

model, which can be represented via equations 7, 8, 9 and 

10 as follows, 

z = var(Wz ∗ [hout ∗  Tout]) … … … . (7) 

 

r = var(Wr ∗ [hout ∗  Tout]) … … … . (8) 

 

ht
′ = tanh(W ∗ [r ∗ hout ∗  Tout]) … … … . (9) 

 

xout = (1 − z) ∗ ht
′ + z ∗ hout … … … … (10) 

 

Where, W represents the GRU constant, which is 

tuned similarly to LSTM constants. The output feature sets 

xout  are selected via a Genetic Algorithm (GA) based 

model, which works as per the following process. The 

output feature sets xout  are selected via a Genetic 

Algorithm (GA) based model, which works as per the 

following process, 

 

To initialize the feature selection process, setup the 

following GA constants, 

• Total optimization iterations (Ni) 

• Total optimization solutions (Ns) 

• Rate of learning (Lr) 

X(t) 

delay 

X(t-1) 

H(t-1) 

sigma 
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Generate Ns solutions via the following process, 

• Select N features via equation 11, 

N = STOCH(Lr ∗ Nf, Nf) … … … … … … … . . (11) 
 

Where, STOCH  represents a stochastic Markovian 

process, while Nf represents total features extracted by the 

combined LSTM & GRU process. 

 

The selected features are used to find the fitness levels 

of the current solution via equation 12, 

 

f =
∑ xi −

∑ x

N

N
i=1

N
… … … … … … … . (12) 

 

Where, x represents the intensity of feature values that 

are extracted via the LSTM & GRU process. 

• Once these values are generated then, a fitness 

threshold is estimated via equation 13, 

fth = ∑ fi ∗
Lr

Ns

Ns

i=1

… … … … … … … … … . (13) 

 

• After this evaluation, modify all solutions withf < fth, 

while passing other solutions to the next iterations. 

• This process is repeated for Ni  iterations and the 

solution with maximum fitness are selected for further 

classification operations. 

The selected features are initially classified via an 

RNN-based model, which uses ‘purelin’ based activations 

via equation 14 to identify Glaucoma levels, 

 

Cout = purelin (∑ xouti ∗ Wi

N

i=1

) … … … … … … . . (14) 

 

Where, xout &Wi  represents the features selected by 

the GA process and weights tuned via the RNN 

classification process. These features are also classified via 

an efficient CNN model, which can be observed in figure 3, 

wherein Convolutional, Max Pooling, and Drop Out layers 

are combined with the Fully Connected Layer to obtain 

final Glaucoma classes. The model extracts convolutional 

features via equation 15, 

Convouti
= ∑ xout(i − a)

m

2

a=−
m

2

∗ ReLU (
m

2
+ a) … … … … . . (15) 

Where, m & 𝑎 represents window size and stride size 

for the convolutions, while ReLU represents a rectilinear 

unit which is used for activation of extracted feature sets. 

The window and stride sizes are varied between 1x64 to 

1x512, which assists in extracting large feature sets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Fig. 3 Design of the proposed CNN Model for identification of 

Glaucoma levels 

4. Result Analysis & Comparison 
The proposed model uses a combination of LSTM & 

GRU for feature extraction, cascaded with GA to identify 

highly variant feature sets. The selected sets are classified 

via a combination of CNN and RNN, which assists in 

identifying Glaucoma levels. For different dataset samples, 

these levels are estimated for multiple retinal components, 

including Macula, Arteries, Veins, and Optical Disc. These 

dataset samples were taken from the following sources, 

• OCT Scans from Kaggle 

• PAPILA 

• RIGA  

The model’s performance was compared w.r.t. 

accuracy (A), precision (P), recall (R), and delay (D) levels, 

which were evaluated via equations 19, 20, 21, and 22 as 

follows, 

A =
tp + tn

tp + tn + fp + fn
… … … . . (19) 
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𝑃 =
tp

tp + fp

… … … …      (20) 

R =
tp

tp + tn + fp + fn

… … … … (21) 

d =
1

N
∑ tendi

− tstarti

N

i=1

… … … … … (22) 

Where, tp, fp, tn&fn represent usual true & false 

identification rates, while tend& tstart are timestamps 

during the start & completion of the classification process. 

A total of 25k samples were used for evaluation, out of 

which 75% were used for training, 15% for testing &10% 

for validation operations. Using these sets, the accuracy 

can be observed from table 1, where it was compared with 

Glau Net [1], DRT [10], and Self ONN [19], w.r.t. 

different Test Image Sets (TIS) as follows, 

Table 1. Accuracy of Glaucoma Analysis 

TIS A (%) 

Glau Net 

[1] 

A (%) 

DRT 

[10] 

A (%) 

Self ONN 

[19] 

A (%) 

This 

Work 

1108 81.11 86.92 88.63 97.57 

2225 81.16 87.23 88.83 97.65 

3333 81.21 87.53 89.02 97.73 

4442 81.26 87.84 89.21 97.80 

5558 81.31 88.16 89.40 97.85 

6667 81.36 88.48 89.59 97.90 

7775 81.41 88.81 89.79 97.94 

8892 81.47 89.14 90.00 97.98 

10000 81.52 89.47 90.21 98.02 

11108 81.57 89.79 90.42 98.06 

12225 81.62 90.10 90.63 98.11 

13892 81.67 90.42 90.84 98.16 

16667 81.72 90.74 91.04 98.21 

18058 81.78 91.05 91.24 98.27 

19442 81.83 91.37 91.44 98.34 

22225 81.88 91.68 91.63 98.40 

23608 81.93 92.00 91.83 98.47 

25000 81.99 92.32 92.03 98.54 
 

 
Fig. 4 Accuracy of Glaucoma analysis 

Fig. 4 illustrates the results of these tests, showing that 

the suggested classification model can outperform Glau 

Net [1] by 15.5%, DRT [10] by 6.4%, and Self ONN [19] 

by 6.5% in terms of accuracy. Therefore, it is applicable to 

a broad range of categorization problems that occur in real-

time. This is achieved by using a dCNN-based 

classification technique in conjunction with hybrid LSTM 

and GRU networks and a high-density feature extraction 

process. Similarly, the precision of classification was 

evaluated in table 2 as follows, 

Table 2. The precision of glaucoma analysis 

TIS P (%) 

Glau Net 

[1] 

P (%) 

DRT 

[10] 

P (%) 

Self ONN 

[19] 

P (%) 

This 

Work 

1108 79.20 83.21 85.71 96.49 

2225 79.25 83.51 85.90 96.55 

3333 79.30 83.81 86.08 96.61 

4442 79.36 84.12 86.26 96.66 

5558 79.41 84.43 86.45 96.71 

6667 79.46 84.74 86.64 96.75 

7775 79.51 85.05 86.84 96.79 

8892 79.56 85.36 87.05 96.83 

10000 79.61 85.67 87.25 96.87 

11108 79.66 85.97 87.44 96.92 

12225 79.71 86.27 87.64 96.97 

13892 79.76 86.57 87.83 97.02 

16667 79.81 86.87 88.02 97.08 

18058 79.86 87.17 88.21 97.14 

19442 79.91 87.47 88.40 97.20 

22225 79.96 87.77 88.59 97.26 

23608 80.01 88.07 88.78 97.30 

25000 80.06 88.38 88.98 97.35 

 

 
Fig. 5 The precision of Glaucoma analysis 

Fig 5 summarizes the results of these analyses and 

shows that the suggested classification model outperforms 

Glau Net [1] by 18.3%, DRT [10] by 9.1%, and Self ONN 

[19] by 8.5% in terms of precision. As a result, it is 

applicable to a broad range of categorization tasks in real-

time. That’s because we employed LSTM and GRU for 

feature extraction, GA for feature selection, dCNN for 

classification, and efficient segmentation techniques. 

Similarly, recall of classification was evaluated in table 3 

as follows, 
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Table 3. Recall of glaucoma analysis 

TIS R (%) 

Glau Net 

[1] 

R (%) 

DRT 

[10] 

R (%) 

Self ONN 

[19] 

R (%) 

This 

Work 

1108 78.22 85.22 86.19 95.86 

2225 78.27 85.52 86.38 95.93 

3333 78.32 85.82 86.56 96.00 

4442 78.37 86.13 86.75 96.05 

5558 78.42 86.45 86.94 96.10 

6667 78.47 86.77 87.13 96.15 

7775 78.53 87.07 87.32 96.19 

8892 78.61 87.32 87.51 96.25 

10000 78.70 87.55 87.70 96.32 

11108 78.79 87.77 87.87 96.39 

12225 78.88 87.99 88.05 96.46 

13892 78.97 88.24 88.23 96.54 

16667 79.05 88.48 88.40 96.61 

18058 79.13 88.71 88.58 96.69 

19442 79.21 88.97 88.76 96.77 

22225 79.27 89.24 88.94 96.83 

23608 79.34 89.53 89.13 96.89 

25000 79.39 89.83 89.32 96.94 

 

 
Fig. 6 Recall of Glaucoma analysis 

When one considers these evaluations and observes 

figure 6, it becomes abundantly evident that the suggested 

classification model can provide recall outcomes that are, 

respectively, 16.5%, 8.3%, and 8.5% superior to those 

generated by Glau Net [1], DRT [10], and Self ONN [19]. 

As a consequence of this, it performs very well in a wide 

range of real-time categorization settings. This is because 

well-established segmentation approaches were combined 

with dense feature extraction and ensemble classification 

to achieve this result. Similarly, the delay of classification 

was evaluated in table 4 as follows, 

Table 4. Delay needed for glaucoma analysis 

TIS D (ms) 

Glau Net 

[1] 

D (ms) 

DRT 

[10] 

D (ms) 

Self ONN 

[19] 

D (ms) 

This 

Work 

1108 111.31 102.14 104.22 103.55 

2225 111.38 102.50 104.44 103.62 

3333 111.45 102.86 104.67 103.69 

4442 111.53 103.23 104.89 103.76 

5558 111.60 103.61 105.12 103.81 

6667 111.67 104.00 105.35 103.86 

7775 111.74 104.39 105.59 103.90 

8892 111.81 104.77 105.83 103.94 

10000 111.88 105.14 106.08 103.98 

11108 111.95 105.52 106.32 104.03 

12225 112.02 105.89 106.56 104.08 

13892 112.09 106.26 106.80 104.14 

16667 112.17 106.63 107.03 104.20 

18058 112.24 107.00 107.26 104.26 

19442 112.31 107.37 107.50 104.33 

22225 112.38 107.74 107.73 104.39 

23608 112.45 108.11 107.96 104.44 

25000 112.52 108.49 108.20 104.50 
 

 

 
Fig. 7 Delay needed for Glaucoma analysis 

When compared to the delays created by Glau Net [1], 

DRT [10], and Self ONN [19], it is clear that the suggested 

categorization model is capable of producing delays that 

are, respectively, 8.5 percent, 4.9 percent, and 4.5 percent 

shorter. This can be seen clearly when looking at Figure 7. 

As a consequence of this, it performs very well in a wide 

range of real-time categorization settings. This is because, 

after the segmentation process has been completed 

successfully, high-density feature extraction and ensemble 

classification are used. The created model proved useful in 

a range of contexts involving the categorization of 

glaucoma phases as a result of these enhancements, which 

were included in the model for efficient analysis. 

5. Conclusion and Future Scope 
The proposed model extracts feature using a mix of 

LSTM and GRU, which are then cascaded using GA to 

identify highly varied feature sets. The chosen sets are 

categorized using a CNN and RNN combination to 
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identify the degrees of glaucoma. These values are 

calculated for the Macula, Arteries, Veins, and Optical 

Disc, among other retinal components for various dataset 

samples. The classification model can perform more 

accurately than Glau Net [1] by 15.5%, DRT [10] by 6.4%, 

and Self ONN [19] by 6.5%, according to an accuracy 

assessment. As a result, it may be used to solve various 

real-time classification issues. This is accomplished by 

combining a dCNN-based classification approach with 

hybrid LSTM and GRU networks, high-density feature 

extraction, and LSTM and GRU networks. In terms of 

accuracy, the proposed classification model surpasses Glau 

Net [1] by 18.3%, DRT [10] by 9.1%, and Self ONN [19] 

by 8.5%. 

As a consequence, it may be used in real-time for a 

variety of classification jobs. That’s because we used 

effective segmentation methods, dCNN for classification, 

LSTM and GRU for feature extraction, and GA for feature 

selection. The recall results produced by the proposed 

classification model are, respectively, 16.5%, 8.3%, and 

8.5% better than those produced by Glau Net [1], DRT 

[10], and Self ONN [19]. This leads to excellent 

performance in a variety of real-time classification 

contexts. The outcome was obtained by combining well-

known segmentation techniques with dense feature 

extraction and ensemble classification. It is obvious that 

the recommended categorization model is capable of 

providing delays that are, respectively, 8.5 percent, 4.9 

percent, and 4.5 percent quicker performance levels when 

compared to the delays produced by Glau Net [1], DRT 

[10], and Self ONN [19]. This leads to excellent 

performance in a variety of real-time classification 

contexts. This is so that high-density feature extraction and 

ensemble classification may be employed once the 

segmentation procedure has been successfully finished. 

These improvements, which were included in the model 

for effective analysis, have shown to be helpful in various 

settings involving the classification of glaucoma stages. In 

future, the model must be validated for larger datasets and 

can be extended via low-complexity feature analysis 

techniques, which will assist in improving its classification 

performance under multimodal sets. Researchers can also 

use deep learning techniques like Auto Encoders and 

Transformers to further optimize its performance under 

different dataset samples. 
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