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Abstract - High-intensity focused ultrasound is a form of thermal therapy that does not involve any incisions and is used 

for hyperthermia and removal treatments. Monitoring the temperature is essential for such operations to provide the 

required quantity of thermal dosage to the target region without causing damage to the strong tissues that are located in 

the surrounding area. In order to accomplish this goal, a number of different medical imaging approaches have been 

developed. Magnetic resonance imaging allows temperature readings to be taken with a high degree of precision. Because 

it does not emit ionizing radiation, is easily accessible, and has a low cost, ultrasound is a medical imaging modality that 

is regarded favourably for use in temperature monitoring. This is of particular importance in cases involving bone tumors 

because of the sensitive tissues that are located nearby. Due to the fact that temperature affects both the rapidity of sound 

and the reduction of ultrasound waves, it is possible to estimate temperature by utilizing the physical features of 

ultrasound. In this article, we suggest a system that uses ultrasonography and a deep learning methodology to monitor the 

temperature. During HIFU therapy, the system collects data from the ultrasound channels and alternates between ablation 

and monitoring phases. It was created with this functionality in mind. During the monitoring phase, the ultrasonic 

elements in the probe are in charge of receiving ultrasound pulses that have been consecutively sent from the 256 HIFU 

components. We train a convolutional long short-term memory computational model using ultrasonic data to generate 

temperature images. Magnetic resonance thermometry readings are compared to the resulting temperature images. The 

mean and maximum discrepancies between each picture are calculated as a means of gauging the performance of the 

proposed neural network. This research suggests using a neural network to recreate thermal pictures. For this purpose, we 

utilize the ultrasound channel data in conjunction with a CLSTM neural network to create temperature pictures. Images of 

temperatures are compared with those acquired using magnetic resonance thermometry. Because this approach can 

acquire the progression of temperature from a vast quantity of facts, it may be less sensitive to the placement of the 

ultrasonic element. Phantom research allowed us to verify the accuracy of the temperature image reconstruction 

approach. A technique of temperature monitoring that makes use of an external ultrasonic component and deep learning 

reconstruction appears to be feasible, according to the encouraging findings obtained. 
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1. Introduction  
Hyperthermia has significant potential for increasing 

local control and reducing toxicity in cancer. Mild 

hyperthermia, the process of heating tumors to 

temperatures of 40 to 43 degrees Celsius, is the most 

effective sensitizer for radiation and chemotherapy. 

Adjuvant hyperthermia stands out because, over a wide 

range of tumor locations and histology, it either does not 

increase late toxicity or just slightly increases it. 

Hyperthermia has a high acceptability and low morbidity, 

making it possible to retreat with radiation in patients who 

have previously been substantially preirradiated. It also 

dramatically improves survival for several 'de Novo' 

patient groups. Tumor cell death can be accelerated by a 

number of different pathways, some of which are 

temperature-dependent. Direct cell death due to 

hyperthermia is related to temperatures exceeding 42 

degrees Celsius. DNA damage repair following 

chemotherapy or radiation is impeded at temperatures 

exceeding 40 degrees Celsius. Improving perfusion 

twitches at a surprisingly low temperature (39°C) makes it 

one of the most well-known hyperthermia processes. The 

medical oncology field has noticed the newly discovered 

molecular understanding of how hyperthermia decreases 

BRCA2 because it opens the door to novel tactics for 

combining targeted medicines with hyperthermia. The 

perceived difficulty in applying good-grade heating is a 

key obstacle to the clinical employment of HT, irrespective 

of the promising therapeutic outcomes. 

 

Monitoring temperature with ultrasound (US) that is 

both accurate and precise can be helpful for various 

medical therapies. To create physiological changes 

advantageous to the patient's health, mild hyperthermia 

requires the tissue temperature to maintain between 39 and 

42 degrees. HIFU is typically utilized in the treatment of 

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Priscilla Whitin & V. Jayasankar / IJEEE, 10(1), 187-196, 2023 

188 

cancer [2]. Necrosis is induced by the local heating of 

tissues using this sort of ultrasound. A number of different 

techniques have been suggested as potential aids in the 

monitoring of spatiotemporal shifts in the temperature of 

tissue in the US [37]. As a result of the fact that 

temperature shifts are typically not clearly visible in 

standard B-mode ultrasound pictures, quantitative 

ultrasound (QUS) approaches have been researched to 

increase the imaging contrast of temperatures. QUS 

approaches have been created from various tissue models 

and use radio-frequency data (obtained before the 

reconstruction of an ultrasound picture) to estimate 

parameters linked to various tissues' physical attributes [4]. 

 

Locally administering heat to the tumour area 

constitutes hyperthermia, a form of adjunct cancer 

handling that boosts the effectiveness of radiation and 

chemotherapy[11]. In 420 patients with locally advanced 

cancer, Franckena et al. [10] conducted a retrospective 

study and found that the chance of cure is connected with 

the thermal dosage given to them[14]. The study's results 

demonstrated the need to monitor temperatures carefully 

and the necessity of maximizing the benefits of thermal 

exposure. However, despite the fact that intraluminal 

thermometry is the gold standard for temperature 

evaluation through therapy, it suffers from significant 

constraints. It can only provide information from a limited 

number of places. It is possible that combining an MR-

compatible hyperthermia device with MR imaging is the 

best technology for real-time dosages and quality 

assurance. This is because it makes it possible to monitor 

the temperature without causing any damage to the patient. 

However, its accuracy in the pelvic region is insufficient 

for real-time thermal dosimetry and is easily disrupted by 

sound and activity irregularities. The clinic's current non-

invasive temperature monitoring options are limited to MR 

temperature measurements. As a result, there is an urgent 

need for new advancements to enhance MR thermometry 

readings and permit thermal dosimetry while therapy is 

being administered. 

 

Tissue radiodensity is temperature-dependent, with 

higher temperatures causing a reduction in radiodensity. 

Therefore, CT-based thermometry, also known as CT 

numbers or the Hounsfield units (HU), can indirectly be 

used to monitor tissue temperature changes. However, the 

volumetric thermal expansion coefficient of the material in 

question [5] determines the sensitivity (change in HU per 

degree Celsius). CT-based thermometry has the potential to 

be used in the monitoring of tissue temperatures during 

high-frequency treatments or microwave ablation of liver 

and kidney cancers [7,44]. Despite the existence of such 

evident connections, the technique has seen limited use in 

clinical practice thus far [39]. This is because more 

frequent scans with CT need a larger dose of ionizing 

radiation, for example, in thermometry [9], and the 

reproducibility of quantitative CT numerical measures has 

not been assured. Additional study is necessary to 

thoroughly investigate the elements that affect CT-based 

thermometry to be effective. 

This research proposes a deep-learning strategy for 

non-invasive temperature monitoring during HIFU therapy. 

This monitoring would be done without the need for any 

intrusive techniques. The DL model that was intended to 

analyze the microwave fields scattering from a realistic 

bone phantom was changed to include multiple tumor 

inclusions with thermal anomalies and hot spots in the 

healthy tissues around the phantom. The proposed 

technique does not include retrieving a thermal map but 

relies on identifying a thermal anomaly. The suggested 

approach is a DL-based assessment method that has been 

statistically verified for various situations. So far as the 

author is aware, this is the first work to use DL on 

microwave scattering data for thermal monitoring, shifting 

the focus of semi-research from temperature mapping to 

thermal surveillance. These two milestones have never 

before been reached in the history of scientific inquiry, but 

both have been in the course of this study. 

 

The document portions are structured as follows: The 

related works for the hyperthermia treatment regarding 

bone cancer and temperature monitoring are detailed in 

Section 2. The approach that was used is detailed in section 

3. The construction of the deep learning model, and the 

outcomes of training and evaluation, are all discussed in 

Section 4. In the last portion, number 5, conclusions are 

reached. 

2. Related Works 
Non-invasive and instantaneous detection and 

monitoring of thermal ablation are essential to significantly 

improve the clinical implementation of cancer therapy 

procedures, which is presently challenging due to the 

dissatisfying functionality of traditional ultrasound scans 

commonly used in medical training. Deep learning has 

recently started influencing biological investigations and 

submissions, using the capacity to integrate massive 

datasets and join prior knowledge [40]. The use of deep 

learning methods, and convolutional neural networks, in 

particular, has improved medical picture processing 

significantly [12], [13]. Image analysis, classification, 

object detection and recognition, alignment, artefact 

restoration, quantization, and rebuilding are just some 

fields that have benefited from these advancements. Within 

the scope of this investigation, we investigated and 

analyzed the practicability of employing a deep CNN 

framework for thermal lesion identification and monitoring 

brought about by MWA Features associated with the 

thermal lesion was detected and maintained using original 

radiofrequency data backscattered from the ablated area in 

the United States. This is in contrast to the majority of 

visual object recognition tasks, which involve dealing with 

images. 

 

Convolutional neural networks have recently led to 

inventive outcomes in various tasks, including categorizing 

images and detecting cancer [15,42]. A pattern of message 

processing similar to that of the human brain may be 

imitated using CNN, an artificial neural network. Several 

convolution channels are used to extract information from 
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the input data, and the resulting filtered return properties 

can be used in a classification process. CNNs have also 

been applied, with significant accuracy levels, to 

identifying Raman spectra [3,16,17,38].  

 

Medical imaging has benefited from the effective use 

of deep learning techniques [18-23], which has opened up 

new possibilities for developing computer-aided diagnostic 

imaging diagnosis systems (AI). These techniques include 

segmentation, detection, classification, and enhancement. 

Effectively applying deep learning methods in orthopedic 

radiology for lesion diagnosis and severity rating has been 

a common practice in recent years. Some examples of 

these lesions include a fracture [24-27], a knee lesion 

[28,29], osteoarthritis, and a degenerative spinal lesion. In 

addition, certain models based on deep learning are used to 

evaluate the age of the bones [30-35] and identify the 

gender [45] based on radiographs. In light of this, it is 

feasible to employ deep learning methodologies to build 

diagnostic models for bone malignancies, which might 

significantly reduce the rates of misunderstanding and 

missed diagnosis of bone metastases.  

 

Several recent research has shown the enormous 

potential of deep learning-based Ai applications in the 

diagnosis, segmentation, delineation, and visual assessment 

of bone cancers, resulting in increased diagnostics, 

predictive, and forecasting accuracy. These models were 

used to identify bone tumors and classify, segment, and 

interpret visual data. Furthermore, radionics is an advanced 

technology that frequently cooperates with artificial 

intelligence. The goal is to use quantitative characteristics 

of images, such as shape, shape, surface, and brightness, to 

isolate radiological patterns that can be analyzed 

numerically. Constant comparisons to deep learning are 

made between these two technologies. Even more cutting-

edge than genomics is a field called radiomics. It is 

common knowledge that radiomics has the potential to be 

utilized in the field of illness diagnosis, prognosis, and 

monitoring. 

3. Methodology 
3.1. Mathematical Model of Hyperthermia Treatment  

For treatment planning, prediction, and optimization, 

mathematical modeling is an essential tool. In point of fact, 

it helps determine the appropriate dose and the quantity of 

energy communicated, simplifying the analysis of the 

physiological parameters and monitoring and predicting 

the therapeutic effects. Solving the bio-heat equation, also 

known as the Pennes equation, is essential to produce 

tissue heating. This is the case regardless of the method 

that is utilized. 

𝜌𝐻
∂𝐵𝑇

∂t
= 𝑎∇2𝐵𝑇 + 𝑆𝑖    (1) 

𝜌 represents the density of the tissue mass which has 

the unit of 𝑘𝑔𝑚−3. 𝐻 is the heating capacity measured by 

𝐽𝑘𝑔−1𝑘−1. Variable a, represented by the unit 𝑊𝑚−1𝑘−1 

represents the heat conductivity and a Representation of 

the Original Source 𝑆𝑖 measured by, 𝑊𝑚−3 . 

𝑆𝑖 = 𝑆𝑠 + 𝑆𝑚ℎ + 𝑆ℎ𝑙    (2) 

𝑆𝑠 represents the source of heat, 𝑆𝑚ℎ represents the 

heat generation, 𝑆ℎ𝑙 is the loss of heat. The source of heat 

is electromagnetic heat which is used for the treatment. 

𝑆𝑠 =
𝛿

2
|𝐸𝐼0|2     (3) 

The electrical conductivity is represented by 𝛿 . |𝐸𝐼0|2 

represents the electrical field intensity measured by 𝑉𝑚−1. 

When the source of heat is constant with time, it can be 

represented as, 

𝜌𝐻
∂𝐵𝑇

∂t
= 𝑎∇2𝐵𝑇 + 𝑆𝑠 + 𝑆ℎ𝑙   (4) 

 

It's a simple equation, and it may be used to model the 

behaviour of a biological system under particular 

conditions: For one, it disregards the fact that veins also 

provide heat to the body and implies that all arterial heat is 

absorbed locally by the tissue; for another, it assumes that 

arterial temperature is the same as core body temperature. 

All of these factors contribute to an inaccurate assessment 

of blood perfusion, which may be determined using the 

following formula: 

𝑆ℎ𝑙 = −𝜔𝑏𝑝𝑟𝑆𝐻𝑏𝑝𝑟𝜌𝑏𝑝𝑟(𝑇 − 𝑇𝑏𝑝𝑟)   (5) 

What the body's blood supply looks like 𝜔𝑏𝑝𝑟 and 

measurement is by ml𝑘𝑔−1𝑘−1. 𝑆𝐻𝑏𝑝𝑟  represents the 

specific heat of the human body's blood (𝐽𝑘𝑔−1𝑘−1). For 

the mass-to-volume ratio of blood, use the symbol 𝜌𝑏𝑝𝑟. 

Aortic blood temperature is indicated by the symbol 𝑇𝑏𝑝𝑟 

[𝐾]. If the body's temperature rises, blood removes the 

excess heat, and if it falls, blood transports the lost heat. 

The negative sign reflects this process of compensating for 

temperature changes by the blood. Solving the 

electromagnetic equations (Maxwell's equations) is 

required to find the bio-heat source term 𝑆𝑠. Since MW 

wavelengths in tissue are in the cm range, modeling of 

wave propagation is necessary to account for the 

conversion of MW energy to heat owing to dielectric 

losses.  

∆ × 𝑀𝑠 = 𝐷𝑠 +
∂𝐷𝑒𝑓

∂t
    (6) 

The magnetic flux density [𝐴𝑚−1] is denoted by the 

letter 𝑀𝑠. the current concentration is 𝐷𝑠. the density of the 

flow of electricity is 𝐷𝑒𝑓 [𝐴𝑚−2].  
∂𝐷𝑒𝑓

∂t
 is the concentration 

of the eddy currents [𝐴𝑚−2]. According to the "Maxwell-

Faraday equation," variations in the magnetic field 

𝐹 [𝑉𝑠𝑚−2] have an effect on the electric field 𝐸 [𝑉 𝑚−1]. 

∆ × 𝐸 = −
∂𝐹

∂t
     (7) 

The rules of Gauss for the electric ground and the 

magnetic field describe the facts that the magnetic arena 𝐹 

does not have any source and that the source for the 



Priscilla Whitin & V. Jayasankar / IJEEE, 10(1), 187-196, 2023 

190 

electric displacement is the electrical charge density  

𝜌[𝐴 𝑠 𝑚−3]: 

∆ . 𝐷 = 𝜌     (8) 

∆ . 𝐹 = 0     (9) 

Only when the electromagnetic arena is brought into 

contact with matter is the latent energy it contains made 

manifest for human perception (this interaction depends on 

the ratio between the dimension of the object and the 

wavelength). To create a model closer to reality, it is 

essential to consider the fluctuations in temperature caused 

by physiological thermoregulation, which is determined by 

the electrical and thermal characteristics of the tissue. 

Knowing the electrical properties of biological tissues as a 

function of temperature allows for an accurate 

determination of the quantity of deposited electromagnetic 

energy.  

 

3.2. Hyperthermia Treatment for Bone Cancers  

 Thermotherapy and thermal ablation are the two 

primary applications of hyperthermia. The goal of 

thermotherapy is to selectively kill tumor cells without 

harming the healthy tissue around them by raising the body 

temperature to between 41 and 45 degrees Celsius. 

Thermotherapy can also improve the efficacy of other 

cancer therapies, including radiation and chemotherapy. In 

contrast, thermal ablation involves subjecting cells to 

temperatures higher than 45 C. This procedure may harm 

both tumor and healthy tissue. 

 

It is not known how hyperthermia causes cell death, 

although it is believed to be the result of several different 

cellular disturbances. However, hyperthermia causes cells 

to die via necrosis or apoptosis in the long run. The 

inflammatory reaction that follows necrosis (premature cell 

death) is a passive pathogenic process, while apoptosis is a 

genetically regulated, designed cell death. However, the 

protein cascades activated during extrinsic and intrinsic 

apoptosis are distinct, despite the fact that both processes 

result in cell death. Most apoptosis-inducing stimuli can 

also produce necrosis if the cell is heated for an extended 

period of time. Some kinds of cells have been proven to be 

more susceptible to apoptosis after heat exposure, while 

necrosis is more likely to occur at specified temperatures. 

 

3.3. HIFU Experimental Setup  

A HIFU system and an outside ultrasonic sensor will 

make up the planned configuration for the setup. The steps 

of heating and monitoring the temperature are intertwined 

throughout the operation. A continuous wave, or CW, is 

emitted by the HIFU components during the combustion 

stroke to raise the temperature of a specific region. During 

the monitoring phase of the process, the HIFU components 

send out ultrasound pulses in sequential order. The external 

ultrasound sensor was responsible for receiving the 

ultrasound waves emitted by each HIFU element, which 

allowed for the measurement of varying flight times during 

the experiment. We are able to get a high level of 

prediction accuracy by reconstructing temperature pictures 

using a neural network. This network requires a significant 

number of training data sets. It is difficult to acquire 

adequate data with our innovatively designed technology 

because of this. We can circumvent this restriction by 

employing a physics-based HIFU simulation to produce 

the training data sets. These simulations come with a 

variety of HIFU powers and ultrasound sensor positions. 

Thus, we may use data sets derived from simulations to 

train the network and data sets derived from actual trials to 

test it. 

 

3.4. Proposed Neural Network Model Design 

The ToF that was obtained before the ablation 

operation and the ToF shifts that occurred during the HIFU 

procedure are concatenated together to form the network's 

input. Because the shifted ToF is shorter than the original 

ToF, we use a millisecond value for the first ToF in the 

input sequence, and for subsequent ToF changes, we use a 

microsecond value.  

The network's final product is a thermal image, and 

the MRI's own heat scans serve as reference points for the 

final picture. Adam is the optimizer that we utilize. The 

mean square error serves as the loss function, and the 

learning rate is 0.0005. The picture has a resolution of 1 

millimeter × 1 millimeter. In this architecture, the input 

vector first passes through a series of fully connected 

networks before reaching the CNN and dropout layers. It 

involves adding a dropout layer before the final fully 

connected one and then halving the dropout probability of 

that layer. Fig.2 depicts the artificial neural network's 

architecture. The change in TOF shift is necessary to 

determine the temperature [8]. The CLSTM network has 

the ability to extract spatial as well as temporal properties 

from channel data. As an input, we make use of the 

unprocessed channel data, which includes information 

about amplitude and TOF. We utilize the data from the 

time series channel as the input for the CLSTM block; this 

allows the network to learn how the amplitude and TOF 

change over various temperature profiles. 

3.5. CLSTM Model 

The fundamental drawback of FC-LSTM is that it 

cannot interpret spatiotemporal data since it uses full 

connections in input-to-state and state-to-state transitions 

in which no spatial information is recorded. This limitation 

is the primary reason for the aforementioned limitation. In 

order to solve this issue, a unique aspect of our design is 

that all of the inputs 𝐼1, . . . , 𝐼𝑡, cell outputs 𝑂1,..., 𝑂𝑡, hidden 

states ℎ𝑣1,..., ℎ𝑣𝑡, and gates 𝑖𝑔𝑡 , 𝑓𝑔𝑡 , 𝑜𝑔𝑡 of the CLSTM 

are three-dimensional tensors, the last two dimensions of 

which are the spatial dimensions. It could help to think of 

the inputs and states of the system as superimposed vectors 

on a spatial grid to gain a clearer image of the system. For 

each grid cell, the CLSTM algorithm considers the inputs 

and past states of its nearest neighbours to predict what that 

cell will be like in the future. To achieve this, a 

convolution operator may be used in state-to-state and 

input-to-state transfers. The primary equations that are 
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used in CLSTM are presented below. The convolution 

operator is denoted by ∗t in this equation, and the 

Hadamard product, denoted by °, is defined before. 

 

The result of the CLSTM algorithm is then used in a 

convolution operation. Additional input in the form of 

location vectors is now being sent into the network. 

Included are the positions of the HIFU elements in 

reference to the ultrasound element receiving the signal. 

After passing the vector through a few convolutions and 

completely connected layers, it is reformatted into a 

40 ×  40 array. After going through layers of convolution 

and transposed convolution, it emerges with a flattened 

appearance. Fig 1. Shows the overall architecture of the 

proposed work for temperature monitoring during

 
 Fig. 1. Overall proposed model architecture 

hyperthermia in bone cancer treatments. In the end, it is 

molded into a 20 ×  20 picture after being linked to a 

completely connected layer with 400 size vector yield and 

being connected to a fully connected layer. 

𝑖𝑔𝑡 = 𝜎(𝑊𝑖𝑖𝑔 ∗ 𝑖𝑡 + 𝑊𝑣𝑖𝑔 ∗ 𝑉𝑡−1 + 𝑊𝑜𝑖𝑔° 𝑂𝑡−1 + 𝑏𝑖𝑔)  (10) 

       𝑓𝑔𝑡 = 𝜎(𝑊𝑖𝑓𝑔 ∗ 𝑖𝑡 + 𝑊𝑣𝑓𝑔 ∗ 𝑉𝑡−1 + 𝑊𝑜𝑓𝑔° 𝑂𝑡−1 +

𝑏𝑓𝑔)   

(11) 

𝑜𝑔𝑡 = 𝑓𝑔𝑡° 𝑂𝑡−1 + 𝑖𝑔𝑡°𝑡𝑎𝑛ℎ(𝑊𝑖𝑜𝑔 ∗ 𝑖𝑡 + 𝑊𝑣𝑜𝑔 ∗ 𝑉𝑡−1𝑏𝑜𝑔)

    (12) 

𝑜𝑝𝑡 = 𝜎(𝑊𝑖𝑜𝑝 ∗ 𝑖𝑡 + 𝑊𝑣𝑜𝑝 ∗ 𝑉𝑡−1 + 𝑊𝑜𝑜𝑝° 𝑂𝑡 + 𝑏𝑜)  

          (13) 

𝑉𝑡 = 𝑜𝑝𝑡°𝑡𝑎𝑛ℎ(𝑜𝑔𝑡)   (14) 

A CLSTM with a larger transitional kernel should be 

able to capture faster motions, whereas a CLSTM with a 

smaller kernel should be able to catch slower motions if we 

consider the states to be hidden representations of things in 

motion. To ensure that the output states have the same 

number of rows and columns as the inputs, padding must 

be performed before the convolution operation is 

performed. In this context, padding of the hidden states on 

boundary points might be seen as an application of the 

state of the outside world to the computation. In most 

cases, before the first input arrives, we zero out all of the 

states of the LSTM, representing "complete ignorance" of 

the future. 

 

This happens before the first input arrives. When re-

creating an output temperature picture, the first fully linked 

layer expands the size of the output vector to ensure that 

enough pixels are re-created. The size of the output vector 

must be bigger than the size of the input vector.  

4. Experimental Setup 
The system includes a magnetic resonance (MR)-

compatible ultrasound probe with 128 components, a 256-

element high-intensity focused ultrasound (HIFU) system, 

and a phantom composed of 2% agarose and 2% silicate 

minerals to mimic human soft tissue. All of these 

components are contained within a single housing. In order 

to facilitate acoustic coupling, the surface of the HIFU is 

coated in mineral oil and degassed water. In order to gather 

ultrasound signals, the ultrasound probe is fastened to the 

holder placed on top of the phantom. This configuration is 

permanently installed in the MR gantry so that 

simultaneous MR temperature pictures and ultrasound 

channel data may be collected.  

 

During the removal phase, the HIFU components send 

out incessant waves at a power level of 78 Watts for a 

period of five seconds. The temperature rises as a result of 

the acoustic wave becoming concentrated at the natural 

pivotal point. Each HIFU element sends out ultrasonic 
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pulses in sequence during the monitoring phase, with a 

power output of 2 Watts and a pinging interval of 3 ms. 

Because of the fluctuation in temperature, ultrasound 

waves travel through the target region at varying rates. An 

ultrasonic probe compatible with magnetic resonance is 

used to record the pulses. After a delay of 131.072 

milliseconds, we capture 4096 samples at a sampling rate 

of 62.5 megahertz. In the event that the HIFU element 

diffuses the signal while the sampling is synced with it, a 

trigger will be produced. 

 

4.1. Dataset 

A biophysical model simulates the surface temperature 

in a three-dimensional volume during the heating phase to 

create the training data set. This simulation is performed 

while the HIFU ablation is being performed. The 

biophysical model parameters are adjusted to closely 

resemble the experimental setup and the time sequence 

carried out during the experiments. There are two separate 

powers, each 50 and 70 Watts. We simulated the 

experiment for 120 seconds, during which time we 

generated a temperature volume every second. A 

conversion curve determined for our agarose phantom is 

utilized to transform the temperature volumes created into 

the speed of sound volumes. 

 

Table 1 shows the parameters of the Model during the 

experimental setup. Time of flight is determined for 150 

alternative positions of the external element inside a 

volume of 26 mm × 8 mm ×1 mm adjacent to the external 

element location utilized in the experiment. This results in 

a grand total of 43658 simulated data sets. Different 

element positions are randomly assigned to validation and 

training sets. We train with data from 80% of our sites and 

test with data from the remaining 20%. To train and 

rebuild, we only employ an axial picture slice that includes 

the furnace's epicenter. 

Table 1. Parameters of the biophysical model during experimental 

setup 

parameters Value 

Power 50 watts and 70 watts 

Simulation Time 120 second 

agarose phantom conversion curve 

Time of flight (ToF) 150 

external element- volume 26 mm × 8 mm ×1 mm 

Total data  43658 

Train, Test 80%, 20% 

5. Performance Evaluation 
5.1. Evaluation Metrics 

The performance of a model can be determined in 

large part based on the measure that is used for assessment. 

Mean absolute error, root mean square error, mean 

absolute percentage error and correlation coefficient are 

the four evaluation techniques utilized in this experiment 

(R). MAE is a range that starts at 0 and goes all the way up 

to positive infinity, as shown in figure 2. Its value is equal 

to 0 when the anticipated value and the actual value are an 

exact match. When the value is reduced, the margin of 

error also decreases. 

𝑀𝐴𝐸 =
1

𝐾
∑ |𝑧𝑗 − 𝑧𝑗̂|𝐾

𝑗=1    (15) 

 
Fig. 2 Performance of a model based on MAE 

 
Fig. 3 Performance of a model based on RMSE 

Calculating the RMSE involves finding the square root 

of the quadratic and the observational n ratio of the 

discrepancy between the observed and expected values. 

The standard deviation will also be lower when the value is 

lower,  as shown in fig.3. 

𝑅𝑀𝑆𝐸 = √
1

𝐾
∑ (𝑧𝑗 − 𝑧𝑗̂)

2𝐾
𝑗=1   (16) 

If we take the average absolute error between each 

observation and the arithmetic mean, we get the absolute 

deviation of the mean. The mean percentage deviation is 

another name for this statistic. As can be seen in fig.4, the 

average absolute error avoids the problem of mistakes 

cancelling each other out by more accurately reflecting the 

amount of the true forecast inaccuracy. 

𝑀𝐴𝑃𝐸 =
1

𝐾
∑

|𝑧𝑜𝑗−𝑧𝑜𝑗̂|

𝑧𝑜𝑗

𝐾
𝑗=1       (17) 

R determines the degree to which the expected and 

actual values have a linear association. The closer you are 

to 1, the more significant it is, as shown in fig.5. 
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Fig. 4 Performance of a model based on MAPE 

𝑅 =
∑ (𝑧𝑜𝑗−𝑧𝑜𝑗̅̅ ̅̅ ̅𝐾

𝑗=1 )(𝑧𝑜̂𝑗−𝑧𝑜̂𝑗)̅̅ ̅̅ ̅̅

√∑ (𝑧𝑜𝑗−𝑧𝑜𝑗̅̅ ̅̅ ̅𝐾
𝑗=1 )2 (𝑧𝑜̂𝑗−𝑧𝑜̂𝑗)̅̅ ̅̅ ̅̅ 2

  (18) 

 
Fig. 5 Performance of a model based on R 

The calculations shown above refer to 𝐾 as the 

number of samples, 𝑧𝑗 as the actual value, 𝑧𝑗̂ as the 

predicted value, 𝑧𝑗̅ as the mean of the real value. 

 

The pertinent assessment indicators are also included 

in Table 2, which may be found here. From the data in the 

table, it is clear that the single LSTM model has the lowest 

forecast impact of the four models. It has the most error 

slots and the least fit effect. Check out the graph for 

yourself to see the proof. The Bi-LSTM model's predictive 

power is on par with that of the LSTM model, and it 

actually improves upon the LSTM model slightly. Out of 

these four models, the CLSTM has the best prediction 

effect because of its low Mean square error and root mean 

squared error values, high R-value, and a high degree of 

fitting. 

Table 2. Performance Evaluation Based on MAE, MAPE, R, RMSE 

Model 

Mean 

Absolute 

Error 

Mean 

Absolute 

Percentage 

Error 

Root 

Mean 

Square 

Error 

R 

LSTM 25.3562 9.35 22.9656 0.8123 

Bi-

LSTM 
24.1246 8.96 21.8562 0.8563 

CNN 23.2580 8.65 19.8472 0.95.65 

CLSTM 20.5246 6.56 16.8542 0.9952 

5.2. Accurately Predicting the Slope of the Time-

Temperature Relationship (AUC) 

The time-temperature records from the HT treatment 

unit were used in the AUC computation with a sampling 

interval of 10 s. To do this, we conduct a linear 

interpolation between the various time 𝑡 (on the X-axis) 

and temperature 𝑇 (on the Y-axis) data points (Y-axis). For 

a certain trapezoidal section, the area under the curve 

would be intended as follows for a specific time period, 

denoted by 𝑡1, 𝑡2, and a temperature difference, denoted by 

𝑇1, 𝑇2: 

𝑇ℎ𝑒 𝑎𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑐𝑢𝑟𝑣𝑒 (𝐴𝑈𝐶) 

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡𝑟𝑎𝑝𝑒𝑧𝑜𝑖𝑑𝑎𝑙(𝑇1 + 𝑇2)(𝑡1 − 𝑡2)    (19) 

 
Fig. 6 Time-temperature plot 

So, for each HT session, we calculated the total area 

under the curve (AUC), which includes pre-heating and 

active heating: 

 𝐴𝑈𝐶 ≈ ∑ (
𝑇𝐸𝑀−1+𝑇𝐸𝑀

2
)(𝑀

𝑖=1 𝑡𝑖𝑀−1 + 𝑡𝑖𝑀)      (20) 

The temperature at the time instant 𝑡𝑖𝑚   is represented 

by the symbol 𝑇𝐸𝑚,  , and the temperature at the time of 

instant  𝑡𝑖𝑚−1is represented by the symbol 𝑇𝐸𝑚−1, where 

𝑡𝑖 represents the time in minutes, and 𝑇𝐸 indicates the 

temperature in degrees Celsius. Each temperature reading 

is accompanied by a discrete-time index beginning with the 

letter M, and the conclusion of the heating session is 

similarly denoted by the letter M. 
 

 Figure 6 depicts a time-temperature curve from a 

patient undergoing hyperthermia treatment for urinary 

bone cancer. During the full 90 minutes of severe 

hyperthermia, temperature represents the intraluminal 

temperature in bone taken every 10 seconds. 
 

We used a learning rate of 0.00001 when training the 

network over the course of 800 epochs. As can be seen in 

Figure 7, the reconstructed pictures have a dimension of 38 

millimeters by 78 millimeters and a pixel size of 1 

millimeter by 1 millimeter. They are centered on the area 

of interest. The size of the output vector is 3,578; however, 

to reshape the reconstructed pictures, we only need the 

front 3,444 pixels.  
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(a) original images, (b) reconstructed images 

Fig. 7 Original and reconstructed images 

 

 
(a) with initial ToF 

 

 
        (b) ToF changes 

Fig. 8 Shifted the time of flight is appended to the starting time of 

flight to create the input vector 

We were able to obtain mean errors of 0.08 ± 0.05℃  

and maximum errors of 1.02 ± 0.52℃  over the entirety of 

the validation set when comparing the reconstructed 

pictures to the original photos. The worst-case scenario 

was a recreated picture showing an extreme variance of 

2.53 degrees Celsius. In Fig. 8, we can see an example of a 

restored picture based on the endorsement data set, the 

associated original image, and the images created. Fig. 8 

shows the shifted flight time is appended to the starting 

time to create the input vector. Fig. 9 illustrates the 

outcomes of our neural network's reconstructive efforts.  

In the region of interest (ROI), we determine both the 

mean and the maximum absolute error for each output 

picture. The axial picture test set has obtained mean errors 

of 0.08 ± 0.05℃  and maximum errors of 1.02 ± 0.52℃  
over the entirety of the validation set when comparing the 

reconstructed pictures to the ground truth photos.  

 
(a) 

 
(b) 

 Fig. 9 Absolute pixel-based inaccuracy in axial pictures taken using 

the test set: (a) peak error, (b) mean error 

6. Conclusion  
The Use of Deep Learning to Improve Performance 

CLSTM is offered as a method for reconstructing 

temperature images from raw data collected via acoustic 

channels. Because our technique involves nothing more 

than positioning the ultrasonic components directly on top 

of the target, the setup is both straightforward and 

inexpensive. Experiments are carried out so that data may 

be gathered and the neural network can be trained. The 

findings indicate that the suggested approach of ultrasound 

thermometry for HIFU therapy monitoring, which uses 

ultrasound channel data and deep learning, is technically 

feasible. Because the method uses ultrasound data recorded 

before eradication, patient mobility is a challenge because 

the channel data acquired at the starting state would be 

diverse from the one in our network. The patient's heart 

rate can't fluctuate too much because this technique 

employs ultrasound data from the beginning. The current 

temperature information before patient mobility and the 

comparable ultrasonic data change that happens after 

patient motion will be used in the future as input, 

eliminating the necessity for initial channel data.  
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The very limited data storage space is one of this 

investigation's shortcomings. The upcoming effort will 

entail collecting additional data for training and validation 

purposes. More information will be gathered using a 

variety of biological tissues and distinct element 

placements. Experiments will need to be carried out in the 

not-too-distant future to validate the approach. We trust 

that the accuracy may be enhanced even further by 

adjusting the hyperparameters and changing the neural 

network's topology by using more data. Since it is difficult 

to obtain a sufficient amount of data in adequate quantity, 

simulation is another option that might be explored. It is 

possible that we will be able to train the system using 

information obtained from both simulation and 

experiments.
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